blob: 049d06a540ef00669b5f87263788af6a3036fbe0 [file] [log] [blame]
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "AidlSensorHalWrapper.h"
18#include "ISensorsWrapper.h"
19#include "SensorDeviceUtils.h"
20#include "android/hardware/sensors/2.0/types.h"
21
22#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
23#include <aidlcommonsupport/NativeHandle.h>
24#include <android-base/logging.h>
25#include <android/binder_manager.h>
26
27using ::aidl::android::hardware::sensors::AdditionalInfo;
28using ::aidl::android::hardware::sensors::DynamicSensorInfo;
29using ::aidl::android::hardware::sensors::Event;
30using ::aidl::android::hardware::sensors::ISensors;
31using ::aidl::android::hardware::sensors::SensorInfo;
32using ::aidl::android::hardware::sensors::SensorStatus;
33using ::aidl::android::hardware::sensors::SensorType;
34using ::android::AidlMessageQueue;
35using ::android::hardware::EventFlag;
36using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
37
38namespace android {
39
40namespace {
41
42status_t convertToStatus(ndk::ScopedAStatus status) {
43 if (status.isOk()) {
44 return OK;
45 } else {
46 switch (status.getExceptionCode()) {
47 case EX_ILLEGAL_ARGUMENT: {
48 return BAD_VALUE;
49 }
50 case EX_SECURITY: {
51 return PERMISSION_DENIED;
52 }
53 case EX_UNSUPPORTED_OPERATION: {
54 return INVALID_OPERATION;
55 }
56 case EX_SERVICE_SPECIFIC: {
57 switch (status.getServiceSpecificError()) {
58 case ISensors::ERROR_BAD_VALUE: {
59 return BAD_VALUE;
60 }
61 case ISensors::ERROR_NO_MEMORY: {
62 return NO_MEMORY;
63 }
64 default: {
65 return UNKNOWN_ERROR;
66 }
67 }
68 }
69 default: {
70 return UNKNOWN_ERROR;
71 }
72 }
73 }
74}
75
76void convertToSensor(const SensorInfo &src, sensor_t *dst) {
77 dst->name = strdup(src.name.c_str());
78 dst->vendor = strdup(src.vendor.c_str());
79 dst->version = src.version;
80 dst->handle = src.sensorHandle;
81 dst->type = (int)src.type;
82 dst->maxRange = src.maxRange;
83 dst->resolution = src.resolution;
84 dst->power = src.power;
85 dst->minDelay = src.minDelayUs;
86 dst->fifoReservedEventCount = src.fifoReservedEventCount;
87 dst->fifoMaxEventCount = src.fifoMaxEventCount;
88 dst->stringType = strdup(src.typeAsString.c_str());
89 dst->requiredPermission = strdup(src.requiredPermission.c_str());
90 dst->maxDelay = src.maxDelayUs;
91 dst->flags = src.flags;
92 dst->reserved[0] = dst->reserved[1] = 0;
93}
94
95void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
96 *dst = {.version = sizeof(sensors_event_t),
97 .sensor = src.sensorHandle,
98 .type = (int32_t)src.sensorType,
99 .reserved0 = 0,
100 .timestamp = src.timestamp};
101
102 switch (src.sensorType) {
103 case SensorType::META_DATA: {
104 // Legacy HALs expect the handle reference in the meta data field.
105 // Copy it over from the handle of the event.
106 dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
107 dst->meta_data.sensor = src.sensorHandle;
108 // Set the sensor handle to 0 to maintain compatibility.
109 dst->sensor = 0;
110 break;
111 }
112
113 case SensorType::ACCELEROMETER:
114 case SensorType::MAGNETIC_FIELD:
115 case SensorType::ORIENTATION:
116 case SensorType::GYROSCOPE:
117 case SensorType::GRAVITY:
118 case SensorType::LINEAR_ACCELERATION: {
119 dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
120 dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
121 dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
122 dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
123 break;
124 }
125
126 case SensorType::GAME_ROTATION_VECTOR: {
127 dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
128 dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
129 dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
130 dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
131 break;
132 }
133
134 case SensorType::ROTATION_VECTOR:
135 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
136 dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
137 dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
138 dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
139 dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
140 dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
141 break;
142 }
143
144 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::ACCELEROMETER_UNCALIBRATED: {
147 dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
148 dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
149 dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
150 dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
151 dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
152 dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
153 break;
154 }
155
156 case SensorType::HINGE_ANGLE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::LIGHT:
159 case SensorType::PRESSURE:
160 case SensorType::PROXIMITY:
161 case SensorType::RELATIVE_HUMIDITY:
162 case SensorType::AMBIENT_TEMPERATURE:
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::STEP_DETECTOR:
165 case SensorType::TILT_DETECTOR:
166 case SensorType::WAKE_GESTURE:
167 case SensorType::GLANCE_GESTURE:
168 case SensorType::PICK_UP_GESTURE:
169 case SensorType::WRIST_TILT_GESTURE:
170 case SensorType::STATIONARY_DETECT:
171 case SensorType::MOTION_DETECT:
172 case SensorType::HEART_BEAT:
173 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
174 dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
175 break;
176 }
177
178 case SensorType::STEP_COUNTER: {
179 dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
180 break;
181 }
182
183 case SensorType::HEART_RATE: {
184 dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
185 dst->heart_rate.status =
186 (int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
187 break;
188 }
189
190 case SensorType::POSE_6DOF: { // 15 floats
191 for (size_t i = 0; i < 15; ++i) {
192 dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
193 }
194 break;
195 }
196
197 case SensorType::DYNAMIC_SENSOR_META: {
198 dst->dynamic_sensor_meta.connected =
199 src.payload.get<Event::EventPayload::dynamic>().connected;
200 dst->dynamic_sensor_meta.handle =
201 src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
202 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
203
204 memcpy(dst->dynamic_sensor_meta.uuid,
205 src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
206
207 break;
208 }
209
210 case SensorType::ADDITIONAL_INFO: {
211 const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
212
213 additional_info_event_t *dstInfo = &dst->additional_info;
214 dstInfo->type = (int32_t)srcInfo.type;
215 dstInfo->serial = srcInfo.serial;
216
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000217 switch (srcInfo.payload.getTag()) {
218 case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
219 const auto &values =
220 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
221 .values;
222 CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
223 memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
224 break;
225 }
226 case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
227 const auto &values =
228 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
229 .values;
230 CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
231 memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
232 break;
233 }
234 default: {
235 ALOGE("Invalid sensor additional info tag: %d", srcInfo.payload.getTag());
236 }
237 }
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000238 break;
239 }
240
241 default: {
242 CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
243
244 memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
245 16 * sizeof(float));
246 break;
247 }
248 }
249}
250
251void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
252 *dst = {
253 .timestamp = src.timestamp,
254 .sensorHandle = src.sensor,
Tyler Trephan99513342022-01-07 23:59:04 +0000255 .sensorType = (SensorType) src.type,
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000256 };
257
258 switch (dst->sensorType) {
259 case SensorType::META_DATA: {
260 Event::EventPayload::MetaData meta;
261 meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
262 // Legacy HALs contain the handle reference in the meta data field.
263 // Copy that over to the handle of the event. In legacy HALs this
264 // field was expected to be 0.
265 dst->sensorHandle = src.meta_data.sensor;
266 dst->payload.set<Event::EventPayload::Tag::meta>(meta);
267 break;
268 }
269
270 case SensorType::ACCELEROMETER:
271 case SensorType::MAGNETIC_FIELD:
272 case SensorType::ORIENTATION:
273 case SensorType::GYROSCOPE:
274 case SensorType::GRAVITY:
275 case SensorType::LINEAR_ACCELERATION: {
276 Event::EventPayload::Vec3 vec3;
277 vec3.x = src.acceleration.x;
278 vec3.y = src.acceleration.y;
279 vec3.z = src.acceleration.z;
280 vec3.status = (SensorStatus)src.acceleration.status;
281 dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
282 break;
283 }
284
285 case SensorType::GAME_ROTATION_VECTOR: {
286 Event::EventPayload::Vec4 vec4;
287 vec4.x = src.data[0];
288 vec4.y = src.data[1];
289 vec4.z = src.data[2];
290 vec4.w = src.data[3];
291 dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
292 break;
293 }
294
295 case SensorType::ROTATION_VECTOR:
296 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
297 Event::EventPayload::Data data;
298 memcpy(data.values.data(), src.data, 5 * sizeof(float));
299 dst->payload.set<Event::EventPayload::Tag::data>(data);
300 break;
301 }
302
303 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
304 case SensorType::GYROSCOPE_UNCALIBRATED:
305 case SensorType::ACCELEROMETER_UNCALIBRATED: {
306 Event::EventPayload::Uncal uncal;
307 uncal.x = src.uncalibrated_gyro.x_uncalib;
308 uncal.y = src.uncalibrated_gyro.y_uncalib;
309 uncal.z = src.uncalibrated_gyro.z_uncalib;
310 uncal.xBias = src.uncalibrated_gyro.x_bias;
311 uncal.yBias = src.uncalibrated_gyro.y_bias;
312 uncal.zBias = src.uncalibrated_gyro.z_bias;
313 dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
314 break;
315 }
316
317 case SensorType::DEVICE_ORIENTATION:
318 case SensorType::LIGHT:
319 case SensorType::PRESSURE:
320 case SensorType::PROXIMITY:
321 case SensorType::RELATIVE_HUMIDITY:
322 case SensorType::AMBIENT_TEMPERATURE:
323 case SensorType::SIGNIFICANT_MOTION:
324 case SensorType::STEP_DETECTOR:
325 case SensorType::TILT_DETECTOR:
326 case SensorType::WAKE_GESTURE:
327 case SensorType::GLANCE_GESTURE:
328 case SensorType::PICK_UP_GESTURE:
329 case SensorType::WRIST_TILT_GESTURE:
330 case SensorType::STATIONARY_DETECT:
331 case SensorType::MOTION_DETECT:
332 case SensorType::HEART_BEAT:
333 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
334 case SensorType::HINGE_ANGLE: {
335 dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
336 break;
337 }
338
339 case SensorType::STEP_COUNTER: {
340 dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
341 break;
342 }
343
344 case SensorType::HEART_RATE: {
345 Event::EventPayload::HeartRate heartRate;
346 heartRate.bpm = src.heart_rate.bpm;
347 heartRate.status = (SensorStatus)src.heart_rate.status;
348 dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
349 break;
350 }
351
352 case SensorType::POSE_6DOF: { // 15 floats
353 Event::EventPayload::Pose6Dof pose6DOF;
354 for (size_t i = 0; i < 15; ++i) {
355 pose6DOF.values[i] = src.data[i];
356 }
357 dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
358 break;
359 }
360
361 case SensorType::DYNAMIC_SENSOR_META: {
362 DynamicSensorInfo dynamic;
363 dynamic.connected = src.dynamic_sensor_meta.connected;
364 dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
365
366 memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
367 dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
368 break;
369 }
370
371 case SensorType::ADDITIONAL_INFO: {
372 AdditionalInfo info;
373 const additional_info_event_t &srcInfo = src.additional_info;
374 info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
375 info.serial = srcInfo.serial;
376
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000377 AdditionalInfo::AdditionalInfoPayload::Int32Values data;
378 CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
379 memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
380 info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000381
382 dst->payload.set<Event::EventPayload::Tag::additional>(info);
383 break;
384 }
385
386 default: {
387 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
388
389 Event::EventPayload::Data data;
390 memcpy(data.values.data(), src.data, 16 * sizeof(float));
391 dst->payload.set<Event::EventPayload::Tag::data>(data);
392 break;
393 }
394 }
395}
396
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000397void serviceDied(void *cookie) {
398 ALOGW("Sensors HAL died, attempting to reconnect.");
399 ((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
400}
401
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000402template <typename EnumType>
403constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
404 return static_cast<typename std::underlying_type<EnumType>::type>(value);
405}
406
407enum EventQueueFlagBitsInternal : uint32_t {
408 INTERNAL_WAKE = 1 << 16,
409};
410
411} // anonymous namespace
412
413class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
414public:
415 AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
416 : mSensorDeviceCallback(sensorDeviceCallback) {}
417
418 ::ndk::ScopedAStatus onDynamicSensorsConnected(
419 const std::vector<SensorInfo> &sensorInfos) override {
420 std::vector<sensor_t> sensors;
421 for (const SensorInfo &sensorInfo : sensorInfos) {
422 sensor_t sensor;
423 convertToSensor(sensorInfo, &sensor);
424 sensors.push_back(sensor);
425 }
426
427 mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
428 return ::ndk::ScopedAStatus::ok();
429 }
430
431 ::ndk::ScopedAStatus onDynamicSensorsDisconnected(
432 const std::vector<int32_t> &sensorHandles) override {
433 mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
434 return ::ndk::ScopedAStatus::ok();
435 }
436
437private:
438 ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
439};
440
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000441AidlSensorHalWrapper::AidlSensorHalWrapper()
442 : mEventQueueFlag(nullptr),
443 mWakeLockQueueFlag(nullptr),
444 mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
445
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000446bool AidlSensorHalWrapper::supportsPolling() {
447 return false;
448}
449
450bool AidlSensorHalWrapper::supportsMessageQueues() {
451 return true;
452}
453
454bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
455 mSensorDeviceCallback = callback;
456 mSensors = nullptr;
457
458 auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
459 if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000460 if (mSensors != nullptr) {
461 AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
462 }
463
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000464 ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
465 if (binder.get() != nullptr) {
466 mSensors = ISensors::fromBinder(binder);
467 mEventQueue = std::make_unique<AidlMessageQueue<
468 Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
469 /*configureEventFlagWord=*/true);
470
471 mWakeLockQueue = std::make_unique<AidlMessageQueue<
472 int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
473 /*configureEventFlagWord=*/true);
474 if (mEventQueueFlag != nullptr) {
475 EventFlag::deleteEventFlag(&mEventQueueFlag);
476 }
477 EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
478 if (mWakeLockQueueFlag != nullptr) {
479 EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
480 }
481 EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
482
483 CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
484 mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
485
486 mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
487 mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000488
489 AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000490 } else {
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000491 ALOGE("Could not connect to declared sensors AIDL HAL");
492 }
493 }
494
495 return mSensors != nullptr;
496}
497
498void AidlSensorHalWrapper::prepareForReconnect() {
499 mReconnecting = true;
500 if (mEventQueueFlag != nullptr) {
501 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
502 }
503}
504
505ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
506 return 0;
507}
508
509ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
510 ssize_t eventsRead = 0;
511 size_t availableEvents = mEventQueue->availableToRead();
512
513 if (availableEvents == 0) {
514 uint32_t eventFlagState = 0;
515
516 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
517 // able to be called with the correct number of events to read. If the specified number of
518 // events is not available, then read() would return no events, possibly introducing
519 // additional latency in delivering events to applications.
520 if (mEventQueueFlag != nullptr) {
521 mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
522 asBaseType(INTERNAL_WAKE),
523 &eventFlagState);
524 }
525 availableEvents = mEventQueue->availableToRead();
526
527 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
528 ALOGD("Event FMQ internal wake, returning from poll with no events");
529 return DEAD_OBJECT;
530 }
531 }
532
533 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
534 if (eventsToRead > 0) {
535 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
536 // Notify the Sensors HAL that sensor events have been read. This is required to support
537 // the use of writeBlocking by the Sensors HAL.
538 if (mEventQueueFlag != nullptr) {
539 mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
540 }
541
542 for (size_t i = 0; i < eventsToRead; i++) {
543 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
544 }
545 eventsRead = eventsToRead;
546 } else {
547 ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
548 availableEvents);
549 }
550 }
551
552 return eventsRead;
553}
554
555std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
556 std::vector<sensor_t> sensorsFound;
557
558 if (mSensors != nullptr) {
559 std::vector<SensorInfo> list;
560 mSensors->getSensorsList(&list);
561 for (size_t i = 0; i < list.size(); i++) {
562 sensor_t sensor;
563 convertToSensor(list[i], &sensor);
564 sensorsFound.push_back(sensor);
565 }
566 }
567
568 return sensorsFound;
569}
570
571status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
572 if (mSensors == nullptr) return NO_INIT;
573 return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
574}
575
576status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
577 if (mSensors == nullptr) return NO_INIT;
578 return convertToStatus(mSensors->activate(sensorHandle, enabled));
579}
580
581status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
582 int64_t maxReportLatencyNs) {
583 if (mSensors == nullptr) return NO_INIT;
584 return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
585}
586
587status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
588 if (mSensors == nullptr) return NO_INIT;
589 return convertToStatus(mSensors->flush(sensorHandle));
590}
591
592status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
593 if (mSensors == nullptr) return NO_INIT;
594
595 Event ev;
596 convertFromSensorEvent(*event, &ev);
597 return convertToStatus(mSensors->injectSensorData(ev));
598}
599
600status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
601 int32_t *channelHandle) {
602 if (mSensors == nullptr) return NO_INIT;
603
604 ISensors::SharedMemInfo::SharedMemType type;
605 switch (memory->type) {
606 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
607 type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
608 break;
609 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
610 type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
611 break;
612 default:
613 return BAD_VALUE;
614 }
615
616 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
617 return BAD_VALUE;
618 }
619 ISensors::SharedMemInfo::SharedMemFormat format =
620 ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
621
622 ISensors::SharedMemInfo mem = {
623 .type = type,
624 .format = format,
625 .size = static_cast<int32_t>(memory->size),
626 .memoryHandle = makeToAidl(memory->handle),
627 };
628
629 return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
630}
631
632status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
633 if (mSensors == nullptr) return NO_INIT;
634 return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
635}
636
637status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
638 const struct sensors_direct_cfg_t *config) {
639 if (mSensors == nullptr) return NO_INIT;
640
641 ISensors::RateLevel rate;
642 switch (config->rate_level) {
643 case SENSOR_DIRECT_RATE_STOP:
644 rate = ISensors::RateLevel::STOP;
645 break;
646 case SENSOR_DIRECT_RATE_NORMAL:
647 rate = ISensors::RateLevel::NORMAL;
648 break;
649 case SENSOR_DIRECT_RATE_FAST:
650 rate = ISensors::RateLevel::FAST;
651 break;
652 case SENSOR_DIRECT_RATE_VERY_FAST:
653 rate = ISensors::RateLevel::VERY_FAST;
654 break;
655 default:
656 return BAD_VALUE;
657 }
658
659 int32_t token;
660 mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
661 return token;
662}
663
664void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
665 int signedCount = (int)count;
666 if (mWakeLockQueue->write(&signedCount)) {
667 mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
668 } else {
669 ALOGW("Failed to write wake lock handled");
670 }
671}
672
673} // namespace android