| Janis Danisevskis | 670122f | 2021-01-17 22:20:11 -0800 | [diff] [blame] | 1 | /* | 
|  | 2 | * Copyright (C) 2021 The Android Open Source Project | 
|  | 3 | * | 
|  | 4 | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | 5 | * you may not use this file except in compliance with the License. | 
|  | 6 | * You may obtain a copy of the License at | 
|  | 7 | * | 
|  | 8 | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | 9 | * | 
|  | 10 | * Unless required by applicable law or agreed to in writing, software | 
|  | 11 | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | 13 | * See the License for the specific language governing permissions and | 
|  | 14 | * limitations under the License. | 
|  | 15 | */ | 
|  | 16 |  | 
|  | 17 | #include "keystore2_engine.h" | 
|  | 18 |  | 
|  | 19 | #include <aidl/android/system/keystore2/IKeystoreService.h> | 
|  | 20 | #include <android-base/logging.h> | 
|  | 21 | #include <android-base/strings.h> | 
|  | 22 | #include <android/binder_manager.h> | 
|  | 23 |  | 
|  | 24 | #include <private/android_filesystem_config.h> | 
|  | 25 |  | 
|  | 26 | #include <openssl/bn.h> | 
|  | 27 | #include <openssl/ec.h> | 
|  | 28 | #include <openssl/ec_key.h> | 
|  | 29 | #include <openssl/ecdsa.h> | 
|  | 30 | #include <openssl/engine.h> | 
|  | 31 | #include <openssl/rsa.h> | 
|  | 32 | #include <openssl/x509.h> | 
|  | 33 |  | 
|  | 34 | #define AT __func__ << ":" << __LINE__ << " " | 
|  | 35 |  | 
| Janis Danisevskis | f985e43 | 2021-03-22 15:12:58 -0700 | [diff] [blame] | 36 | constexpr const char keystore2_service_name[] = "android.system.keystore2.IKeystoreService/default"; | 
| Janis Danisevskis | 670122f | 2021-01-17 22:20:11 -0800 | [diff] [blame] | 37 | const std::string keystore2_grant_id_prefix("ks2_keystore-engine_grant_id:"); | 
|  | 38 |  | 
|  | 39 | /** | 
|  | 40 | * Keystore 2.0 namespace identifiers. | 
|  | 41 | * Keep in sync with system/sepolicy/private/keystore2_key_contexts. | 
|  | 42 | */ | 
|  | 43 | constexpr const int64_t KS2_NAMESPACE_WIFI = 102; | 
|  | 44 |  | 
|  | 45 | namespace ks2 = ::aidl::android::system::keystore2; | 
|  | 46 | namespace KMV1 = ::aidl::android::hardware::security::keymint; | 
|  | 47 |  | 
|  | 48 | namespace { | 
|  | 49 |  | 
|  | 50 | int64_t getNamespaceforCurrentUid() { | 
|  | 51 | auto uid = getuid(); | 
|  | 52 | switch (uid) { | 
|  | 53 | case AID_WIFI: | 
|  | 54 | return KS2_NAMESPACE_WIFI; | 
|  | 55 | // 0 is the super user namespace, and nothing has access to this namespace on user builds. | 
|  | 56 | // So this will always fail. | 
|  | 57 | default: | 
|  | 58 | return 0; | 
|  | 59 | } | 
|  | 60 | } | 
|  | 61 |  | 
|  | 62 | struct Keystore2KeyBackend { | 
|  | 63 | ks2::KeyDescriptor descriptor_; | 
|  | 64 | std::shared_ptr<ks2::IKeystoreSecurityLevel> i_keystore_security_level_; | 
|  | 65 | }; | 
|  | 66 |  | 
|  | 67 | /* key_backend_dup is called when one of the RSA or EC_KEY objects is duplicated. */ | 
|  | 68 | extern "C" int key_backend_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, | 
|  | 69 | void** from_d, int /* index */, long /* argl */, void* /* argp */) { | 
|  | 70 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(*from_d); | 
|  | 71 | if (key_backend != nullptr) { | 
|  | 72 | *from_d = new std::shared_ptr<Keystore2KeyBackend>(*key_backend); | 
|  | 73 | } | 
|  | 74 | return 1; | 
|  | 75 | } | 
|  | 76 |  | 
|  | 77 | /* key_backend_free is called when one of the RSA, DSA or EC_KEY object is freed. */ | 
|  | 78 | extern "C" void key_backend_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */, | 
|  | 79 | int /* index */, long /* argl */, void* /* argp */) { | 
|  | 80 | delete reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(ptr); | 
|  | 81 | } | 
|  | 82 |  | 
|  | 83 | extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len); | 
|  | 84 | extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, | 
|  | 85 | unsigned int* sig_len, EC_KEY* ec_key); | 
|  | 86 | /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by | 
|  | 87 | * forwarding the requested operations to Keystore. */ | 
|  | 88 | class Keystore2Engine { | 
|  | 89 | public: | 
|  | 90 | Keystore2Engine() | 
|  | 91 | : rsa_index_(RSA_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */, | 
|  | 92 | key_backend_dup, key_backend_free)), | 
|  | 93 | ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, nullptr /* argp */, | 
|  | 94 | nullptr /* new_func */, key_backend_dup, | 
|  | 95 | key_backend_free)), | 
|  | 96 | engine_(ENGINE_new()) { | 
|  | 97 | memset(&rsa_method_, 0, sizeof(rsa_method_)); | 
|  | 98 | rsa_method_.common.is_static = 1; | 
|  | 99 | rsa_method_.private_transform = rsa_private_transform; | 
|  | 100 | rsa_method_.flags = RSA_FLAG_OPAQUE; | 
|  | 101 | ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); | 
|  | 102 |  | 
|  | 103 | memset(&ecdsa_method_, 0, sizeof(ecdsa_method_)); | 
|  | 104 | ecdsa_method_.common.is_static = 1; | 
|  | 105 | ecdsa_method_.sign = ecdsa_sign; | 
|  | 106 | ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; | 
|  | 107 | ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); | 
|  | 108 | } | 
|  | 109 |  | 
|  | 110 | int rsa_ex_index() const { return rsa_index_; } | 
|  | 111 | int ec_key_ex_index() const { return ec_key_index_; } | 
|  | 112 |  | 
|  | 113 | const ENGINE* engine() const { return engine_; } | 
|  | 114 |  | 
|  | 115 | static const Keystore2Engine& get() { | 
|  | 116 | static Keystore2Engine engine; | 
|  | 117 | return engine; | 
|  | 118 | } | 
|  | 119 |  | 
|  | 120 | private: | 
|  | 121 | const int rsa_index_; | 
|  | 122 | const int ec_key_index_; | 
|  | 123 | RSA_METHOD rsa_method_; | 
|  | 124 | ECDSA_METHOD ecdsa_method_; | 
|  | 125 | ENGINE* const engine_; | 
|  | 126 | }; | 
|  | 127 |  | 
|  | 128 | #define OWNERSHIP_TRANSFERRED(x) x.release() | 
|  | 129 |  | 
|  | 130 | /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public | 
|  | 131 | * part is taken from |public_rsa| and the private operations are forwarded to | 
|  | 132 | * KeyStore and operate on the key named |key_id|. */ | 
|  | 133 | bssl::UniquePtr<EVP_PKEY> wrap_rsa(std::shared_ptr<Keystore2KeyBackend> key_backend, | 
|  | 134 | const RSA* public_rsa) { | 
|  | 135 | bssl::UniquePtr<RSA> rsa(RSA_new_method(Keystore2Engine::get().engine())); | 
|  | 136 | if (rsa.get() == nullptr) { | 
|  | 137 | return nullptr; | 
|  | 138 | } | 
|  | 139 |  | 
|  | 140 | auto key_backend_copy = new decltype(key_backend)(key_backend); | 
|  | 141 |  | 
|  | 142 | if (!RSA_set_ex_data(rsa.get(), Keystore2Engine::get().rsa_ex_index(), key_backend_copy)) { | 
|  | 143 | delete key_backend_copy; | 
|  | 144 | return nullptr; | 
|  | 145 | } | 
|  | 146 |  | 
|  | 147 | rsa->n = BN_dup(public_rsa->n); | 
|  | 148 | rsa->e = BN_dup(public_rsa->e); | 
|  | 149 | if (rsa->n == nullptr || rsa->e == nullptr) { | 
|  | 150 | return nullptr; | 
|  | 151 | } | 
|  | 152 |  | 
|  | 153 | bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); | 
|  | 154 | if (result.get() == nullptr || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { | 
|  | 155 | return nullptr; | 
|  | 156 | } | 
|  | 157 | OWNERSHIP_TRANSFERRED(rsa); | 
|  | 158 |  | 
|  | 159 | return result; | 
|  | 160 | } | 
|  | 161 |  | 
|  | 162 | /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public | 
|  | 163 | * part is taken from |public_rsa| and the private operations are forwarded to | 
|  | 164 | * KeyStore and operate on the key named |key_id|. */ | 
|  | 165 | bssl::UniquePtr<EVP_PKEY> wrap_ecdsa(std::shared_ptr<Keystore2KeyBackend> key_backend, | 
|  | 166 | const EC_KEY* public_ecdsa) { | 
|  | 167 | bssl::UniquePtr<EC_KEY> ec(EC_KEY_new_method(Keystore2Engine::get().engine())); | 
|  | 168 | if (ec.get() == nullptr) { | 
|  | 169 | return nullptr; | 
|  | 170 | } | 
|  | 171 |  | 
|  | 172 | if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || | 
|  | 173 | !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { | 
|  | 174 | return nullptr; | 
|  | 175 | } | 
|  | 176 |  | 
|  | 177 | auto key_backend_copy = new decltype(key_backend)(key_backend); | 
|  | 178 |  | 
|  | 179 | if (!EC_KEY_set_ex_data(ec.get(), Keystore2Engine::get().ec_key_ex_index(), key_backend_copy)) { | 
|  | 180 | delete key_backend_copy; | 
|  | 181 | return nullptr; | 
|  | 182 | } | 
|  | 183 |  | 
|  | 184 | bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); | 
|  | 185 | if (result.get() == nullptr || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { | 
|  | 186 | return nullptr; | 
|  | 187 | } | 
|  | 188 | OWNERSHIP_TRANSFERRED(ec); | 
|  | 189 |  | 
|  | 190 | return result; | 
|  | 191 | } | 
|  | 192 |  | 
|  | 193 | std::optional<std::vector<uint8_t>> keystore2_sign(const Keystore2KeyBackend& key_backend, | 
|  | 194 | std::vector<uint8_t> input, | 
|  | 195 | KMV1::Algorithm algorithm) { | 
|  | 196 | auto sec_level = key_backend.i_keystore_security_level_; | 
|  | 197 | ks2::CreateOperationResponse response; | 
|  | 198 |  | 
|  | 199 | std::vector<KMV1::KeyParameter> op_params(4); | 
|  | 200 | op_params[0] = KMV1::KeyParameter{ | 
|  | 201 | .tag = KMV1::Tag::PURPOSE, | 
|  | 202 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::keyPurpose>( | 
|  | 203 | KMV1::KeyPurpose::SIGN)}; | 
|  | 204 | op_params[1] = KMV1::KeyParameter{ | 
|  | 205 | .tag = KMV1::Tag::ALGORITHM, | 
|  | 206 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::algorithm>(algorithm)}; | 
|  | 207 | op_params[2] = KMV1::KeyParameter{ | 
|  | 208 | .tag = KMV1::Tag::PADDING, | 
|  | 209 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::paddingMode>( | 
|  | 210 | KMV1::PaddingMode::NONE)}; | 
|  | 211 | op_params[3] = | 
|  | 212 | KMV1::KeyParameter{.tag = KMV1::Tag::DIGEST, | 
|  | 213 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::digest>( | 
|  | 214 | KMV1::Digest::NONE)}; | 
|  | 215 |  | 
|  | 216 | auto rc = sec_level->createOperation(key_backend.descriptor_, op_params, false /* forced */, | 
|  | 217 | &response); | 
|  | 218 | if (!rc.isOk()) { | 
|  | 219 | auto exception_code = rc.getExceptionCode(); | 
|  | 220 | if (exception_code == EX_SERVICE_SPECIFIC) { | 
|  | 221 | LOG(ERROR) << AT << "Keystore createOperation returned service specific error: " | 
|  | 222 | << rc.getServiceSpecificError(); | 
|  | 223 | } else { | 
|  | 224 | LOG(ERROR) << AT << "Communication with Keystore createOperation failed error: " | 
|  | 225 | << exception_code; | 
|  | 226 | } | 
|  | 227 | return std::nullopt; | 
|  | 228 | } | 
|  | 229 |  | 
|  | 230 | auto op = response.iOperation; | 
|  | 231 |  | 
|  | 232 | std::optional<std::vector<uint8_t>> output = std::nullopt; | 
|  | 233 | rc = op->finish(std::move(input), {}, &output); | 
|  | 234 | if (!rc.isOk()) { | 
|  | 235 | auto exception_code = rc.getExceptionCode(); | 
|  | 236 | if (exception_code == EX_SERVICE_SPECIFIC) { | 
|  | 237 | LOG(ERROR) << AT << "Keystore finish returned service specific error: " | 
|  | 238 | << rc.getServiceSpecificError(); | 
|  | 239 | } else { | 
|  | 240 | LOG(ERROR) << AT | 
|  | 241 | << "Communication with Keystore finish failed error: " << exception_code; | 
|  | 242 | } | 
|  | 243 | return std::nullopt; | 
|  | 244 | } | 
|  | 245 |  | 
|  | 246 | if (!output) { | 
|  | 247 | LOG(ERROR) << AT << "We did not get a signature from Keystore."; | 
|  | 248 | } | 
|  | 249 |  | 
|  | 250 | return output; | 
|  | 251 | } | 
|  | 252 |  | 
|  | 253 | /* rsa_private_transform takes a big-endian integer from |in|, calculates the | 
|  | 254 | * d'th power of it, modulo the RSA modulus, and writes the result as a | 
|  | 255 | * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It | 
|  | 256 | * returns one on success and zero otherwise. */ | 
|  | 257 | extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) { | 
|  | 258 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( | 
|  | 259 | RSA_get_ex_data(rsa, Keystore2Engine::get().rsa_ex_index())); | 
|  | 260 |  | 
|  | 261 | if (key_backend == nullptr) { | 
|  | 262 | LOG(ERROR) << AT << "Invalid key."; | 
|  | 263 | return 0; | 
|  | 264 | } | 
|  | 265 |  | 
|  | 266 | auto output = | 
|  | 267 | keystore2_sign(**key_backend, std::vector<uint8_t>(in, in + len), KMV1::Algorithm::RSA); | 
|  | 268 | if (!output) { | 
|  | 269 | return 0; | 
|  | 270 | } | 
|  | 271 |  | 
|  | 272 | if (output->size() > len) { | 
|  | 273 | /* The result of the RSA operation can never be larger than the size of | 
|  | 274 | * the modulus so we assume that the result has extra zeros on the | 
|  | 275 | * left. This provides attackers with an oracle, but there's nothing | 
|  | 276 | * that we can do about it here. */ | 
|  | 277 | LOG(WARNING) << "Reply len " << output->size() << " greater than expected " << len; | 
|  | 278 | memcpy(out, &output->data()[output->size() - len], len); | 
|  | 279 | } else if (output->size() < len) { | 
|  | 280 | /* If the Keystore implementation returns a short value we assume that | 
|  | 281 | * it's because it removed leading zeros from the left side. This is | 
|  | 282 | * bad because it provides attackers with an oracle but we cannot do | 
|  | 283 | * anything about a broken Keystore implementation here. */ | 
|  | 284 | LOG(WARNING) << "Reply len " << output->size() << " less than expected " << len; | 
|  | 285 | memset(out, 0, len); | 
|  | 286 | memcpy(out + len - output->size(), output->data(), output->size()); | 
|  | 287 | } else { | 
|  | 288 | memcpy(out, output->data(), len); | 
|  | 289 | } | 
|  | 290 |  | 
|  | 291 | return 1; | 
|  | 292 | } | 
|  | 293 |  | 
|  | 294 | /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes | 
|  | 295 | * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on | 
|  | 296 | * success and zero otherwise. */ | 
|  | 297 | extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, | 
|  | 298 | unsigned int* sig_len, EC_KEY* ec_key) { | 
|  | 299 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( | 
|  | 300 | EC_KEY_get_ex_data(ec_key, Keystore2Engine::get().ec_key_ex_index())); | 
|  | 301 |  | 
|  | 302 | if (key_backend == nullptr) { | 
|  | 303 | LOG(ERROR) << AT << "Invalid key."; | 
|  | 304 | return 0; | 
|  | 305 | } | 
|  | 306 |  | 
|  | 307 | size_t ecdsa_size = ECDSA_size(ec_key); | 
|  | 308 |  | 
|  | 309 | auto output = keystore2_sign(**key_backend, std::vector<uint8_t>(digest, digest + digest_len), | 
|  | 310 | KMV1::Algorithm::EC); | 
|  | 311 | if (!output) { | 
|  | 312 | LOG(ERROR) << "There was an error during ecdsa_sign."; | 
|  | 313 | return 0; | 
|  | 314 | } | 
|  | 315 |  | 
|  | 316 | if (output->size() == 0) { | 
|  | 317 | LOG(ERROR) << "No valid signature returned"; | 
|  | 318 | return 0; | 
|  | 319 | } else if (output->size() > ecdsa_size) { | 
|  | 320 | LOG(ERROR) << "Signature is too large"; | 
|  | 321 | return 0; | 
|  | 322 | } | 
|  | 323 |  | 
|  | 324 | memcpy(sig, output->data(), output->size()); | 
|  | 325 | *sig_len = output->size(); | 
|  | 326 |  | 
|  | 327 | return 1; | 
|  | 328 | } | 
|  | 329 |  | 
|  | 330 | }  // namespace | 
|  | 331 |  | 
|  | 332 | /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or | 
|  | 333 | * ECDSA key where the public part of the key reflects the value of the key | 
|  | 334 | * named |key_id| in Keystore and the private operations are forwarded onto | 
|  | 335 | * KeyStore. */ | 
|  | 336 | extern "C" EVP_PKEY* EVP_PKEY_from_keystore2(const char* key_id) { | 
|  | 337 | ::ndk::SpAIBinder keystoreBinder(AServiceManager_checkService(keystore2_service_name)); | 
|  | 338 | auto keystore2 = ks2::IKeystoreService::fromBinder(keystoreBinder); | 
|  | 339 |  | 
|  | 340 | if (!keystore2) { | 
|  | 341 | LOG(ERROR) << AT << "Unable to connect to Keystore 2.0."; | 
|  | 342 | return nullptr; | 
|  | 343 | } | 
|  | 344 |  | 
|  | 345 | std::string alias = key_id; | 
|  | 346 | if (android::base::StartsWith(alias, "USRPKEY_")) { | 
|  | 347 | LOG(WARNING) << AT << "Keystore backend used with legacy alias prefix - ignoring."; | 
|  | 348 | alias = alias.substr(8); | 
|  | 349 | } | 
|  | 350 |  | 
|  | 351 | ks2::KeyDescriptor descriptor = { | 
|  | 352 | .domain = ks2::Domain::SELINUX, | 
|  | 353 | .nspace = getNamespaceforCurrentUid(), | 
|  | 354 | .alias = alias, | 
|  | 355 | .blob = std::nullopt, | 
|  | 356 | }; | 
|  | 357 |  | 
|  | 358 | // If the key_id starts with the grant id prefix, we parse the following string as numeric | 
|  | 359 | // grant id. We can then use the grant domain without alias to load the designated key. | 
|  | 360 | if (alias.find(keystore2_grant_id_prefix) == 0) { | 
|  | 361 | std::stringstream s(alias.substr(keystore2_grant_id_prefix.size())); | 
|  | 362 | s >> std::hex >> reinterpret_cast<uint64_t&>(descriptor.nspace); | 
|  | 363 | descriptor.domain = ks2::Domain::GRANT; | 
|  | 364 | descriptor.alias = std::nullopt; | 
|  | 365 | } | 
|  | 366 |  | 
|  | 367 | ks2::KeyEntryResponse response; | 
|  | 368 | auto rc = keystore2->getKeyEntry(descriptor, &response); | 
|  | 369 | if (!rc.isOk()) { | 
|  | 370 | auto exception_code = rc.getExceptionCode(); | 
|  | 371 | if (exception_code == EX_SERVICE_SPECIFIC) { | 
|  | 372 | LOG(ERROR) << AT << "Keystore getKeyEntry returned service specific error: " | 
|  | 373 | << rc.getServiceSpecificError(); | 
|  | 374 | } else { | 
|  | 375 | LOG(ERROR) << AT << "Communication with Keystore getKeyEntry failed error: " | 
|  | 376 | << exception_code; | 
|  | 377 | } | 
|  | 378 | return nullptr; | 
|  | 379 | } | 
|  | 380 |  | 
|  | 381 | if (!response.metadata.certificate) { | 
|  | 382 | LOG(ERROR) << AT << "No public key found."; | 
|  | 383 | return nullptr; | 
|  | 384 | } | 
|  | 385 |  | 
|  | 386 | const uint8_t* p = response.metadata.certificate->data(); | 
|  | 387 | bssl::UniquePtr<X509> x509(d2i_X509(nullptr, &p, response.metadata.certificate->size())); | 
|  | 388 | if (!x509) { | 
|  | 389 | LOG(ERROR) << AT << "Failed to parse x509 certificate."; | 
|  | 390 | return nullptr; | 
|  | 391 | } | 
|  | 392 | bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(x509.get())); | 
|  | 393 | if (!pkey) { | 
|  | 394 | LOG(ERROR) << AT << "Failed to extract public key."; | 
|  | 395 | return nullptr; | 
|  | 396 | } | 
|  | 397 |  | 
|  | 398 | auto key_backend = std::make_shared<Keystore2KeyBackend>( | 
|  | 399 | Keystore2KeyBackend{response.metadata.key, response.iSecurityLevel}); | 
|  | 400 |  | 
|  | 401 | bssl::UniquePtr<EVP_PKEY> result; | 
|  | 402 | switch (EVP_PKEY_type(pkey->type)) { | 
|  | 403 | case EVP_PKEY_RSA: { | 
|  | 404 | bssl::UniquePtr<RSA> public_rsa(EVP_PKEY_get1_RSA(pkey.get())); | 
|  | 405 | result = wrap_rsa(key_backend, public_rsa.get()); | 
|  | 406 | break; | 
|  | 407 | } | 
|  | 408 | case EVP_PKEY_EC: { | 
|  | 409 | bssl::UniquePtr<EC_KEY> public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); | 
|  | 410 | result = wrap_ecdsa(key_backend, public_ecdsa.get()); | 
|  | 411 | break; | 
|  | 412 | } | 
|  | 413 | default: | 
|  | 414 | LOG(ERROR) << AT << "Unsupported key type " << EVP_PKEY_type(pkey->type); | 
|  | 415 | return nullptr; | 
|  | 416 | } | 
|  | 417 |  | 
|  | 418 | return result.release(); | 
|  | 419 | } |