blob: 09aed46a677886a23a1b066cb31a9dae0a4ec7c3 [file] [log] [blame]
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +00001/*
2 * Copyright (C) 2021 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#include "AidlSensorHalWrapper.h"
18#include "ISensorsWrapper.h"
19#include "SensorDeviceUtils.h"
20#include "android/hardware/sensors/2.0/types.h"
21
22#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
23#include <aidlcommonsupport/NativeHandle.h>
24#include <android-base/logging.h>
25#include <android/binder_manager.h>
26
27using ::aidl::android::hardware::sensors::AdditionalInfo;
28using ::aidl::android::hardware::sensors::DynamicSensorInfo;
29using ::aidl::android::hardware::sensors::Event;
30using ::aidl::android::hardware::sensors::ISensors;
31using ::aidl::android::hardware::sensors::SensorInfo;
32using ::aidl::android::hardware::sensors::SensorStatus;
33using ::aidl::android::hardware::sensors::SensorType;
34using ::android::AidlMessageQueue;
35using ::android::hardware::EventFlag;
36using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
37
38namespace android {
39
40namespace {
41
42status_t convertToStatus(ndk::ScopedAStatus status) {
43 if (status.isOk()) {
44 return OK;
45 } else {
46 switch (status.getExceptionCode()) {
47 case EX_ILLEGAL_ARGUMENT: {
48 return BAD_VALUE;
49 }
50 case EX_SECURITY: {
51 return PERMISSION_DENIED;
52 }
53 case EX_UNSUPPORTED_OPERATION: {
54 return INVALID_OPERATION;
55 }
56 case EX_SERVICE_SPECIFIC: {
57 switch (status.getServiceSpecificError()) {
58 case ISensors::ERROR_BAD_VALUE: {
59 return BAD_VALUE;
60 }
61 case ISensors::ERROR_NO_MEMORY: {
62 return NO_MEMORY;
63 }
64 default: {
65 return UNKNOWN_ERROR;
66 }
67 }
68 }
69 default: {
70 return UNKNOWN_ERROR;
71 }
72 }
73 }
74}
75
76void convertToSensor(const SensorInfo &src, sensor_t *dst) {
77 dst->name = strdup(src.name.c_str());
78 dst->vendor = strdup(src.vendor.c_str());
79 dst->version = src.version;
80 dst->handle = src.sensorHandle;
81 dst->type = (int)src.type;
82 dst->maxRange = src.maxRange;
83 dst->resolution = src.resolution;
84 dst->power = src.power;
85 dst->minDelay = src.minDelayUs;
86 dst->fifoReservedEventCount = src.fifoReservedEventCount;
87 dst->fifoMaxEventCount = src.fifoMaxEventCount;
88 dst->stringType = strdup(src.typeAsString.c_str());
89 dst->requiredPermission = strdup(src.requiredPermission.c_str());
90 dst->maxDelay = src.maxDelayUs;
91 dst->flags = src.flags;
92 dst->reserved[0] = dst->reserved[1] = 0;
93}
94
95void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
96 *dst = {.version = sizeof(sensors_event_t),
97 .sensor = src.sensorHandle,
98 .type = (int32_t)src.sensorType,
99 .reserved0 = 0,
100 .timestamp = src.timestamp};
101
102 switch (src.sensorType) {
103 case SensorType::META_DATA: {
104 // Legacy HALs expect the handle reference in the meta data field.
105 // Copy it over from the handle of the event.
106 dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
107 dst->meta_data.sensor = src.sensorHandle;
108 // Set the sensor handle to 0 to maintain compatibility.
109 dst->sensor = 0;
110 break;
111 }
112
113 case SensorType::ACCELEROMETER:
114 case SensorType::MAGNETIC_FIELD:
115 case SensorType::ORIENTATION:
116 case SensorType::GYROSCOPE:
117 case SensorType::GRAVITY:
118 case SensorType::LINEAR_ACCELERATION: {
119 dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
120 dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
121 dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
122 dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
123 break;
124 }
125
126 case SensorType::GAME_ROTATION_VECTOR: {
127 dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
128 dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
129 dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
130 dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
131 break;
132 }
133
134 case SensorType::ROTATION_VECTOR:
135 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
136 dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
137 dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
138 dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
139 dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
140 dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
141 break;
142 }
143
144 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
145 case SensorType::GYROSCOPE_UNCALIBRATED:
146 case SensorType::ACCELEROMETER_UNCALIBRATED: {
147 dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
148 dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
149 dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
150 dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
151 dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
152 dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
153 break;
154 }
155
156 case SensorType::HINGE_ANGLE:
157 case SensorType::DEVICE_ORIENTATION:
158 case SensorType::LIGHT:
159 case SensorType::PRESSURE:
160 case SensorType::PROXIMITY:
161 case SensorType::RELATIVE_HUMIDITY:
162 case SensorType::AMBIENT_TEMPERATURE:
163 case SensorType::SIGNIFICANT_MOTION:
164 case SensorType::STEP_DETECTOR:
165 case SensorType::TILT_DETECTOR:
166 case SensorType::WAKE_GESTURE:
167 case SensorType::GLANCE_GESTURE:
168 case SensorType::PICK_UP_GESTURE:
169 case SensorType::WRIST_TILT_GESTURE:
170 case SensorType::STATIONARY_DETECT:
171 case SensorType::MOTION_DETECT:
172 case SensorType::HEART_BEAT:
173 case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
174 dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
175 break;
176 }
177
178 case SensorType::STEP_COUNTER: {
179 dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
180 break;
181 }
182
183 case SensorType::HEART_RATE: {
184 dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
185 dst->heart_rate.status =
186 (int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
187 break;
188 }
189
190 case SensorType::POSE_6DOF: { // 15 floats
191 for (size_t i = 0; i < 15; ++i) {
192 dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
193 }
194 break;
195 }
196
197 case SensorType::DYNAMIC_SENSOR_META: {
198 dst->dynamic_sensor_meta.connected =
199 src.payload.get<Event::EventPayload::dynamic>().connected;
200 dst->dynamic_sensor_meta.handle =
201 src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
202 dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
203
204 memcpy(dst->dynamic_sensor_meta.uuid,
205 src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
206
207 break;
208 }
209
210 case SensorType::ADDITIONAL_INFO: {
211 const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
212
213 additional_info_event_t *dstInfo = &dst->additional_info;
214 dstInfo->type = (int32_t)srcInfo.type;
215 dstInfo->serial = srcInfo.serial;
216
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000217 switch (srcInfo.payload.getTag()) {
218 case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
219 const auto &values =
220 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
221 .values;
222 CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
223 memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
224 break;
225 }
226 case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
227 const auto &values =
228 srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
229 .values;
230 CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
231 memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
232 break;
233 }
234 default: {
235 ALOGE("Invalid sensor additional info tag: %d", srcInfo.payload.getTag());
236 }
237 }
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000238 break;
239 }
240
Brian Duddie4cdc8ba2022-01-19 14:31:48 -0800241 case SensorType::HEAD_TRACKER: {
242 const auto &ht = src.payload.get<Event::EventPayload::headTracker>();
243 dst->head_tracker.rx = ht.rx;
244 dst->head_tracker.ry = ht.ry;
245 dst->head_tracker.rz = ht.rz;
246 dst->head_tracker.vx = ht.vx;
247 dst->head_tracker.vy = ht.vy;
248 dst->head_tracker.vz = ht.vz;
249 dst->head_tracker.discontinuity_count = ht.discontinuityCount;
250 break;
251 }
252
Tyler Trephan17561662022-01-20 21:33:48 +0000253 case SensorType::ACCELEROMETER_LIMITED_AXES:
254 case SensorType::GYROSCOPE_LIMITED_AXES:
255 dst->limited_axes_imu.x = src.payload.get<Event::EventPayload::limitedAxesImu>().x;
256 dst->limited_axes_imu.y = src.payload.get<Event::EventPayload::limitedAxesImu>().y;
257 dst->limited_axes_imu.z = src.payload.get<Event::EventPayload::limitedAxesImu>().z;
258 dst->limited_axes_imu.x_supported =
259 src.payload.get<Event::EventPayload::limitedAxesImu>().xSupported;
260 dst->limited_axes_imu.y_supported =
261 src.payload.get<Event::EventPayload::limitedAxesImu>().ySupported;
262 dst->limited_axes_imu.z_supported =
263 src.payload.get<Event::EventPayload::limitedAxesImu>().zSupported;
264 break;
265
266 case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
267 case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED:
268 dst->limited_axes_imu_uncalibrated.x_uncalib =
269 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().x;
270 dst->limited_axes_imu_uncalibrated.y_uncalib =
271 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().y;
272 dst->limited_axes_imu_uncalibrated.z_uncalib =
273 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().z;
274 dst->limited_axes_imu_uncalibrated.x_bias =
275 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xBias;
276 dst->limited_axes_imu_uncalibrated.y_bias =
277 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().yBias;
278 dst->limited_axes_imu_uncalibrated.z_bias =
279 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zBias;
280 dst->limited_axes_imu_uncalibrated.x_supported =
281 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().xSupported;
282 dst->limited_axes_imu_uncalibrated.y_supported =
283 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().ySupported;
284 dst->limited_axes_imu_uncalibrated.z_supported =
285 src.payload.get<Event::EventPayload::limitedAxesImuUncal>().zSupported;
286 break;
287
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000288 default: {
289 CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
290
291 memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
292 16 * sizeof(float));
293 break;
294 }
295 }
296}
297
298void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
299 *dst = {
300 .timestamp = src.timestamp,
301 .sensorHandle = src.sensor,
Tyler Trephan17561662022-01-20 21:33:48 +0000302 .sensorType = (SensorType)src.type,
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000303 };
304
305 switch (dst->sensorType) {
306 case SensorType::META_DATA: {
307 Event::EventPayload::MetaData meta;
308 meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
309 // Legacy HALs contain the handle reference in the meta data field.
310 // Copy that over to the handle of the event. In legacy HALs this
311 // field was expected to be 0.
312 dst->sensorHandle = src.meta_data.sensor;
313 dst->payload.set<Event::EventPayload::Tag::meta>(meta);
314 break;
315 }
316
317 case SensorType::ACCELEROMETER:
318 case SensorType::MAGNETIC_FIELD:
319 case SensorType::ORIENTATION:
320 case SensorType::GYROSCOPE:
321 case SensorType::GRAVITY:
322 case SensorType::LINEAR_ACCELERATION: {
323 Event::EventPayload::Vec3 vec3;
324 vec3.x = src.acceleration.x;
325 vec3.y = src.acceleration.y;
326 vec3.z = src.acceleration.z;
327 vec3.status = (SensorStatus)src.acceleration.status;
328 dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
329 break;
330 }
331
332 case SensorType::GAME_ROTATION_VECTOR: {
333 Event::EventPayload::Vec4 vec4;
334 vec4.x = src.data[0];
335 vec4.y = src.data[1];
336 vec4.z = src.data[2];
337 vec4.w = src.data[3];
338 dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
339 break;
340 }
341
342 case SensorType::ROTATION_VECTOR:
343 case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
344 Event::EventPayload::Data data;
345 memcpy(data.values.data(), src.data, 5 * sizeof(float));
346 dst->payload.set<Event::EventPayload::Tag::data>(data);
347 break;
348 }
349
350 case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
351 case SensorType::GYROSCOPE_UNCALIBRATED:
352 case SensorType::ACCELEROMETER_UNCALIBRATED: {
353 Event::EventPayload::Uncal uncal;
354 uncal.x = src.uncalibrated_gyro.x_uncalib;
355 uncal.y = src.uncalibrated_gyro.y_uncalib;
356 uncal.z = src.uncalibrated_gyro.z_uncalib;
357 uncal.xBias = src.uncalibrated_gyro.x_bias;
358 uncal.yBias = src.uncalibrated_gyro.y_bias;
359 uncal.zBias = src.uncalibrated_gyro.z_bias;
360 dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
361 break;
362 }
363
364 case SensorType::DEVICE_ORIENTATION:
365 case SensorType::LIGHT:
366 case SensorType::PRESSURE:
367 case SensorType::PROXIMITY:
368 case SensorType::RELATIVE_HUMIDITY:
369 case SensorType::AMBIENT_TEMPERATURE:
370 case SensorType::SIGNIFICANT_MOTION:
371 case SensorType::STEP_DETECTOR:
372 case SensorType::TILT_DETECTOR:
373 case SensorType::WAKE_GESTURE:
374 case SensorType::GLANCE_GESTURE:
375 case SensorType::PICK_UP_GESTURE:
376 case SensorType::WRIST_TILT_GESTURE:
377 case SensorType::STATIONARY_DETECT:
378 case SensorType::MOTION_DETECT:
379 case SensorType::HEART_BEAT:
380 case SensorType::LOW_LATENCY_OFFBODY_DETECT:
381 case SensorType::HINGE_ANGLE: {
382 dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
383 break;
384 }
385
386 case SensorType::STEP_COUNTER: {
387 dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
388 break;
389 }
390
391 case SensorType::HEART_RATE: {
392 Event::EventPayload::HeartRate heartRate;
393 heartRate.bpm = src.heart_rate.bpm;
394 heartRate.status = (SensorStatus)src.heart_rate.status;
395 dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
396 break;
397 }
398
399 case SensorType::POSE_6DOF: { // 15 floats
400 Event::EventPayload::Pose6Dof pose6DOF;
401 for (size_t i = 0; i < 15; ++i) {
402 pose6DOF.values[i] = src.data[i];
403 }
404 dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
405 break;
406 }
407
408 case SensorType::DYNAMIC_SENSOR_META: {
409 DynamicSensorInfo dynamic;
410 dynamic.connected = src.dynamic_sensor_meta.connected;
411 dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
412
413 memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
414 dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
415 break;
416 }
417
418 case SensorType::ADDITIONAL_INFO: {
419 AdditionalInfo info;
420 const additional_info_event_t &srcInfo = src.additional_info;
421 info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
422 info.serial = srcInfo.serial;
423
Arthur Ishiguro8449f382022-01-05 20:37:21 +0000424 AdditionalInfo::AdditionalInfoPayload::Int32Values data;
425 CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
426 memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
427 info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000428
429 dst->payload.set<Event::EventPayload::Tag::additional>(info);
430 break;
431 }
432
Brian Duddie4cdc8ba2022-01-19 14:31:48 -0800433 case SensorType::HEAD_TRACKER: {
434 Event::EventPayload::HeadTracker headTracker;
435 headTracker.rx = src.head_tracker.rx;
436 headTracker.ry = src.head_tracker.ry;
437 headTracker.rz = src.head_tracker.rz;
438 headTracker.vx = src.head_tracker.vx;
439 headTracker.vy = src.head_tracker.vy;
440 headTracker.vz = src.head_tracker.vz;
441 headTracker.discontinuityCount = src.head_tracker.discontinuity_count;
442
443 dst->payload.set<Event::EventPayload::Tag::headTracker>(headTracker);
444 break;
445 }
446
Tyler Trephan17561662022-01-20 21:33:48 +0000447 case SensorType::ACCELEROMETER_LIMITED_AXES:
448 case SensorType::GYROSCOPE_LIMITED_AXES: {
449 Event::EventPayload::LimitedAxesImu limitedAxesImu;
450 limitedAxesImu.x = src.limited_axes_imu.x;
451 limitedAxesImu.y = src.limited_axes_imu.y;
452 limitedAxesImu.z = src.limited_axes_imu.z;
453 limitedAxesImu.xSupported = src.limited_axes_imu.x_supported;
454 limitedAxesImu.ySupported = src.limited_axes_imu.y_supported;
455 limitedAxesImu.zSupported = src.limited_axes_imu.z_supported;
456 dst->payload.set<Event::EventPayload::Tag::limitedAxesImu>(limitedAxesImu);
457 break;
458 }
459
460 case SensorType::ACCELEROMETER_LIMITED_AXES_UNCALIBRATED:
461 case SensorType::GYROSCOPE_LIMITED_AXES_UNCALIBRATED: {
462 Event::EventPayload::LimitedAxesImuUncal limitedAxesImuUncal;
463 limitedAxesImuUncal.x = src.limited_axes_imu_uncalibrated.x_uncalib;
464 limitedAxesImuUncal.y = src.limited_axes_imu_uncalibrated.y_uncalib;
465 limitedAxesImuUncal.z = src.limited_axes_imu_uncalibrated.z_uncalib;
466 limitedAxesImuUncal.xBias = src.limited_axes_imu_uncalibrated.x_bias;
467 limitedAxesImuUncal.yBias = src.limited_axes_imu_uncalibrated.y_bias;
468 limitedAxesImuUncal.zBias = src.limited_axes_imu_uncalibrated.z_bias;
469 limitedAxesImuUncal.xSupported = src.limited_axes_imu_uncalibrated.x_supported;
470 limitedAxesImuUncal.ySupported = src.limited_axes_imu_uncalibrated.y_supported;
471 limitedAxesImuUncal.zSupported = src.limited_axes_imu_uncalibrated.z_supported;
472 dst->payload.set<Event::EventPayload::Tag::limitedAxesImuUncal>(limitedAxesImuUncal);
473 break;
474 }
475
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000476 default: {
477 CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
478
479 Event::EventPayload::Data data;
480 memcpy(data.values.data(), src.data, 16 * sizeof(float));
481 dst->payload.set<Event::EventPayload::Tag::data>(data);
482 break;
483 }
484 }
485}
486
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000487void serviceDied(void *cookie) {
488 ALOGW("Sensors HAL died, attempting to reconnect.");
489 ((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
490}
491
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000492template <typename EnumType>
493constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
494 return static_cast<typename std::underlying_type<EnumType>::type>(value);
495}
496
497enum EventQueueFlagBitsInternal : uint32_t {
498 INTERNAL_WAKE = 1 << 16,
499};
500
501} // anonymous namespace
502
503class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
504public:
505 AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
506 : mSensorDeviceCallback(sensorDeviceCallback) {}
507
508 ::ndk::ScopedAStatus onDynamicSensorsConnected(
509 const std::vector<SensorInfo> &sensorInfos) override {
510 std::vector<sensor_t> sensors;
511 for (const SensorInfo &sensorInfo : sensorInfos) {
512 sensor_t sensor;
513 convertToSensor(sensorInfo, &sensor);
514 sensors.push_back(sensor);
515 }
516
517 mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
518 return ::ndk::ScopedAStatus::ok();
519 }
520
521 ::ndk::ScopedAStatus onDynamicSensorsDisconnected(
522 const std::vector<int32_t> &sensorHandles) override {
523 mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
524 return ::ndk::ScopedAStatus::ok();
525 }
526
527private:
528 ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
529};
530
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000531AidlSensorHalWrapper::AidlSensorHalWrapper()
532 : mEventQueueFlag(nullptr),
533 mWakeLockQueueFlag(nullptr),
534 mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
535
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000536bool AidlSensorHalWrapper::supportsPolling() {
537 return false;
538}
539
540bool AidlSensorHalWrapper::supportsMessageQueues() {
541 return true;
542}
543
544bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
545 mSensorDeviceCallback = callback;
546 mSensors = nullptr;
547
548 auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
549 if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000550 if (mSensors != nullptr) {
551 AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
552 }
553
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000554 ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
555 if (binder.get() != nullptr) {
556 mSensors = ISensors::fromBinder(binder);
557 mEventQueue = std::make_unique<AidlMessageQueue<
558 Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
559 /*configureEventFlagWord=*/true);
560
561 mWakeLockQueue = std::make_unique<AidlMessageQueue<
562 int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
563 /*configureEventFlagWord=*/true);
564 if (mEventQueueFlag != nullptr) {
565 EventFlag::deleteEventFlag(&mEventQueueFlag);
566 }
567 EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
568 if (mWakeLockQueueFlag != nullptr) {
569 EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
570 }
571 EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
572
573 CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
574 mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
575
576 mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
577 mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
Arthur Ishigurob06550c2021-12-28 22:46:29 +0000578
579 AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000580 } else {
Arthur Ishiguroadbb40a2021-12-13 04:29:02 +0000581 ALOGE("Could not connect to declared sensors AIDL HAL");
582 }
583 }
584
585 return mSensors != nullptr;
586}
587
588void AidlSensorHalWrapper::prepareForReconnect() {
589 mReconnecting = true;
590 if (mEventQueueFlag != nullptr) {
591 mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
592 }
593}
594
595ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
596 return 0;
597}
598
599ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
600 ssize_t eventsRead = 0;
601 size_t availableEvents = mEventQueue->availableToRead();
602
603 if (availableEvents == 0) {
604 uint32_t eventFlagState = 0;
605
606 // Wait for events to become available. This is necessary so that the Event FMQ's read() is
607 // able to be called with the correct number of events to read. If the specified number of
608 // events is not available, then read() would return no events, possibly introducing
609 // additional latency in delivering events to applications.
610 if (mEventQueueFlag != nullptr) {
611 mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
612 asBaseType(INTERNAL_WAKE),
613 &eventFlagState);
614 }
615 availableEvents = mEventQueue->availableToRead();
616
617 if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
618 ALOGD("Event FMQ internal wake, returning from poll with no events");
619 return DEAD_OBJECT;
620 }
621 }
622
623 size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
624 if (eventsToRead > 0) {
625 if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
626 // Notify the Sensors HAL that sensor events have been read. This is required to support
627 // the use of writeBlocking by the Sensors HAL.
628 if (mEventQueueFlag != nullptr) {
629 mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
630 }
631
632 for (size_t i = 0; i < eventsToRead; i++) {
633 convertToSensorEvent(mEventBuffer[i], &buffer[i]);
634 }
635 eventsRead = eventsToRead;
636 } else {
637 ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
638 availableEvents);
639 }
640 }
641
642 return eventsRead;
643}
644
645std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
646 std::vector<sensor_t> sensorsFound;
647
648 if (mSensors != nullptr) {
649 std::vector<SensorInfo> list;
650 mSensors->getSensorsList(&list);
651 for (size_t i = 0; i < list.size(); i++) {
652 sensor_t sensor;
653 convertToSensor(list[i], &sensor);
654 sensorsFound.push_back(sensor);
655 }
656 }
657
658 return sensorsFound;
659}
660
661status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
662 if (mSensors == nullptr) return NO_INIT;
663 return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
664}
665
666status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
667 if (mSensors == nullptr) return NO_INIT;
668 return convertToStatus(mSensors->activate(sensorHandle, enabled));
669}
670
671status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
672 int64_t maxReportLatencyNs) {
673 if (mSensors == nullptr) return NO_INIT;
674 return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
675}
676
677status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
678 if (mSensors == nullptr) return NO_INIT;
679 return convertToStatus(mSensors->flush(sensorHandle));
680}
681
682status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
683 if (mSensors == nullptr) return NO_INIT;
684
685 Event ev;
686 convertFromSensorEvent(*event, &ev);
687 return convertToStatus(mSensors->injectSensorData(ev));
688}
689
690status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
691 int32_t *channelHandle) {
692 if (mSensors == nullptr) return NO_INIT;
693
694 ISensors::SharedMemInfo::SharedMemType type;
695 switch (memory->type) {
696 case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
697 type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
698 break;
699 case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
700 type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
701 break;
702 default:
703 return BAD_VALUE;
704 }
705
706 if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
707 return BAD_VALUE;
708 }
709 ISensors::SharedMemInfo::SharedMemFormat format =
710 ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
711
712 ISensors::SharedMemInfo mem = {
713 .type = type,
714 .format = format,
715 .size = static_cast<int32_t>(memory->size),
716 .memoryHandle = makeToAidl(memory->handle),
717 };
718
719 return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
720}
721
722status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
723 if (mSensors == nullptr) return NO_INIT;
724 return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
725}
726
727status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
728 const struct sensors_direct_cfg_t *config) {
729 if (mSensors == nullptr) return NO_INIT;
730
731 ISensors::RateLevel rate;
732 switch (config->rate_level) {
733 case SENSOR_DIRECT_RATE_STOP:
734 rate = ISensors::RateLevel::STOP;
735 break;
736 case SENSOR_DIRECT_RATE_NORMAL:
737 rate = ISensors::RateLevel::NORMAL;
738 break;
739 case SENSOR_DIRECT_RATE_FAST:
740 rate = ISensors::RateLevel::FAST;
741 break;
742 case SENSOR_DIRECT_RATE_VERY_FAST:
743 rate = ISensors::RateLevel::VERY_FAST;
744 break;
745 default:
746 return BAD_VALUE;
747 }
748
749 int32_t token;
750 mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
751 return token;
752}
753
754void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
755 int signedCount = (int)count;
756 if (mWakeLockQueue->write(&signedCount)) {
757 mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
758 } else {
759 ALOGW("Failed to write wake lock handled");
760 }
761}
762
763} // namespace android