blob: 10f52e01c6d7fded7e56773243ed6119370e379f [file] [log] [blame]
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "AidlSensorHalWrapper.h"
18#include "ISensorsWrapper.h"
19#include "SensorDeviceUtils.h"
20#include "android/hardware/sensors/2.0/types.h"
21
22#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
23#include <aidlcommonsupport/NativeHandle.h>
24#include <android-base/logging.h>
25#include <android/binder_manager.h>
26
27using ::aidl::android::hardware::sensors::AdditionalInfo;
28using ::aidl::android::hardware::sensors::DynamicSensorInfo;
29using ::aidl::android::hardware::sensors::Event;
30using ::aidl::android::hardware::sensors::ISensors;
31using ::aidl::android::hardware::sensors::SensorInfo;
32using ::aidl::android::hardware::sensors::SensorStatus;
33using ::aidl::android::hardware::sensors::SensorType;
34using ::android::AidlMessageQueue;
35using ::android::hardware::EventFlag;
36using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
37
38namespace android {
39
40namespace {
41
42status_t convertToStatus(ndk::ScopedAStatus status) {
43 if (status.isOk()) {
44 return OK;
45 } else {
46 switch (status.getExceptionCode()) {
47 case EX_ILLEGAL_ARGUMENT: {
48 return BAD_VALUE;
49 }
50 case EX_SECURITY: {
51 return PERMISSION_DENIED;
52 }
53 case EX_UNSUPPORTED_OPERATION: {
54 return INVALID_OPERATION;
55 }
56 case EX_SERVICE_SPECIFIC: {
57 switch (status.getServiceSpecificError()) {
58 case ISensors::ERROR_BAD_VALUE: {
59 return BAD_VALUE;
60 }
61 case ISensors::ERROR_NO_MEMORY: {
62 return NO_MEMORY;
63 }
64 default: {
65 return UNKNOWN_ERROR;
66 }
67 }
68 }
69 default: {
70 return UNKNOWN_ERROR;
71 }
72 }
73 }
74}
75
76void convertToSensor(const SensorInfo &src, sensor_t *dst) {
77 dst->name = strdup(src.name.c_str());
78 dst->vendor = strdup(src.vendor.c_str());
79 dst->version = src.version;
80 dst->handle = src.sensorHandle;
81 dst->type = (int)src.type;
82 dst->maxRange = src.maxRange;
83 dst->resolution = src.resolution;
84 dst->power = src.power;
85 dst->minDelay = src.minDelayUs;
86 dst->fifoReservedEventCount = src.fifoReservedEventCount;
87 dst->fifoMaxEventCount = src.fifoMaxEventCount;
88 dst->stringType = strdup(src.typeAsString.c_str());
89 dst->requiredPermission = strdup(src.requiredPermission.c_str());
90 dst->maxDelay = src.maxDelayUs;
91 dst->flags = src.flags;
92 dst->reserved[0] = dst->reserved[1] = 0;
93}
94
95void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
96 *dst = {.version = sizeof(sensors_event_t),
97 .sensor = src.sensorHandle,
98 .type = (int32_t)src.sensorType,
99 .reserved0 = 0,
100 .timestamp = src.timestamp};
101
102 switch (src.sensorType) {
103 case SensorType::META_DATA: {
104 // Legacy HALs expect the handle reference in the meta data field.
105 // Copy it over from the handle of the event.
106 dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
107 dst->meta_data.sensor = src.sensorHandle;
108 // Set the sensor handle to 0 to maintain compatibility.
109 dst->sensor = 0;
110 break;
111 }
112
113 case SensorType::ACCELEROMETER:
114 case SensorType::MAGNETIC_FIELD:
115 case SensorType::ORIENTATION:
116 case SensorType::GYROSCOPE:
117 case SensorType::GRAVITY:
118 case SensorType::LINEAR_ACCELERATION: {
119 dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
120 dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
121 dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
122 dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
123 break;
124 }
125
126 case SensorType::GAME_ROTATION_VECTOR: {
127 dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
128 dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
129 dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
130 dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
131 break;
132 }
133
134 case SensorType::ROTATION_VECTOR:
135 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
136 dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
137 dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
138 dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
139 dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
140 dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
141 break;
142 }
143
144 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::ACCELEROMETER_UNCALIBRATED: {
147 dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
148 dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
149 dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
150 dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
151 dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
152 dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
153 break;
154 }
155
156 case SensorType::HINGE_ANGLE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::LIGHT:
159 case SensorType::PRESSURE:
160 case SensorType::PROXIMITY:
161 case SensorType::RELATIVE_HUMIDITY:
162 case SensorType::AMBIENT_TEMPERATURE:
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::STEP_DETECTOR:
165 case SensorType::TILT_DETECTOR:
166 case SensorType::WAKE_GESTURE:
167 case SensorType::GLANCE_GESTURE:
168 case SensorType::PICK_UP_GESTURE:
169 case SensorType::WRIST_TILT_GESTURE:
170 case SensorType::STATIONARY_DETECT:
171 case SensorType::MOTION_DETECT:
172 case SensorType::HEART_BEAT:
173 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
174 dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
175 break;
176 }
177
178 case SensorType::STEP_COUNTER: {
179 dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
180 break;
181 }
182
183 case SensorType::HEART_RATE: {
184 dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
185 dst->heart_rate.status =
186 (int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
187 break;
188 }
189
190 case SensorType::POSE_6DOF: { // 15 floats
191 for (size_t i = 0; i < 15; ++i) {
192 dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
193 }
194 break;
195 }
196
197 case SensorType::DYNAMIC_SENSOR_META: {
198 dst->dynamic_sensor_meta.connected =
199 src.payload.get<Event::EventPayload::dynamic>().connected;
200 dst->dynamic_sensor_meta.handle =
201 src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
202 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
203
204 memcpy(dst->dynamic_sensor_meta.uuid,
205 src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
206
207 break;
208 }
209
210 case SensorType::ADDITIONAL_INFO: {
211 const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
212
213 additional_info_event_t *dstInfo = &dst->additional_info;
214 dstInfo->type = (int32_t)srcInfo.type;
215 dstInfo->serial = srcInfo.serial;
216
217 // TODO(b/195593357): Finish additional info conversion
218 // CHECK_EQ(sizeof(srcInfo.payload.values), sizeof(dstInfo->data_int32));
219
220 // memcpy(dstInfo->data_int32,
221 // &srcInfo.u,
222 // sizeof(dstInfo->data_int32));
223
224 break;
225 }
226
227 default: {
228 CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
229
230 memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
231 16 * sizeof(float));
232 break;
233 }
234 }
235}
236
237void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
238 *dst = {
239 .timestamp = src.timestamp,
240 .sensorHandle = src.sensor,
241 };
242
243 switch (dst->sensorType) {
244 case SensorType::META_DATA: {
245 Event::EventPayload::MetaData meta;
246 meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
247 // Legacy HALs contain the handle reference in the meta data field.
248 // Copy that over to the handle of the event. In legacy HALs this
249 // field was expected to be 0.
250 dst->sensorHandle = src.meta_data.sensor;
251 dst->payload.set<Event::EventPayload::Tag::meta>(meta);
252 break;
253 }
254
255 case SensorType::ACCELEROMETER:
256 case SensorType::MAGNETIC_FIELD:
257 case SensorType::ORIENTATION:
258 case SensorType::GYROSCOPE:
259 case SensorType::GRAVITY:
260 case SensorType::LINEAR_ACCELERATION: {
261 Event::EventPayload::Vec3 vec3;
262 vec3.x = src.acceleration.x;
263 vec3.y = src.acceleration.y;
264 vec3.z = src.acceleration.z;
265 vec3.status = (SensorStatus)src.acceleration.status;
266 dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
267 break;
268 }
269
270 case SensorType::GAME_ROTATION_VECTOR: {
271 Event::EventPayload::Vec4 vec4;
272 vec4.x = src.data[0];
273 vec4.y = src.data[1];
274 vec4.z = src.data[2];
275 vec4.w = src.data[3];
276 dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
277 break;
278 }
279
280 case SensorType::ROTATION_VECTOR:
281 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
282 Event::EventPayload::Data data;
283 memcpy(data.values.data(), src.data, 5 * sizeof(float));
284 dst->payload.set<Event::EventPayload::Tag::data>(data);
285 break;
286 }
287
288 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
289 case SensorType::GYROSCOPE_UNCALIBRATED:
290 case SensorType::ACCELEROMETER_UNCALIBRATED: {
291 Event::EventPayload::Uncal uncal;
292 uncal.x = src.uncalibrated_gyro.x_uncalib;
293 uncal.y = src.uncalibrated_gyro.y_uncalib;
294 uncal.z = src.uncalibrated_gyro.z_uncalib;
295 uncal.xBias = src.uncalibrated_gyro.x_bias;
296 uncal.yBias = src.uncalibrated_gyro.y_bias;
297 uncal.zBias = src.uncalibrated_gyro.z_bias;
298 dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
299 break;
300 }
301
302 case SensorType::DEVICE_ORIENTATION:
303 case SensorType::LIGHT:
304 case SensorType::PRESSURE:
305 case SensorType::PROXIMITY:
306 case SensorType::RELATIVE_HUMIDITY:
307 case SensorType::AMBIENT_TEMPERATURE:
308 case SensorType::SIGNIFICANT_MOTION:
309 case SensorType::STEP_DETECTOR:
310 case SensorType::TILT_DETECTOR:
311 case SensorType::WAKE_GESTURE:
312 case SensorType::GLANCE_GESTURE:
313 case SensorType::PICK_UP_GESTURE:
314 case SensorType::WRIST_TILT_GESTURE:
315 case SensorType::STATIONARY_DETECT:
316 case SensorType::MOTION_DETECT:
317 case SensorType::HEART_BEAT:
318 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
319 case SensorType::HINGE_ANGLE: {
320 dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
321 break;
322 }
323
324 case SensorType::STEP_COUNTER: {
325 dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
326 break;
327 }
328
329 case SensorType::HEART_RATE: {
330 Event::EventPayload::HeartRate heartRate;
331 heartRate.bpm = src.heart_rate.bpm;
332 heartRate.status = (SensorStatus)src.heart_rate.status;
333 dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
334 break;
335 }
336
337 case SensorType::POSE_6DOF: { // 15 floats
338 Event::EventPayload::Pose6Dof pose6DOF;
339 for (size_t i = 0; i < 15; ++i) {
340 pose6DOF.values[i] = src.data[i];
341 }
342 dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
343 break;
344 }
345
346 case SensorType::DYNAMIC_SENSOR_META: {
347 DynamicSensorInfo dynamic;
348 dynamic.connected = src.dynamic_sensor_meta.connected;
349 dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
350
351 memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
352 dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
353 break;
354 }
355
356 case SensorType::ADDITIONAL_INFO: {
357 AdditionalInfo info;
358 const additional_info_event_t &srcInfo = src.additional_info;
359 info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
360 info.serial = srcInfo.serial;
361
362 // TODO(b/195593357): Finish additional info conversion
363
364 dst->payload.set<Event::EventPayload::Tag::additional>(info);
365 break;
366 }
367
368 default: {
369 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
370
371 Event::EventPayload::Data data;
372 memcpy(data.values.data(), src.data, 16 * sizeof(float));
373 dst->payload.set<Event::EventPayload::Tag::data>(data);
374 break;
375 }
376 }
377}
378
379template <typename EnumType>
380constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
381 return static_cast<typename std::underlying_type<EnumType>::type>(value);
382}
383
384enum EventQueueFlagBitsInternal : uint32_t {
385 INTERNAL_WAKE = 1 << 16,
386};
387
388} // anonymous namespace
389
390class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
391public:
392 AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
393 : mSensorDeviceCallback(sensorDeviceCallback) {}
394
395 ::ndk::ScopedAStatus onDynamicSensorsConnected(
396 const std::vector<SensorInfo> &sensorInfos) override {
397 std::vector<sensor_t> sensors;
398 for (const SensorInfo &sensorInfo : sensorInfos) {
399 sensor_t sensor;
400 convertToSensor(sensorInfo, &sensor);
401 sensors.push_back(sensor);
402 }
403
404 mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
405 return ::ndk::ScopedAStatus::ok();
406 }
407
408 ::ndk::ScopedAStatus onDynamicSensorsDisconnected(
409 const std::vector<int32_t> &sensorHandles) override {
410 mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
411 return ::ndk::ScopedAStatus::ok();
412 }
413
414private:
415 ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
416};
417
418bool AidlSensorHalWrapper::supportsPolling() {
419 return false;
420}
421
422bool AidlSensorHalWrapper::supportsMessageQueues() {
423 return true;
424}
425
426bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
427 mSensorDeviceCallback = callback;
428 mSensors = nullptr;
429
430 auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
431 if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
432 ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
433 if (binder.get() != nullptr) {
434 mSensors = ISensors::fromBinder(binder);
435 mEventQueue = std::make_unique<AidlMessageQueue<
436 Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
437 /*configureEventFlagWord=*/true);
438
439 mWakeLockQueue = std::make_unique<AidlMessageQueue<
440 int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
441 /*configureEventFlagWord=*/true);
442 if (mEventQueueFlag != nullptr) {
443 EventFlag::deleteEventFlag(&mEventQueueFlag);
444 }
445 EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
446 if (mWakeLockQueueFlag != nullptr) {
447 EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
448 }
449 EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
450
451 CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
452 mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
453
454 mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
455 mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
456 } else {
457 // TODO(b/195593357): Handle AIDL HAL crash
458 ALOGE("Could not connect to declared sensors AIDL HAL");
459 }
460 }
461
462 return mSensors != nullptr;
463}
464
465void AidlSensorHalWrapper::prepareForReconnect() {
466 mReconnecting = true;
467 if (mEventQueueFlag != nullptr) {
468 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
469 }
470}
471
472ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
473 return 0;
474}
475
476ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
477 ssize_t eventsRead = 0;
478 size_t availableEvents = mEventQueue->availableToRead();
479
480 if (availableEvents == 0) {
481 uint32_t eventFlagState = 0;
482
483 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
484 // able to be called with the correct number of events to read. If the specified number of
485 // events is not available, then read() would return no events, possibly introducing
486 // additional latency in delivering events to applications.
487 if (mEventQueueFlag != nullptr) {
488 mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
489 asBaseType(INTERNAL_WAKE),
490 &eventFlagState);
491 }
492 availableEvents = mEventQueue->availableToRead();
493
494 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
495 ALOGD("Event FMQ internal wake, returning from poll with no events");
496 return DEAD_OBJECT;
497 }
498 }
499
500 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
501 if (eventsToRead > 0) {
502 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
503 // Notify the Sensors HAL that sensor events have been read. This is required to support
504 // the use of writeBlocking by the Sensors HAL.
505 if (mEventQueueFlag != nullptr) {
506 mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
507 }
508
509 for (size_t i = 0; i < eventsToRead; i++) {
510 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
511 }
512 eventsRead = eventsToRead;
513 } else {
514 ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
515 availableEvents);
516 }
517 }
518
519 return eventsRead;
520}
521
522std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
523 std::vector<sensor_t> sensorsFound;
524
525 if (mSensors != nullptr) {
526 std::vector<SensorInfo> list;
527 mSensors->getSensorsList(&list);
528 for (size_t i = 0; i < list.size(); i++) {
529 sensor_t sensor;
530 convertToSensor(list[i], &sensor);
531 sensorsFound.push_back(sensor);
532 }
533 }
534
535 return sensorsFound;
536}
537
538status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
539 if (mSensors == nullptr) return NO_INIT;
540 return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
541}
542
543status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
544 if (mSensors == nullptr) return NO_INIT;
545 return convertToStatus(mSensors->activate(sensorHandle, enabled));
546}
547
548status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
549 int64_t maxReportLatencyNs) {
550 if (mSensors == nullptr) return NO_INIT;
551 return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
552}
553
554status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
555 if (mSensors == nullptr) return NO_INIT;
556 return convertToStatus(mSensors->flush(sensorHandle));
557}
558
559status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
560 if (mSensors == nullptr) return NO_INIT;
561
562 Event ev;
563 convertFromSensorEvent(*event, &ev);
564 return convertToStatus(mSensors->injectSensorData(ev));
565}
566
567status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
568 int32_t *channelHandle) {
569 if (mSensors == nullptr) return NO_INIT;
570
571 ISensors::SharedMemInfo::SharedMemType type;
572 switch (memory->type) {
573 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
574 type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
575 break;
576 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
577 type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
578 break;
579 default:
580 return BAD_VALUE;
581 }
582
583 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
584 return BAD_VALUE;
585 }
586 ISensors::SharedMemInfo::SharedMemFormat format =
587 ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
588
589 ISensors::SharedMemInfo mem = {
590 .type = type,
591 .format = format,
592 .size = static_cast<int32_t>(memory->size),
593 .memoryHandle = makeToAidl(memory->handle),
594 };
595
596 return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
597}
598
599status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
600 if (mSensors == nullptr) return NO_INIT;
601 return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
602}
603
604status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
605 const struct sensors_direct_cfg_t *config) {
606 if (mSensors == nullptr) return NO_INIT;
607
608 ISensors::RateLevel rate;
609 switch (config->rate_level) {
610 case SENSOR_DIRECT_RATE_STOP:
611 rate = ISensors::RateLevel::STOP;
612 break;
613 case SENSOR_DIRECT_RATE_NORMAL:
614 rate = ISensors::RateLevel::NORMAL;
615 break;
616 case SENSOR_DIRECT_RATE_FAST:
617 rate = ISensors::RateLevel::FAST;
618 break;
619 case SENSOR_DIRECT_RATE_VERY_FAST:
620 rate = ISensors::RateLevel::VERY_FAST;
621 break;
622 default:
623 return BAD_VALUE;
624 }
625
626 int32_t token;
627 mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
628 return token;
629}
630
631void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
632 int signedCount = (int)count;
633 if (mWakeLockQueue->write(&signedCount)) {
634 mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
635 } else {
636 ALOGW("Failed to write wake lock handled");
637 }
638}
639
640} // namespace android