Janis Danisevskis | 670122f | 2021-01-17 22:20:11 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2021 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include "keystore2_engine.h" |
| 18 | |
| 19 | #include <aidl/android/system/keystore2/IKeystoreService.h> |
| 20 | #include <android-base/logging.h> |
| 21 | #include <android-base/strings.h> |
| 22 | #include <android/binder_manager.h> |
| 23 | |
| 24 | #include <private/android_filesystem_config.h> |
| 25 | |
| 26 | #include <openssl/bn.h> |
| 27 | #include <openssl/ec.h> |
| 28 | #include <openssl/ec_key.h> |
| 29 | #include <openssl/ecdsa.h> |
| 30 | #include <openssl/engine.h> |
| 31 | #include <openssl/rsa.h> |
| 32 | #include <openssl/x509.h> |
| 33 | |
| 34 | #define AT __func__ << ":" << __LINE__ << " " |
| 35 | |
Janis Danisevskis | f985e43 | 2021-03-22 15:12:58 -0700 | [diff] [blame^] | 36 | constexpr const char keystore2_service_name[] = "android.system.keystore2.IKeystoreService/default"; |
Janis Danisevskis | 670122f | 2021-01-17 22:20:11 -0800 | [diff] [blame] | 37 | const std::string keystore2_grant_id_prefix("ks2_keystore-engine_grant_id:"); |
| 38 | |
| 39 | /** |
| 40 | * Keystore 2.0 namespace identifiers. |
| 41 | * Keep in sync with system/sepolicy/private/keystore2_key_contexts. |
| 42 | */ |
| 43 | constexpr const int64_t KS2_NAMESPACE_WIFI = 102; |
| 44 | |
| 45 | namespace ks2 = ::aidl::android::system::keystore2; |
| 46 | namespace KMV1 = ::aidl::android::hardware::security::keymint; |
| 47 | |
| 48 | namespace { |
| 49 | |
| 50 | int64_t getNamespaceforCurrentUid() { |
| 51 | auto uid = getuid(); |
| 52 | switch (uid) { |
| 53 | case AID_WIFI: |
| 54 | return KS2_NAMESPACE_WIFI; |
| 55 | // 0 is the super user namespace, and nothing has access to this namespace on user builds. |
| 56 | // So this will always fail. |
| 57 | default: |
| 58 | return 0; |
| 59 | } |
| 60 | } |
| 61 | |
| 62 | struct Keystore2KeyBackend { |
| 63 | ks2::KeyDescriptor descriptor_; |
| 64 | std::shared_ptr<ks2::IKeystoreSecurityLevel> i_keystore_security_level_; |
| 65 | }; |
| 66 | |
| 67 | /* key_backend_dup is called when one of the RSA or EC_KEY objects is duplicated. */ |
| 68 | extern "C" int key_backend_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, |
| 69 | void** from_d, int /* index */, long /* argl */, void* /* argp */) { |
| 70 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(*from_d); |
| 71 | if (key_backend != nullptr) { |
| 72 | *from_d = new std::shared_ptr<Keystore2KeyBackend>(*key_backend); |
| 73 | } |
| 74 | return 1; |
| 75 | } |
| 76 | |
| 77 | /* key_backend_free is called when one of the RSA, DSA or EC_KEY object is freed. */ |
| 78 | extern "C" void key_backend_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */, |
| 79 | int /* index */, long /* argl */, void* /* argp */) { |
| 80 | delete reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(ptr); |
| 81 | } |
| 82 | |
| 83 | extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len); |
| 84 | extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, |
| 85 | unsigned int* sig_len, EC_KEY* ec_key); |
| 86 | /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by |
| 87 | * forwarding the requested operations to Keystore. */ |
| 88 | class Keystore2Engine { |
| 89 | public: |
| 90 | Keystore2Engine() |
| 91 | : rsa_index_(RSA_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */, |
| 92 | key_backend_dup, key_backend_free)), |
| 93 | ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, nullptr /* argp */, |
| 94 | nullptr /* new_func */, key_backend_dup, |
| 95 | key_backend_free)), |
| 96 | engine_(ENGINE_new()) { |
| 97 | memset(&rsa_method_, 0, sizeof(rsa_method_)); |
| 98 | rsa_method_.common.is_static = 1; |
| 99 | rsa_method_.private_transform = rsa_private_transform; |
| 100 | rsa_method_.flags = RSA_FLAG_OPAQUE; |
| 101 | ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); |
| 102 | |
| 103 | memset(&ecdsa_method_, 0, sizeof(ecdsa_method_)); |
| 104 | ecdsa_method_.common.is_static = 1; |
| 105 | ecdsa_method_.sign = ecdsa_sign; |
| 106 | ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; |
| 107 | ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); |
| 108 | } |
| 109 | |
| 110 | int rsa_ex_index() const { return rsa_index_; } |
| 111 | int ec_key_ex_index() const { return ec_key_index_; } |
| 112 | |
| 113 | const ENGINE* engine() const { return engine_; } |
| 114 | |
| 115 | static const Keystore2Engine& get() { |
| 116 | static Keystore2Engine engine; |
| 117 | return engine; |
| 118 | } |
| 119 | |
| 120 | private: |
| 121 | const int rsa_index_; |
| 122 | const int ec_key_index_; |
| 123 | RSA_METHOD rsa_method_; |
| 124 | ECDSA_METHOD ecdsa_method_; |
| 125 | ENGINE* const engine_; |
| 126 | }; |
| 127 | |
| 128 | #define OWNERSHIP_TRANSFERRED(x) x.release() |
| 129 | |
| 130 | /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public |
| 131 | * part is taken from |public_rsa| and the private operations are forwarded to |
| 132 | * KeyStore and operate on the key named |key_id|. */ |
| 133 | bssl::UniquePtr<EVP_PKEY> wrap_rsa(std::shared_ptr<Keystore2KeyBackend> key_backend, |
| 134 | const RSA* public_rsa) { |
| 135 | bssl::UniquePtr<RSA> rsa(RSA_new_method(Keystore2Engine::get().engine())); |
| 136 | if (rsa.get() == nullptr) { |
| 137 | return nullptr; |
| 138 | } |
| 139 | |
| 140 | auto key_backend_copy = new decltype(key_backend)(key_backend); |
| 141 | |
| 142 | if (!RSA_set_ex_data(rsa.get(), Keystore2Engine::get().rsa_ex_index(), key_backend_copy)) { |
| 143 | delete key_backend_copy; |
| 144 | return nullptr; |
| 145 | } |
| 146 | |
| 147 | rsa->n = BN_dup(public_rsa->n); |
| 148 | rsa->e = BN_dup(public_rsa->e); |
| 149 | if (rsa->n == nullptr || rsa->e == nullptr) { |
| 150 | return nullptr; |
| 151 | } |
| 152 | |
| 153 | bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); |
| 154 | if (result.get() == nullptr || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { |
| 155 | return nullptr; |
| 156 | } |
| 157 | OWNERSHIP_TRANSFERRED(rsa); |
| 158 | |
| 159 | return result; |
| 160 | } |
| 161 | |
| 162 | /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public |
| 163 | * part is taken from |public_rsa| and the private operations are forwarded to |
| 164 | * KeyStore and operate on the key named |key_id|. */ |
| 165 | bssl::UniquePtr<EVP_PKEY> wrap_ecdsa(std::shared_ptr<Keystore2KeyBackend> key_backend, |
| 166 | const EC_KEY* public_ecdsa) { |
| 167 | bssl::UniquePtr<EC_KEY> ec(EC_KEY_new_method(Keystore2Engine::get().engine())); |
| 168 | if (ec.get() == nullptr) { |
| 169 | return nullptr; |
| 170 | } |
| 171 | |
| 172 | if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || |
| 173 | !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { |
| 174 | return nullptr; |
| 175 | } |
| 176 | |
| 177 | auto key_backend_copy = new decltype(key_backend)(key_backend); |
| 178 | |
| 179 | if (!EC_KEY_set_ex_data(ec.get(), Keystore2Engine::get().ec_key_ex_index(), key_backend_copy)) { |
| 180 | delete key_backend_copy; |
| 181 | return nullptr; |
| 182 | } |
| 183 | |
| 184 | bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); |
| 185 | if (result.get() == nullptr || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { |
| 186 | return nullptr; |
| 187 | } |
| 188 | OWNERSHIP_TRANSFERRED(ec); |
| 189 | |
| 190 | return result; |
| 191 | } |
| 192 | |
| 193 | std::optional<std::vector<uint8_t>> keystore2_sign(const Keystore2KeyBackend& key_backend, |
| 194 | std::vector<uint8_t> input, |
| 195 | KMV1::Algorithm algorithm) { |
| 196 | auto sec_level = key_backend.i_keystore_security_level_; |
| 197 | ks2::CreateOperationResponse response; |
| 198 | |
| 199 | std::vector<KMV1::KeyParameter> op_params(4); |
| 200 | op_params[0] = KMV1::KeyParameter{ |
| 201 | .tag = KMV1::Tag::PURPOSE, |
| 202 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::keyPurpose>( |
| 203 | KMV1::KeyPurpose::SIGN)}; |
| 204 | op_params[1] = KMV1::KeyParameter{ |
| 205 | .tag = KMV1::Tag::ALGORITHM, |
| 206 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::algorithm>(algorithm)}; |
| 207 | op_params[2] = KMV1::KeyParameter{ |
| 208 | .tag = KMV1::Tag::PADDING, |
| 209 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::paddingMode>( |
| 210 | KMV1::PaddingMode::NONE)}; |
| 211 | op_params[3] = |
| 212 | KMV1::KeyParameter{.tag = KMV1::Tag::DIGEST, |
| 213 | .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::digest>( |
| 214 | KMV1::Digest::NONE)}; |
| 215 | |
| 216 | auto rc = sec_level->createOperation(key_backend.descriptor_, op_params, false /* forced */, |
| 217 | &response); |
| 218 | if (!rc.isOk()) { |
| 219 | auto exception_code = rc.getExceptionCode(); |
| 220 | if (exception_code == EX_SERVICE_SPECIFIC) { |
| 221 | LOG(ERROR) << AT << "Keystore createOperation returned service specific error: " |
| 222 | << rc.getServiceSpecificError(); |
| 223 | } else { |
| 224 | LOG(ERROR) << AT << "Communication with Keystore createOperation failed error: " |
| 225 | << exception_code; |
| 226 | } |
| 227 | return std::nullopt; |
| 228 | } |
| 229 | |
| 230 | auto op = response.iOperation; |
| 231 | |
| 232 | std::optional<std::vector<uint8_t>> output = std::nullopt; |
| 233 | rc = op->finish(std::move(input), {}, &output); |
| 234 | if (!rc.isOk()) { |
| 235 | auto exception_code = rc.getExceptionCode(); |
| 236 | if (exception_code == EX_SERVICE_SPECIFIC) { |
| 237 | LOG(ERROR) << AT << "Keystore finish returned service specific error: " |
| 238 | << rc.getServiceSpecificError(); |
| 239 | } else { |
| 240 | LOG(ERROR) << AT |
| 241 | << "Communication with Keystore finish failed error: " << exception_code; |
| 242 | } |
| 243 | return std::nullopt; |
| 244 | } |
| 245 | |
| 246 | if (!output) { |
| 247 | LOG(ERROR) << AT << "We did not get a signature from Keystore."; |
| 248 | } |
| 249 | |
| 250 | return output; |
| 251 | } |
| 252 | |
| 253 | /* rsa_private_transform takes a big-endian integer from |in|, calculates the |
| 254 | * d'th power of it, modulo the RSA modulus, and writes the result as a |
| 255 | * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It |
| 256 | * returns one on success and zero otherwise. */ |
| 257 | extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) { |
| 258 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( |
| 259 | RSA_get_ex_data(rsa, Keystore2Engine::get().rsa_ex_index())); |
| 260 | |
| 261 | if (key_backend == nullptr) { |
| 262 | LOG(ERROR) << AT << "Invalid key."; |
| 263 | return 0; |
| 264 | } |
| 265 | |
| 266 | auto output = |
| 267 | keystore2_sign(**key_backend, std::vector<uint8_t>(in, in + len), KMV1::Algorithm::RSA); |
| 268 | if (!output) { |
| 269 | return 0; |
| 270 | } |
| 271 | |
| 272 | if (output->size() > len) { |
| 273 | /* The result of the RSA operation can never be larger than the size of |
| 274 | * the modulus so we assume that the result has extra zeros on the |
| 275 | * left. This provides attackers with an oracle, but there's nothing |
| 276 | * that we can do about it here. */ |
| 277 | LOG(WARNING) << "Reply len " << output->size() << " greater than expected " << len; |
| 278 | memcpy(out, &output->data()[output->size() - len], len); |
| 279 | } else if (output->size() < len) { |
| 280 | /* If the Keystore implementation returns a short value we assume that |
| 281 | * it's because it removed leading zeros from the left side. This is |
| 282 | * bad because it provides attackers with an oracle but we cannot do |
| 283 | * anything about a broken Keystore implementation here. */ |
| 284 | LOG(WARNING) << "Reply len " << output->size() << " less than expected " << len; |
| 285 | memset(out, 0, len); |
| 286 | memcpy(out + len - output->size(), output->data(), output->size()); |
| 287 | } else { |
| 288 | memcpy(out, output->data(), len); |
| 289 | } |
| 290 | |
| 291 | return 1; |
| 292 | } |
| 293 | |
| 294 | /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes |
| 295 | * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on |
| 296 | * success and zero otherwise. */ |
| 297 | extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, |
| 298 | unsigned int* sig_len, EC_KEY* ec_key) { |
| 299 | auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( |
| 300 | EC_KEY_get_ex_data(ec_key, Keystore2Engine::get().ec_key_ex_index())); |
| 301 | |
| 302 | if (key_backend == nullptr) { |
| 303 | LOG(ERROR) << AT << "Invalid key."; |
| 304 | return 0; |
| 305 | } |
| 306 | |
| 307 | size_t ecdsa_size = ECDSA_size(ec_key); |
| 308 | |
| 309 | auto output = keystore2_sign(**key_backend, std::vector<uint8_t>(digest, digest + digest_len), |
| 310 | KMV1::Algorithm::EC); |
| 311 | if (!output) { |
| 312 | LOG(ERROR) << "There was an error during ecdsa_sign."; |
| 313 | return 0; |
| 314 | } |
| 315 | |
| 316 | if (output->size() == 0) { |
| 317 | LOG(ERROR) << "No valid signature returned"; |
| 318 | return 0; |
| 319 | } else if (output->size() > ecdsa_size) { |
| 320 | LOG(ERROR) << "Signature is too large"; |
| 321 | return 0; |
| 322 | } |
| 323 | |
| 324 | memcpy(sig, output->data(), output->size()); |
| 325 | *sig_len = output->size(); |
| 326 | |
| 327 | return 1; |
| 328 | } |
| 329 | |
| 330 | } // namespace |
| 331 | |
| 332 | /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or |
| 333 | * ECDSA key where the public part of the key reflects the value of the key |
| 334 | * named |key_id| in Keystore and the private operations are forwarded onto |
| 335 | * KeyStore. */ |
| 336 | extern "C" EVP_PKEY* EVP_PKEY_from_keystore2(const char* key_id) { |
| 337 | ::ndk::SpAIBinder keystoreBinder(AServiceManager_checkService(keystore2_service_name)); |
| 338 | auto keystore2 = ks2::IKeystoreService::fromBinder(keystoreBinder); |
| 339 | |
| 340 | if (!keystore2) { |
| 341 | LOG(ERROR) << AT << "Unable to connect to Keystore 2.0."; |
| 342 | return nullptr; |
| 343 | } |
| 344 | |
| 345 | std::string alias = key_id; |
| 346 | if (android::base::StartsWith(alias, "USRPKEY_")) { |
| 347 | LOG(WARNING) << AT << "Keystore backend used with legacy alias prefix - ignoring."; |
| 348 | alias = alias.substr(8); |
| 349 | } |
| 350 | |
| 351 | ks2::KeyDescriptor descriptor = { |
| 352 | .domain = ks2::Domain::SELINUX, |
| 353 | .nspace = getNamespaceforCurrentUid(), |
| 354 | .alias = alias, |
| 355 | .blob = std::nullopt, |
| 356 | }; |
| 357 | |
| 358 | // If the key_id starts with the grant id prefix, we parse the following string as numeric |
| 359 | // grant id. We can then use the grant domain without alias to load the designated key. |
| 360 | if (alias.find(keystore2_grant_id_prefix) == 0) { |
| 361 | std::stringstream s(alias.substr(keystore2_grant_id_prefix.size())); |
| 362 | s >> std::hex >> reinterpret_cast<uint64_t&>(descriptor.nspace); |
| 363 | descriptor.domain = ks2::Domain::GRANT; |
| 364 | descriptor.alias = std::nullopt; |
| 365 | } |
| 366 | |
| 367 | ks2::KeyEntryResponse response; |
| 368 | auto rc = keystore2->getKeyEntry(descriptor, &response); |
| 369 | if (!rc.isOk()) { |
| 370 | auto exception_code = rc.getExceptionCode(); |
| 371 | if (exception_code == EX_SERVICE_SPECIFIC) { |
| 372 | LOG(ERROR) << AT << "Keystore getKeyEntry returned service specific error: " |
| 373 | << rc.getServiceSpecificError(); |
| 374 | } else { |
| 375 | LOG(ERROR) << AT << "Communication with Keystore getKeyEntry failed error: " |
| 376 | << exception_code; |
| 377 | } |
| 378 | return nullptr; |
| 379 | } |
| 380 | |
| 381 | if (!response.metadata.certificate) { |
| 382 | LOG(ERROR) << AT << "No public key found."; |
| 383 | return nullptr; |
| 384 | } |
| 385 | |
| 386 | const uint8_t* p = response.metadata.certificate->data(); |
| 387 | bssl::UniquePtr<X509> x509(d2i_X509(nullptr, &p, response.metadata.certificate->size())); |
| 388 | if (!x509) { |
| 389 | LOG(ERROR) << AT << "Failed to parse x509 certificate."; |
| 390 | return nullptr; |
| 391 | } |
| 392 | bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(x509.get())); |
| 393 | if (!pkey) { |
| 394 | LOG(ERROR) << AT << "Failed to extract public key."; |
| 395 | return nullptr; |
| 396 | } |
| 397 | |
| 398 | auto key_backend = std::make_shared<Keystore2KeyBackend>( |
| 399 | Keystore2KeyBackend{response.metadata.key, response.iSecurityLevel}); |
| 400 | |
| 401 | bssl::UniquePtr<EVP_PKEY> result; |
| 402 | switch (EVP_PKEY_type(pkey->type)) { |
| 403 | case EVP_PKEY_RSA: { |
| 404 | bssl::UniquePtr<RSA> public_rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| 405 | result = wrap_rsa(key_backend, public_rsa.get()); |
| 406 | break; |
| 407 | } |
| 408 | case EVP_PKEY_EC: { |
| 409 | bssl::UniquePtr<EC_KEY> public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| 410 | result = wrap_ecdsa(key_backend, public_ecdsa.get()); |
| 411 | break; |
| 412 | } |
| 413 | default: |
| 414 | LOG(ERROR) << AT << "Unsupported key type " << EVP_PKEY_type(pkey->type); |
| 415 | return nullptr; |
| 416 | } |
| 417 | |
| 418 | return result.release(); |
| 419 | } |