blob: edfd3e8ad5b99670cbf1730e126d13239a98615c [file] [log] [blame]
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "AidlSensorHalWrapper.h"
18#include "ISensorsWrapper.h"
19#include "SensorDeviceUtils.h"
20#include "android/hardware/sensors/2.0/types.h"
21
22#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
23#include <aidlcommonsupport/NativeHandle.h>
24#include <android-base/logging.h>
25#include <android/binder_manager.h>
26
27using ::aidl::android::hardware::sensors::AdditionalInfo;
28using ::aidl::android::hardware::sensors::DynamicSensorInfo;
29using ::aidl::android::hardware::sensors::Event;
30using ::aidl::android::hardware::sensors::ISensors;
31using ::aidl::android::hardware::sensors::SensorInfo;
32using ::aidl::android::hardware::sensors::SensorStatus;
33using ::aidl::android::hardware::sensors::SensorType;
34using ::android::AidlMessageQueue;
35using ::android::hardware::EventFlag;
36using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
37
38namespace android {
39
40namespace {
41
42status_t convertToStatus(ndk::ScopedAStatus status) {
43 if (status.isOk()) {
44 return OK;
45 } else {
46 switch (status.getExceptionCode()) {
47 case EX_ILLEGAL_ARGUMENT: {
48 return BAD_VALUE;
49 }
50 case EX_SECURITY: {
51 return PERMISSION_DENIED;
52 }
53 case EX_UNSUPPORTED_OPERATION: {
54 return INVALID_OPERATION;
55 }
56 case EX_SERVICE_SPECIFIC: {
57 switch (status.getServiceSpecificError()) {
58 case ISensors::ERROR_BAD_VALUE: {
59 return BAD_VALUE;
60 }
61 case ISensors::ERROR_NO_MEMORY: {
62 return NO_MEMORY;
63 }
64 default: {
65 return UNKNOWN_ERROR;
66 }
67 }
68 }
69 default: {
70 return UNKNOWN_ERROR;
71 }
72 }
73 }
74}
75
76void convertToSensor(const SensorInfo &src, sensor_t *dst) {
77 dst->name = strdup(src.name.c_str());
78 dst->vendor = strdup(src.vendor.c_str());
79 dst->version = src.version;
80 dst->handle = src.sensorHandle;
81 dst->type = (int)src.type;
82 dst->maxRange = src.maxRange;
83 dst->resolution = src.resolution;
84 dst->power = src.power;
85 dst->minDelay = src.minDelayUs;
86 dst->fifoReservedEventCount = src.fifoReservedEventCount;
87 dst->fifoMaxEventCount = src.fifoMaxEventCount;
88 dst->stringType = strdup(src.typeAsString.c_str());
89 dst->requiredPermission = strdup(src.requiredPermission.c_str());
90 dst->maxDelay = src.maxDelayUs;
91 dst->flags = src.flags;
92 dst->reserved[0] = dst->reserved[1] = 0;
93}
94
95void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
96 *dst = {.version = sizeof(sensors_event_t),
97 .sensor = src.sensorHandle,
98 .type = (int32_t)src.sensorType,
99 .reserved0 = 0,
100 .timestamp = src.timestamp};
101
102 switch (src.sensorType) {
103 case SensorType::META_DATA: {
104 // Legacy HALs expect the handle reference in the meta data field.
105 // Copy it over from the handle of the event.
106 dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
107 dst->meta_data.sensor = src.sensorHandle;
108 // Set the sensor handle to 0 to maintain compatibility.
109 dst->sensor = 0;
110 break;
111 }
112
113 case SensorType::ACCELEROMETER:
114 case SensorType::MAGNETIC_FIELD:
115 case SensorType::ORIENTATION:
116 case SensorType::GYROSCOPE:
117 case SensorType::GRAVITY:
118 case SensorType::LINEAR_ACCELERATION: {
119 dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
120 dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
121 dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
122 dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
123 break;
124 }
125
126 case SensorType::GAME_ROTATION_VECTOR: {
127 dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
128 dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
129 dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
130 dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
131 break;
132 }
133
134 case SensorType::ROTATION_VECTOR:
135 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
136 dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
137 dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
138 dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
139 dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
140 dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
141 break;
142 }
143
144 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::ACCELEROMETER_UNCALIBRATED: {
147 dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
148 dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
149 dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
150 dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
151 dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
152 dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
153 break;
154 }
155
156 case SensorType::HINGE_ANGLE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::LIGHT:
159 case SensorType::PRESSURE:
160 case SensorType::PROXIMITY:
161 case SensorType::RELATIVE_HUMIDITY:
162 case SensorType::AMBIENT_TEMPERATURE:
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::STEP_DETECTOR:
165 case SensorType::TILT_DETECTOR:
166 case SensorType::WAKE_GESTURE:
167 case SensorType::GLANCE_GESTURE:
168 case SensorType::PICK_UP_GESTURE:
169 case SensorType::WRIST_TILT_GESTURE:
170 case SensorType::STATIONARY_DETECT:
171 case SensorType::MOTION_DETECT:
172 case SensorType::HEART_BEAT:
173 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
174 dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
175 break;
176 }
177
178 case SensorType::STEP_COUNTER: {
179 dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
180 break;
181 }
182
183 case SensorType::HEART_RATE: {
184 dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
185 dst->heart_rate.status =
186 (int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
187 break;
188 }
189
190 case SensorType::POSE_6DOF: { // 15 floats
191 for (size_t i = 0; i < 15; ++i) {
192 dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
193 }
194 break;
195 }
196
197 case SensorType::DYNAMIC_SENSOR_META: {
198 dst->dynamic_sensor_meta.connected =
199 src.payload.get<Event::EventPayload::dynamic>().connected;
200 dst->dynamic_sensor_meta.handle =
201 src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
202 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
203
204 memcpy(dst->dynamic_sensor_meta.uuid,
205 src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
206
207 break;
208 }
209
210 case SensorType::ADDITIONAL_INFO: {
211 const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
212
213 additional_info_event_t *dstInfo = &dst->additional_info;
214 dstInfo->type = (int32_t)srcInfo.type;
215 dstInfo->serial = srcInfo.serial;
216
217 // TODO(b/195593357): Finish additional info conversion
218 // CHECK_EQ(sizeof(srcInfo.payload.values), sizeof(dstInfo->data_int32));
219
220 // memcpy(dstInfo->data_int32,
221 // &srcInfo.u,
222 // sizeof(dstInfo->data_int32));
223
224 break;
225 }
226
227 default: {
228 CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
229
230 memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
231 16 * sizeof(float));
232 break;
233 }
234 }
235}
236
237void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
238 *dst = {
239 .timestamp = src.timestamp,
240 .sensorHandle = src.sensor,
Tyler Trephan99513342022-01-07 23:59:04 +0000241 .sensorType = (SensorType) src.type,
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000242 };
243
244 switch (dst->sensorType) {
245 case SensorType::META_DATA: {
246 Event::EventPayload::MetaData meta;
247 meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
248 // Legacy HALs contain the handle reference in the meta data field.
249 // Copy that over to the handle of the event. In legacy HALs this
250 // field was expected to be 0.
251 dst->sensorHandle = src.meta_data.sensor;
252 dst->payload.set<Event::EventPayload::Tag::meta>(meta);
253 break;
254 }
255
256 case SensorType::ACCELEROMETER:
257 case SensorType::MAGNETIC_FIELD:
258 case SensorType::ORIENTATION:
259 case SensorType::GYROSCOPE:
260 case SensorType::GRAVITY:
261 case SensorType::LINEAR_ACCELERATION: {
262 Event::EventPayload::Vec3 vec3;
263 vec3.x = src.acceleration.x;
264 vec3.y = src.acceleration.y;
265 vec3.z = src.acceleration.z;
266 vec3.status = (SensorStatus)src.acceleration.status;
267 dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
268 break;
269 }
270
271 case SensorType::GAME_ROTATION_VECTOR: {
272 Event::EventPayload::Vec4 vec4;
273 vec4.x = src.data[0];
274 vec4.y = src.data[1];
275 vec4.z = src.data[2];
276 vec4.w = src.data[3];
277 dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
278 break;
279 }
280
281 case SensorType::ROTATION_VECTOR:
282 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
283 Event::EventPayload::Data data;
284 memcpy(data.values.data(), src.data, 5 * sizeof(float));
285 dst->payload.set<Event::EventPayload::Tag::data>(data);
286 break;
287 }
288
289 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
290 case SensorType::GYROSCOPE_UNCALIBRATED:
291 case SensorType::ACCELEROMETER_UNCALIBRATED: {
292 Event::EventPayload::Uncal uncal;
293 uncal.x = src.uncalibrated_gyro.x_uncalib;
294 uncal.y = src.uncalibrated_gyro.y_uncalib;
295 uncal.z = src.uncalibrated_gyro.z_uncalib;
296 uncal.xBias = src.uncalibrated_gyro.x_bias;
297 uncal.yBias = src.uncalibrated_gyro.y_bias;
298 uncal.zBias = src.uncalibrated_gyro.z_bias;
299 dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
300 break;
301 }
302
303 case SensorType::DEVICE_ORIENTATION:
304 case SensorType::LIGHT:
305 case SensorType::PRESSURE:
306 case SensorType::PROXIMITY:
307 case SensorType::RELATIVE_HUMIDITY:
308 case SensorType::AMBIENT_TEMPERATURE:
309 case SensorType::SIGNIFICANT_MOTION:
310 case SensorType::STEP_DETECTOR:
311 case SensorType::TILT_DETECTOR:
312 case SensorType::WAKE_GESTURE:
313 case SensorType::GLANCE_GESTURE:
314 case SensorType::PICK_UP_GESTURE:
315 case SensorType::WRIST_TILT_GESTURE:
316 case SensorType::STATIONARY_DETECT:
317 case SensorType::MOTION_DETECT:
318 case SensorType::HEART_BEAT:
319 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
320 case SensorType::HINGE_ANGLE: {
321 dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
322 break;
323 }
324
325 case SensorType::STEP_COUNTER: {
326 dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
327 break;
328 }
329
330 case SensorType::HEART_RATE: {
331 Event::EventPayload::HeartRate heartRate;
332 heartRate.bpm = src.heart_rate.bpm;
333 heartRate.status = (SensorStatus)src.heart_rate.status;
334 dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
335 break;
336 }
337
338 case SensorType::POSE_6DOF: { // 15 floats
339 Event::EventPayload::Pose6Dof pose6DOF;
340 for (size_t i = 0; i < 15; ++i) {
341 pose6DOF.values[i] = src.data[i];
342 }
343 dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
344 break;
345 }
346
347 case SensorType::DYNAMIC_SENSOR_META: {
348 DynamicSensorInfo dynamic;
349 dynamic.connected = src.dynamic_sensor_meta.connected;
350 dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
351
352 memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
353 dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
354 break;
355 }
356
357 case SensorType::ADDITIONAL_INFO: {
358 AdditionalInfo info;
359 const additional_info_event_t &srcInfo = src.additional_info;
360 info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
361 info.serial = srcInfo.serial;
362
363 // TODO(b/195593357): Finish additional info conversion
364
365 dst->payload.set<Event::EventPayload::Tag::additional>(info);
366 break;
367 }
368
369 default: {
370 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
371
372 Event::EventPayload::Data data;
373 memcpy(data.values.data(), src.data, 16 * sizeof(float));
374 dst->payload.set<Event::EventPayload::Tag::data>(data);
375 break;
376 }
377 }
378}
379
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000380void serviceDied(void *cookie) {
381 ALOGW("Sensors HAL died, attempting to reconnect.");
382 ((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
383}
384
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000385template <typename EnumType>
386constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
387 return static_cast<typename std::underlying_type<EnumType>::type>(value);
388}
389
390enum EventQueueFlagBitsInternal : uint32_t {
391 INTERNAL_WAKE = 1 << 16,
392};
393
394} // anonymous namespace
395
396class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
397public:
398 AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
399 : mSensorDeviceCallback(sensorDeviceCallback) {}
400
401 ::ndk::ScopedAStatus onDynamicSensorsConnected(
402 const std::vector<SensorInfo> &sensorInfos) override {
403 std::vector<sensor_t> sensors;
404 for (const SensorInfo &sensorInfo : sensorInfos) {
405 sensor_t sensor;
406 convertToSensor(sensorInfo, &sensor);
407 sensors.push_back(sensor);
408 }
409
410 mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
411 return ::ndk::ScopedAStatus::ok();
412 }
413
414 ::ndk::ScopedAStatus onDynamicSensorsDisconnected(
415 const std::vector<int32_t> &sensorHandles) override {
416 mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
417 return ::ndk::ScopedAStatus::ok();
418 }
419
420private:
421 ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
422};
423
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000424AidlSensorHalWrapper::AidlSensorHalWrapper()
425 : mEventQueueFlag(nullptr),
426 mWakeLockQueueFlag(nullptr),
427 mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
428
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000429bool AidlSensorHalWrapper::supportsPolling() {
430 return false;
431}
432
433bool AidlSensorHalWrapper::supportsMessageQueues() {
434 return true;
435}
436
437bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
438 mSensorDeviceCallback = callback;
439 mSensors = nullptr;
440
441 auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
442 if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000443 if (mSensors != nullptr) {
444 AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
445 }
446
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000447 ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
448 if (binder.get() != nullptr) {
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000449
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000450 mSensors = ISensors::fromBinder(binder);
451 mEventQueue = std::make_unique<AidlMessageQueue<
452 Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
453 /*configureEventFlagWord=*/true);
454
455 mWakeLockQueue = std::make_unique<AidlMessageQueue<
456 int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
457 /*configureEventFlagWord=*/true);
458 if (mEventQueueFlag != nullptr) {
459 EventFlag::deleteEventFlag(&mEventQueueFlag);
460 }
461 EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
462 if (mWakeLockQueueFlag != nullptr) {
463 EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
464 }
465 EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
466
467 CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
468 mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
469
470 mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
471 mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000472
473 AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000474 } else {
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000475 ALOGE("Could not connect to declared sensors AIDL HAL");
476 }
477 }
478
479 return mSensors != nullptr;
480}
481
482void AidlSensorHalWrapper::prepareForReconnect() {
483 mReconnecting = true;
484 if (mEventQueueFlag != nullptr) {
485 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
486 }
487}
488
489ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
490 return 0;
491}
492
493ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
494 ssize_t eventsRead = 0;
495 size_t availableEvents = mEventQueue->availableToRead();
496
497 if (availableEvents == 0) {
498 uint32_t eventFlagState = 0;
499
500 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
501 // able to be called with the correct number of events to read. If the specified number of
502 // events is not available, then read() would return no events, possibly introducing
503 // additional latency in delivering events to applications.
504 if (mEventQueueFlag != nullptr) {
505 mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
506 asBaseType(INTERNAL_WAKE),
507 &eventFlagState);
508 }
509 availableEvents = mEventQueue->availableToRead();
510
511 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
512 ALOGD("Event FMQ internal wake, returning from poll with no events");
513 return DEAD_OBJECT;
514 }
515 }
516
517 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
518 if (eventsToRead > 0) {
519 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
520 // Notify the Sensors HAL that sensor events have been read. This is required to support
521 // the use of writeBlocking by the Sensors HAL.
522 if (mEventQueueFlag != nullptr) {
523 mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
524 }
525
526 for (size_t i = 0; i < eventsToRead; i++) {
527 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
528 }
529 eventsRead = eventsToRead;
530 } else {
531 ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
532 availableEvents);
533 }
534 }
535
536 return eventsRead;
537}
538
539std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
540 std::vector<sensor_t> sensorsFound;
541
542 if (mSensors != nullptr) {
543 std::vector<SensorInfo> list;
544 mSensors->getSensorsList(&list);
545 for (size_t i = 0; i < list.size(); i++) {
546 sensor_t sensor;
547 convertToSensor(list[i], &sensor);
548 sensorsFound.push_back(sensor);
549 }
550 }
551
552 return sensorsFound;
553}
554
555status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
556 if (mSensors == nullptr) return NO_INIT;
557 return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
558}
559
560status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
561 if (mSensors == nullptr) return NO_INIT;
562 return convertToStatus(mSensors->activate(sensorHandle, enabled));
563}
564
565status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
566 int64_t maxReportLatencyNs) {
567 if (mSensors == nullptr) return NO_INIT;
568 return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
569}
570
571status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
572 if (mSensors == nullptr) return NO_INIT;
573 return convertToStatus(mSensors->flush(sensorHandle));
574}
575
576status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
577 if (mSensors == nullptr) return NO_INIT;
578
579 Event ev;
580 convertFromSensorEvent(*event, &ev);
581 return convertToStatus(mSensors->injectSensorData(ev));
582}
583
584status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
585 int32_t *channelHandle) {
586 if (mSensors == nullptr) return NO_INIT;
587
588 ISensors::SharedMemInfo::SharedMemType type;
589 switch (memory->type) {
590 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
591 type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
592 break;
593 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
594 type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
595 break;
596 default:
597 return BAD_VALUE;
598 }
599
600 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
601 return BAD_VALUE;
602 }
603 ISensors::SharedMemInfo::SharedMemFormat format =
604 ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
605
606 ISensors::SharedMemInfo mem = {
607 .type = type,
608 .format = format,
609 .size = static_cast<int32_t>(memory->size),
610 .memoryHandle = makeToAidl(memory->handle),
611 };
612
613 return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
614}
615
616status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
617 if (mSensors == nullptr) return NO_INIT;
618 return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
619}
620
621status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
622 const struct sensors_direct_cfg_t *config) {
623 if (mSensors == nullptr) return NO_INIT;
624
625 ISensors::RateLevel rate;
626 switch (config->rate_level) {
627 case SENSOR_DIRECT_RATE_STOP:
628 rate = ISensors::RateLevel::STOP;
629 break;
630 case SENSOR_DIRECT_RATE_NORMAL:
631 rate = ISensors::RateLevel::NORMAL;
632 break;
633 case SENSOR_DIRECT_RATE_FAST:
634 rate = ISensors::RateLevel::FAST;
635 break;
636 case SENSOR_DIRECT_RATE_VERY_FAST:
637 rate = ISensors::RateLevel::VERY_FAST;
638 break;
639 default:
640 return BAD_VALUE;
641 }
642
643 int32_t token;
644 mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
645 return token;
646}
647
648void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
649 int signedCount = (int)count;
650 if (mWakeLockQueue->write(&signedCount)) {
651 mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
652 } else {
653 ALOGW("Failed to write wake lock handled");
654 }
655}
656
657} // namespace android