blob: cdd95ca18fbc2ad5af06d92733703d10b0b0c427 [file] [log] [blame]
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "AidlSensorHalWrapper.h"
18#include "ISensorsWrapper.h"
19#include "SensorDeviceUtils.h"
20#include "android/hardware/sensors/2.0/types.h"
21
22#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
23#include <aidlcommonsupport/NativeHandle.h>
24#include <android-base/logging.h>
25#include <android/binder_manager.h>
26
27using ::aidl::android::hardware::sensors::AdditionalInfo;
28using ::aidl::android::hardware::sensors::DynamicSensorInfo;
29using ::aidl::android::hardware::sensors::Event;
30using ::aidl::android::hardware::sensors::ISensors;
31using ::aidl::android::hardware::sensors::SensorInfo;
32using ::aidl::android::hardware::sensors::SensorStatus;
33using ::aidl::android::hardware::sensors::SensorType;
34using ::android::AidlMessageQueue;
35using ::android::hardware::EventFlag;
36using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
37
38namespace android {
39
40namespace {
41
42status_t convertToStatus(ndk::ScopedAStatus status) {
43 if (status.isOk()) {
44 return OK;
45 } else {
46 switch (status.getExceptionCode()) {
47 case EX_ILLEGAL_ARGUMENT: {
48 return BAD_VALUE;
49 }
50 case EX_SECURITY: {
51 return PERMISSION_DENIED;
52 }
53 case EX_UNSUPPORTED_OPERATION: {
54 return INVALID_OPERATION;
55 }
56 case EX_SERVICE_SPECIFIC: {
57 switch (status.getServiceSpecificError()) {
58 case ISensors::ERROR_BAD_VALUE: {
59 return BAD_VALUE;
60 }
61 case ISensors::ERROR_NO_MEMORY: {
62 return NO_MEMORY;
63 }
64 default: {
65 return UNKNOWN_ERROR;
66 }
67 }
68 }
69 default: {
70 return UNKNOWN_ERROR;
71 }
72 }
73 }
74}
75
76void convertToSensor(const SensorInfo &src, sensor_t *dst) {
77 dst->name = strdup(src.name.c_str());
78 dst->vendor = strdup(src.vendor.c_str());
79 dst->version = src.version;
80 dst->handle = src.sensorHandle;
81 dst->type = (int)src.type;
82 dst->maxRange = src.maxRange;
83 dst->resolution = src.resolution;
84 dst->power = src.power;
85 dst->minDelay = src.minDelayUs;
86 dst->fifoReservedEventCount = src.fifoReservedEventCount;
87 dst->fifoMaxEventCount = src.fifoMaxEventCount;
88 dst->stringType = strdup(src.typeAsString.c_str());
89 dst->requiredPermission = strdup(src.requiredPermission.c_str());
90 dst->maxDelay = src.maxDelayUs;
91 dst->flags = src.flags;
92 dst->reserved[0] = dst->reserved[1] = 0;
93}
94
95void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
96 *dst = {.version = sizeof(sensors_event_t),
97 .sensor = src.sensorHandle,
98 .type = (int32_t)src.sensorType,
99 .reserved0 = 0,
100 .timestamp = src.timestamp};
101
102 switch (src.sensorType) {
103 case SensorType::META_DATA: {
104 // Legacy HALs expect the handle reference in the meta data field.
105 // Copy it over from the handle of the event.
106 dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
107 dst->meta_data.sensor = src.sensorHandle;
108 // Set the sensor handle to 0 to maintain compatibility.
109 dst->sensor = 0;
110 break;
111 }
112
113 case SensorType::ACCELEROMETER:
114 case SensorType::MAGNETIC_FIELD:
115 case SensorType::ORIENTATION:
116 case SensorType::GYROSCOPE:
117 case SensorType::GRAVITY:
118 case SensorType::LINEAR_ACCELERATION: {
119 dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
120 dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
121 dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
122 dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
123 break;
124 }
125
126 case SensorType::GAME_ROTATION_VECTOR: {
127 dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
128 dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
129 dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
130 dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
131 break;
132 }
133
134 case SensorType::ROTATION_VECTOR:
135 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
136 dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
137 dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
138 dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
139 dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
140 dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
141 break;
142 }
143
144 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::ACCELEROMETER_UNCALIBRATED: {
147 dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
148 dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
149 dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
150 dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
151 dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
152 dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
153 break;
154 }
155
156 case SensorType::HINGE_ANGLE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::LIGHT:
159 case SensorType::PRESSURE:
160 case SensorType::PROXIMITY:
161 case SensorType::RELATIVE_HUMIDITY:
162 case SensorType::AMBIENT_TEMPERATURE:
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::STEP_DETECTOR:
165 case SensorType::TILT_DETECTOR:
166 case SensorType::WAKE_GESTURE:
167 case SensorType::GLANCE_GESTURE:
168 case SensorType::PICK_UP_GESTURE:
169 case SensorType::WRIST_TILT_GESTURE:
170 case SensorType::STATIONARY_DETECT:
171 case SensorType::MOTION_DETECT:
172 case SensorType::HEART_BEAT:
173 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
174 dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
175 break;
176 }
177
178 case SensorType::STEP_COUNTER: {
179 dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
180 break;
181 }
182
183 case SensorType::HEART_RATE: {
184 dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
185 dst->heart_rate.status =
186 (int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
187 break;
188 }
189
190 case SensorType::POSE_6DOF: { // 15 floats
191 for (size_t i = 0; i < 15; ++i) {
192 dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
193 }
194 break;
195 }
196
197 case SensorType::DYNAMIC_SENSOR_META: {
198 dst->dynamic_sensor_meta.connected =
199 src.payload.get<Event::EventPayload::dynamic>().connected;
200 dst->dynamic_sensor_meta.handle =
201 src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
202 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
203
204 memcpy(dst->dynamic_sensor_meta.uuid,
205 src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
206
207 break;
208 }
209
210 case SensorType::ADDITIONAL_INFO: {
211 const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
212
213 additional_info_event_t *dstInfo = &dst->additional_info;
214 dstInfo->type = (int32_t)srcInfo.type;
215 dstInfo->serial = srcInfo.serial;
216
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000217 switch (srcInfo.payload.getTag()) {
218 case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
219 const auto &values =
220 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
221 .values;
222 CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
223 memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
224 break;
225 }
226 case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
227 const auto &values =
228 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
229 .values;
230 CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
231 memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
232 break;
233 }
234 default: {
235 ALOGE("Invalid sensor additional info tag: %d", srcInfo.payload.getTag());
236 }
237 }
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000238 break;
239 }
240
Brian Duddie4cdc8ba2022-01-19 14:31:48 -0800241 case SensorType::HEAD_TRACKER: {
242 const auto &ht = src.payload.get<Event::EventPayload::headTracker>();
243 dst->head_tracker.rx = ht.rx;
244 dst->head_tracker.ry = ht.ry;
245 dst->head_tracker.rz = ht.rz;
246 dst->head_tracker.vx = ht.vx;
247 dst->head_tracker.vy = ht.vy;
248 dst->head_tracker.vz = ht.vz;
249 dst->head_tracker.discontinuity_count = ht.discontinuityCount;
250 break;
251 }
252
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000253 default: {
254 CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
255
256 memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
257 16 * sizeof(float));
258 break;
259 }
260 }
261}
262
263void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
264 *dst = {
265 .timestamp = src.timestamp,
266 .sensorHandle = src.sensor,
Tyler Trephan99513342022-01-07 23:59:04 +0000267 .sensorType = (SensorType) src.type,
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000268 };
269
270 switch (dst->sensorType) {
271 case SensorType::META_DATA: {
272 Event::EventPayload::MetaData meta;
273 meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
274 // Legacy HALs contain the handle reference in the meta data field.
275 // Copy that over to the handle of the event. In legacy HALs this
276 // field was expected to be 0.
277 dst->sensorHandle = src.meta_data.sensor;
278 dst->payload.set<Event::EventPayload::Tag::meta>(meta);
279 break;
280 }
281
282 case SensorType::ACCELEROMETER:
283 case SensorType::MAGNETIC_FIELD:
284 case SensorType::ORIENTATION:
285 case SensorType::GYROSCOPE:
286 case SensorType::GRAVITY:
287 case SensorType::LINEAR_ACCELERATION: {
288 Event::EventPayload::Vec3 vec3;
289 vec3.x = src.acceleration.x;
290 vec3.y = src.acceleration.y;
291 vec3.z = src.acceleration.z;
292 vec3.status = (SensorStatus)src.acceleration.status;
293 dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
294 break;
295 }
296
297 case SensorType::GAME_ROTATION_VECTOR: {
298 Event::EventPayload::Vec4 vec4;
299 vec4.x = src.data[0];
300 vec4.y = src.data[1];
301 vec4.z = src.data[2];
302 vec4.w = src.data[3];
303 dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
304 break;
305 }
306
307 case SensorType::ROTATION_VECTOR:
308 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
309 Event::EventPayload::Data data;
310 memcpy(data.values.data(), src.data, 5 * sizeof(float));
311 dst->payload.set<Event::EventPayload::Tag::data>(data);
312 break;
313 }
314
315 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
316 case SensorType::GYROSCOPE_UNCALIBRATED:
317 case SensorType::ACCELEROMETER_UNCALIBRATED: {
318 Event::EventPayload::Uncal uncal;
319 uncal.x = src.uncalibrated_gyro.x_uncalib;
320 uncal.y = src.uncalibrated_gyro.y_uncalib;
321 uncal.z = src.uncalibrated_gyro.z_uncalib;
322 uncal.xBias = src.uncalibrated_gyro.x_bias;
323 uncal.yBias = src.uncalibrated_gyro.y_bias;
324 uncal.zBias = src.uncalibrated_gyro.z_bias;
325 dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
326 break;
327 }
328
329 case SensorType::DEVICE_ORIENTATION:
330 case SensorType::LIGHT:
331 case SensorType::PRESSURE:
332 case SensorType::PROXIMITY:
333 case SensorType::RELATIVE_HUMIDITY:
334 case SensorType::AMBIENT_TEMPERATURE:
335 case SensorType::SIGNIFICANT_MOTION:
336 case SensorType::STEP_DETECTOR:
337 case SensorType::TILT_DETECTOR:
338 case SensorType::WAKE_GESTURE:
339 case SensorType::GLANCE_GESTURE:
340 case SensorType::PICK_UP_GESTURE:
341 case SensorType::WRIST_TILT_GESTURE:
342 case SensorType::STATIONARY_DETECT:
343 case SensorType::MOTION_DETECT:
344 case SensorType::HEART_BEAT:
345 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
346 case SensorType::HINGE_ANGLE: {
347 dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
348 break;
349 }
350
351 case SensorType::STEP_COUNTER: {
352 dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
353 break;
354 }
355
356 case SensorType::HEART_RATE: {
357 Event::EventPayload::HeartRate heartRate;
358 heartRate.bpm = src.heart_rate.bpm;
359 heartRate.status = (SensorStatus)src.heart_rate.status;
360 dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
361 break;
362 }
363
364 case SensorType::POSE_6DOF: { // 15 floats
365 Event::EventPayload::Pose6Dof pose6DOF;
366 for (size_t i = 0; i < 15; ++i) {
367 pose6DOF.values[i] = src.data[i];
368 }
369 dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
370 break;
371 }
372
373 case SensorType::DYNAMIC_SENSOR_META: {
374 DynamicSensorInfo dynamic;
375 dynamic.connected = src.dynamic_sensor_meta.connected;
376 dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
377
378 memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
379 dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
380 break;
381 }
382
383 case SensorType::ADDITIONAL_INFO: {
384 AdditionalInfo info;
385 const additional_info_event_t &srcInfo = src.additional_info;
386 info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
387 info.serial = srcInfo.serial;
388
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000389 AdditionalInfo::AdditionalInfoPayload::Int32Values data;
390 CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
391 memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
392 info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000393
394 dst->payload.set<Event::EventPayload::Tag::additional>(info);
395 break;
396 }
397
Brian Duddie4cdc8ba2022-01-19 14:31:48 -0800398 case SensorType::HEAD_TRACKER: {
399 Event::EventPayload::HeadTracker headTracker;
400 headTracker.rx = src.head_tracker.rx;
401 headTracker.ry = src.head_tracker.ry;
402 headTracker.rz = src.head_tracker.rz;
403 headTracker.vx = src.head_tracker.vx;
404 headTracker.vy = src.head_tracker.vy;
405 headTracker.vz = src.head_tracker.vz;
406 headTracker.discontinuityCount = src.head_tracker.discontinuity_count;
407
408 dst->payload.set<Event::EventPayload::Tag::headTracker>(headTracker);
409 break;
410 }
411
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000412 default: {
413 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
414
415 Event::EventPayload::Data data;
416 memcpy(data.values.data(), src.data, 16 * sizeof(float));
417 dst->payload.set<Event::EventPayload::Tag::data>(data);
418 break;
419 }
420 }
421}
422
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000423void serviceDied(void *cookie) {
424 ALOGW("Sensors HAL died, attempting to reconnect.");
425 ((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
426}
427
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000428template <typename EnumType>
429constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
430 return static_cast<typename std::underlying_type<EnumType>::type>(value);
431}
432
433enum EventQueueFlagBitsInternal : uint32_t {
434 INTERNAL_WAKE = 1 << 16,
435};
436
437} // anonymous namespace
438
439class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
440public:
441 AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
442 : mSensorDeviceCallback(sensorDeviceCallback) {}
443
444 ::ndk::ScopedAStatus onDynamicSensorsConnected(
445 const std::vector<SensorInfo> &sensorInfos) override {
446 std::vector<sensor_t> sensors;
447 for (const SensorInfo &sensorInfo : sensorInfos) {
448 sensor_t sensor;
449 convertToSensor(sensorInfo, &sensor);
450 sensors.push_back(sensor);
451 }
452
453 mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
454 return ::ndk::ScopedAStatus::ok();
455 }
456
457 ::ndk::ScopedAStatus onDynamicSensorsDisconnected(
458 const std::vector<int32_t> &sensorHandles) override {
459 mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
460 return ::ndk::ScopedAStatus::ok();
461 }
462
463private:
464 ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
465};
466
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000467AidlSensorHalWrapper::AidlSensorHalWrapper()
468 : mEventQueueFlag(nullptr),
469 mWakeLockQueueFlag(nullptr),
470 mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
471
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000472bool AidlSensorHalWrapper::supportsPolling() {
473 return false;
474}
475
476bool AidlSensorHalWrapper::supportsMessageQueues() {
477 return true;
478}
479
480bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
481 mSensorDeviceCallback = callback;
482 mSensors = nullptr;
483
484 auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
485 if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000486 if (mSensors != nullptr) {
487 AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
488 }
489
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000490 ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
491 if (binder.get() != nullptr) {
492 mSensors = ISensors::fromBinder(binder);
493 mEventQueue = std::make_unique<AidlMessageQueue<
494 Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
495 /*configureEventFlagWord=*/true);
496
497 mWakeLockQueue = std::make_unique<AidlMessageQueue<
498 int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
499 /*configureEventFlagWord=*/true);
500 if (mEventQueueFlag != nullptr) {
501 EventFlag::deleteEventFlag(&mEventQueueFlag);
502 }
503 EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
504 if (mWakeLockQueueFlag != nullptr) {
505 EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
506 }
507 EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
508
509 CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
510 mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
511
512 mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
513 mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000514
515 AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000516 } else {
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000517 ALOGE("Could not connect to declared sensors AIDL HAL");
518 }
519 }
520
521 return mSensors != nullptr;
522}
523
524void AidlSensorHalWrapper::prepareForReconnect() {
525 mReconnecting = true;
526 if (mEventQueueFlag != nullptr) {
527 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
528 }
529}
530
531ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
532 return 0;
533}
534
535ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
536 ssize_t eventsRead = 0;
537 size_t availableEvents = mEventQueue->availableToRead();
538
539 if (availableEvents == 0) {
540 uint32_t eventFlagState = 0;
541
542 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
543 // able to be called with the correct number of events to read. If the specified number of
544 // events is not available, then read() would return no events, possibly introducing
545 // additional latency in delivering events to applications.
546 if (mEventQueueFlag != nullptr) {
547 mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
548 asBaseType(INTERNAL_WAKE),
549 &eventFlagState);
550 }
551 availableEvents = mEventQueue->availableToRead();
552
553 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
554 ALOGD("Event FMQ internal wake, returning from poll with no events");
555 return DEAD_OBJECT;
556 }
557 }
558
559 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
560 if (eventsToRead > 0) {
561 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
562 // Notify the Sensors HAL that sensor events have been read. This is required to support
563 // the use of writeBlocking by the Sensors HAL.
564 if (mEventQueueFlag != nullptr) {
565 mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
566 }
567
568 for (size_t i = 0; i < eventsToRead; i++) {
569 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
570 }
571 eventsRead = eventsToRead;
572 } else {
573 ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
574 availableEvents);
575 }
576 }
577
578 return eventsRead;
579}
580
581std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
582 std::vector<sensor_t> sensorsFound;
583
584 if (mSensors != nullptr) {
585 std::vector<SensorInfo> list;
586 mSensors->getSensorsList(&list);
587 for (size_t i = 0; i < list.size(); i++) {
588 sensor_t sensor;
589 convertToSensor(list[i], &sensor);
590 sensorsFound.push_back(sensor);
591 }
592 }
593
594 return sensorsFound;
595}
596
597status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
598 if (mSensors == nullptr) return NO_INIT;
599 return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
600}
601
602status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
603 if (mSensors == nullptr) return NO_INIT;
604 return convertToStatus(mSensors->activate(sensorHandle, enabled));
605}
606
607status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
608 int64_t maxReportLatencyNs) {
609 if (mSensors == nullptr) return NO_INIT;
610 return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
611}
612
613status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
614 if (mSensors == nullptr) return NO_INIT;
615 return convertToStatus(mSensors->flush(sensorHandle));
616}
617
618status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
619 if (mSensors == nullptr) return NO_INIT;
620
621 Event ev;
622 convertFromSensorEvent(*event, &ev);
623 return convertToStatus(mSensors->injectSensorData(ev));
624}
625
626status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
627 int32_t *channelHandle) {
628 if (mSensors == nullptr) return NO_INIT;
629
630 ISensors::SharedMemInfo::SharedMemType type;
631 switch (memory->type) {
632 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
633 type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
634 break;
635 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
636 type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
637 break;
638 default:
639 return BAD_VALUE;
640 }
641
642 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
643 return BAD_VALUE;
644 }
645 ISensors::SharedMemInfo::SharedMemFormat format =
646 ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
647
648 ISensors::SharedMemInfo mem = {
649 .type = type,
650 .format = format,
651 .size = static_cast<int32_t>(memory->size),
652 .memoryHandle = makeToAidl(memory->handle),
653 };
654
655 return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
656}
657
658status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
659 if (mSensors == nullptr) return NO_INIT;
660 return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
661}
662
663status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
664 const struct sensors_direct_cfg_t *config) {
665 if (mSensors == nullptr) return NO_INIT;
666
667 ISensors::RateLevel rate;
668 switch (config->rate_level) {
669 case SENSOR_DIRECT_RATE_STOP:
670 rate = ISensors::RateLevel::STOP;
671 break;
672 case SENSOR_DIRECT_RATE_NORMAL:
673 rate = ISensors::RateLevel::NORMAL;
674 break;
675 case SENSOR_DIRECT_RATE_FAST:
676 rate = ISensors::RateLevel::FAST;
677 break;
678 case SENSOR_DIRECT_RATE_VERY_FAST:
679 rate = ISensors::RateLevel::VERY_FAST;
680 break;
681 default:
682 return BAD_VALUE;
683 }
684
685 int32_t token;
686 mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
687 return token;
688}
689
690void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
691 int signedCount = (int)count;
692 if (mWakeLockQueue->write(&signedCount)) {
693 mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
694 } else {
695 ALOGW("Failed to write wake lock handled");
696 }
697}
698
699} // namespace android