satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 1 | /* |
| 2 | ** |
| 3 | ** Copyright 2010, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
satok | 48e432c | 2010-12-06 17:38:58 +0900 | [diff] [blame] | 18 | #include <assert.h> |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 19 | #include <string.h> |
| 20 | |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 21 | #define LOG_TAG "LatinIME: unigram_dictionary.cpp" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 22 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 23 | #include "char_utils.h" |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 24 | #include "dictionary.h" |
| 25 | #include "unigram_dictionary.h" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 26 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 27 | #include "binary_format.h" |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 28 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 29 | namespace latinime { |
| 30 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 31 | const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = |
| 32 | { { 'a', 'e' }, |
| 33 | { 'o', 'e' }, |
| 34 | { 'u', 'e' } }; |
| 35 | |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 36 | // TODO: check the header |
| 37 | UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 38 | int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, |
satok | 18c28f4 | 2010-12-02 18:11:54 +0900 | [diff] [blame] | 39 | const bool isLatestDictVersion) |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 40 | : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 41 | MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 42 | MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), |
| 43 | TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 44 | // TODO : remove this variable. |
| 45 | ROOT_POS(0), |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 46 | BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 47 | MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 48 | if (DEBUG_DICT) { |
| 49 | LOGI("UnigramDictionary - constructor"); |
| 50 | } |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 51 | mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 52 | } |
| 53 | |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 54 | UnigramDictionary::~UnigramDictionary() { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 55 | delete mCorrection; |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 56 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 57 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 58 | static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, |
| 59 | const int MAX_PROXIMITY_CHARS) { |
| 60 | return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; |
| 61 | } |
| 62 | |
| 63 | bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { |
| 64 | |
| 65 | // There can't be a digraph if we don't have at least 2 characters to examine |
| 66 | if (i + 2 > codesSize) return false; |
| 67 | |
| 68 | // Search for the first char of some digraph |
| 69 | int lastDigraphIndex = -1; |
| 70 | const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; |
| 71 | for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; |
| 72 | lastDigraphIndex >= 0; --lastDigraphIndex) { |
| 73 | if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; |
| 74 | } |
| 75 | // No match: return early |
| 76 | if (lastDigraphIndex < 0) return false; |
| 77 | |
| 78 | // It's an interesting digraph if the second char matches too. |
| 79 | return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; |
| 80 | } |
| 81 | |
| 82 | // Mostly the same arguments as the non-recursive version, except: |
| 83 | // codes is the original value. It points to the start of the work buffer, and gets passed as is. |
| 84 | // codesSize is the size of the user input (thus, it is the size of codesSrc). |
| 85 | // codesDest is the current point in the work buffer. |
| 86 | // codesSrc is the current point in the user-input, original, content-unmodified buffer. |
| 87 | // codesRemain is the remaining size in codesSrc. |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 88 | void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 89 | const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, |
| 90 | const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, |
satok | 3c4bb77 | 2011-03-04 22:50:19 -0800 | [diff] [blame] | 91 | const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 92 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 93 | if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { |
| 94 | for (int i = 0; i < codesRemain; ++i) { |
| 95 | if (isDigraph(codesSrc, i, codesRemain)) { |
| 96 | // Found a digraph. We will try both spellings. eg. the word is "pruefen" |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 97 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 98 | // Copy the word up to the first char of the digraph, then continue processing |
| 99 | // on the remaining part of the word, skipping the second char of the digraph. |
| 100 | // In our example, copy "pru" and continue running on "fen" |
| 101 | // Make i the index of the second char of the digraph for simplicity. Forgetting |
| 102 | // to do that results in an infinite recursion so take care! |
| 103 | ++i; |
| 104 | memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); |
| 105 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 106 | codesBuffer, codesBufferSize, flags, |
| 107 | codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, |
| 108 | currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, |
| 109 | frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 110 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 111 | // Copy the second char of the digraph in place, then continue processing on |
| 112 | // the remaining part of the word. |
| 113 | // In our example, after "pru" in the buffer copy the "e", and continue on "fen" |
| 114 | memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 115 | BYTES_IN_ONE_CHAR); |
| 116 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 117 | codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 118 | codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, |
| 119 | outWords, frequencies); |
| 120 | return; |
| 121 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 122 | } |
| 123 | } |
| 124 | |
| 125 | // If we come here, we hit the end of the word: let's check it against the dictionary. |
| 126 | // In our example, we'll come here once for "prufen" and then once for "pruefen". |
| 127 | // If the word contains several digraphs, we'll come it for the product of them. |
| 128 | // eg. if the word is "ueberpruefen" we'll test, in order, against |
| 129 | // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". |
| 130 | const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; |
| 131 | if (0 != remainingBytes) |
| 132 | memcpy(codesDest, codesSrc, remainingBytes); |
| 133 | |
| 134 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
| 135 | (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); |
| 136 | } |
| 137 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 138 | int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 139 | const int *ycoordinates, const int *codes, const int codesSize, const int flags, |
| 140 | unsigned short *outWords, int *frequencies) { |
| 141 | |
| 142 | if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) |
| 143 | { // Incrementally tune the word and try all possibilities |
| 144 | int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; |
| 145 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 146 | codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 147 | } else { // Normal processing |
| 148 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, |
| 149 | outWords, frequencies); |
| 150 | } |
| 151 | |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 152 | PROF_START(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 153 | // Get the word count |
| 154 | int suggestedWordsCount = 0; |
| 155 | while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { |
| 156 | suggestedWordsCount++; |
| 157 | } |
| 158 | |
| 159 | if (DEBUG_DICT) { |
| 160 | LOGI("Returning %d words", suggestedWordsCount); |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 161 | /// Print the returned words |
| 162 | for (int j = 0; j < suggestedWordsCount; ++j) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 163 | #ifdef FLAG_DBG |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 164 | short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; |
| 165 | char s[MAX_WORD_LENGTH]; |
| 166 | for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; |
| 167 | LOGI("%s %i", s, mFrequencies[j]); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 168 | #endif |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 169 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 170 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 171 | PROF_END(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 172 | PROF_CLOSE; |
| 173 | return suggestedWordsCount; |
| 174 | } |
| 175 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 176 | void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 177 | const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, |
| 178 | unsigned short *outWords, int *frequencies) { |
| 179 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 180 | PROF_OPEN; |
| 181 | PROF_START(0); |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 182 | initSuggestions( |
| 183 | proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 184 | if (DEBUG_DICT) assert(codesSize == mInputLength); |
| 185 | |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 186 | const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 187 | mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 188 | PROF_END(0); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 189 | |
satok | 0cedd2b | 2011-08-12 01:05:27 +0900 | [diff] [blame] | 190 | // TODO: remove |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 191 | PROF_START(1); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 192 | getSuggestionCandidates(); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 193 | PROF_END(1); |
| 194 | |
| 195 | PROF_START(2); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 196 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 197 | PROF_END(2); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 198 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 199 | PROF_START(3); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 200 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 201 | PROF_END(3); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 202 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 203 | PROF_START(4); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 204 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 205 | PROF_END(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 206 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 207 | PROF_START(5); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 208 | // Suggestions with missing space |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 209 | if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER |
| 210 | && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 211 | for (int i = 1; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 212 | if (DEBUG_DICT) { |
| 213 | LOGI("--- Suggest missing space characters %d", i); |
| 214 | } |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 215 | getMissingSpaceWords(mInputLength, i, mCorrection); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 216 | } |
| 217 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 218 | PROF_END(5); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 219 | |
| 220 | PROF_START(6); |
Jean Chalard | e93b1f22 | 2011-06-01 17:12:25 +0900 | [diff] [blame] | 221 | if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 222 | // The first and last "mistyped spaces" are taken care of by excessive character handling |
| 223 | for (int i = 1; i < codesSize - 1; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 224 | if (DEBUG_DICT) { |
| 225 | LOGI("--- Suggest words with proximity space %d", i); |
| 226 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 227 | const int x = xcoordinates[i]; |
| 228 | const int y = ycoordinates[i]; |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 229 | if (DEBUG_PROXIMITY_INFO) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 230 | LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", |
| 231 | i, x, y, proximityInfo->hasSpaceProximity(x, y)); |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 232 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 233 | if (proximityInfo->hasSpaceProximity(x, y)) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 234 | getMistypedSpaceWords(mInputLength, i, mCorrection); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 235 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 236 | } |
| 237 | } |
| 238 | PROF_END(6); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 239 | } |
| 240 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 241 | void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
| 242 | const int *ycoordinates, const int *codes, const int codesSize, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 243 | unsigned short *outWords, int *frequencies) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 244 | if (DEBUG_DICT) { |
| 245 | LOGI("initSuggest"); |
| 246 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 247 | mFrequencies = frequencies; |
| 248 | mOutputChars = outWords; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 249 | mInputLength = codesSize; |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 250 | proximityInfo->setInputParams(codes, codesSize); |
| 251 | mProximityInfo = proximityInfo; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 252 | } |
| 253 | |
Jean Chalard | 8124e64 | 2011-06-16 22:33:41 +0900 | [diff] [blame] | 254 | static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 255 | if (c < nextLettersSize) { |
| 256 | nextLetters[c]++; |
| 257 | } |
| 258 | } |
| 259 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 260 | // TODO: We need to optimize addWord by using STL or something |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 261 | // TODO: This needs to take an const unsigned short* and not tinker with its contents |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 262 | bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 263 | word[length] = 0; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 264 | if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 265 | #ifdef FLAG_DBG |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 266 | char s[length + 1]; |
| 267 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 268 | LOGI("Found word = %s, freq = %d", s, frequency); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 269 | #endif |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 270 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 271 | if (length > MAX_WORD_LENGTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 272 | if (DEBUG_DICT) { |
| 273 | LOGI("Exceeded max word length."); |
| 274 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 275 | return false; |
| 276 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 277 | |
| 278 | // Find the right insertion point |
| 279 | int insertAt = 0; |
| 280 | while (insertAt < MAX_WORDS) { |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 281 | // TODO: How should we sort words with the same frequency? |
| 282 | if (frequency > mFrequencies[insertAt]) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 283 | break; |
| 284 | } |
| 285 | insertAt++; |
| 286 | } |
| 287 | if (insertAt < MAX_WORDS) { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 288 | if (DEBUG_DICT) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 289 | #ifdef FLAG_DBG |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 290 | char s[length + 1]; |
| 291 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 292 | LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 293 | #endif |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 294 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 295 | memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), |
| 296 | (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), |
| 297 | (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); |
| 298 | mFrequencies[insertAt] = frequency; |
| 299 | memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 300 | (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 301 | (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 302 | unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 303 | while (length--) { |
| 304 | *dest++ = *word++; |
| 305 | } |
| 306 | *dest = 0; // NULL terminate |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 307 | if (DEBUG_DICT) { |
| 308 | LOGI("Added word at %d", insertAt); |
| 309 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 310 | return true; |
| 311 | } |
| 312 | return false; |
| 313 | } |
| 314 | |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 315 | static const char QUOTE = '\''; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 316 | static const char SPACE = ' '; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 317 | |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 318 | void UnigramDictionary::getSuggestionCandidates() { |
| 319 | // TODO: Remove setCorrectionParams |
| 320 | mCorrection->setCorrectionParams(0, 0, 0, |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 321 | -1 /* spaceProximityPos */, -1 /* missingSpacePos */); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 322 | int rootPosition = ROOT_POS; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 323 | // Get the number of children of root, then increment the position |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 324 | int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 325 | int outputIndex = 0; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 326 | |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 327 | mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0)); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 328 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 329 | // Depth first search |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 330 | while (outputIndex >= 0) { |
| 331 | if (mCorrection->initProcessState(outputIndex)) { |
| 332 | int siblingPos = mCorrection->getTreeSiblingPos(outputIndex); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 333 | int firstChildPos; |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 334 | |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame] | 335 | const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 336 | mCorrection, &childCount, &firstChildPos, &siblingPos); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 337 | // Update next sibling pos |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 338 | mCorrection->setTreeSiblingPos(outputIndex, siblingPos); |
| 339 | |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 340 | if (needsToTraverseChildrenNodes) { |
| 341 | // Goes to child node |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 342 | outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 343 | } |
| 344 | } else { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 345 | // Goes to parent sibling node |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 346 | outputIndex = mCorrection->getTreeParentIndex(outputIndex); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 347 | } |
| 348 | } |
| 349 | } |
| 350 | |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 351 | static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; |
| 352 | inline static void multiplyIntCapped(const int multiplier, int *base) { |
| 353 | const int temp = *base; |
| 354 | if (temp != S_INT_MAX) { |
| 355 | // Branch if multiplier == 2 for the optimization |
| 356 | if (multiplier == 2) { |
| 357 | *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; |
| 358 | } else { |
| 359 | const int tempRetval = temp * multiplier; |
| 360 | *base = tempRetval >= temp ? tempRetval : S_INT_MAX; |
| 361 | } |
| 362 | } |
| 363 | } |
| 364 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 365 | void UnigramDictionary::getMissingSpaceWords( |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 366 | const int inputLength, const int missingSpacePos, Correction *correction) { |
| 367 | correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 368 | -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 369 | getSplitTwoWordsSuggestion(inputLength, correction); |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 370 | } |
| 371 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 372 | void UnigramDictionary::getMistypedSpaceWords( |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 373 | const int inputLength, const int spaceProximityPos, Correction *correction) { |
| 374 | correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 375 | -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 376 | getSplitTwoWordsSuggestion(inputLength, correction); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 377 | } |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 378 | |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 379 | inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, |
satok | 6831926 | 2010-12-03 19:38:08 +0900 | [diff] [blame] | 380 | const int inputIndex, const int skipPos, const int depth) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 381 | const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 382 | // Skip the ' or other letter and continue deeper |
| 383 | return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; |
| 384 | } |
| 385 | |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 386 | inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 387 | int wordLength; |
| 388 | unsigned short* wordPointer; |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 389 | const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame] | 390 | if (finalFreq >= 0) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 391 | addWord(wordPointer, wordLength, finalFreq); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 392 | } |
| 393 | } |
| 394 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 395 | void UnigramDictionary::getSplitTwoWordsSuggestion( |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 396 | const int inputLength, Correction* correction) { |
| 397 | const int spaceProximityPos = correction->getSpaceProximityPos(); |
| 398 | const int missingSpacePos = correction->getMissingSpacePos(); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 399 | if (DEBUG_DICT) { |
| 400 | int inputCount = 0; |
| 401 | if (spaceProximityPos >= 0) ++inputCount; |
| 402 | if (missingSpacePos >= 0) ++inputCount; |
| 403 | assert(inputCount <= 1); |
| 404 | } |
| 405 | const bool isSpaceProximity = spaceProximityPos >= 0; |
| 406 | const int firstWordStartPos = 0; |
| 407 | const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; |
| 408 | const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; |
| 409 | const int secondWordLength = isSpaceProximity |
| 410 | ? (inputLength - spaceProximityPos - 1) |
| 411 | : (inputLength - missingSpacePos); |
| 412 | |
| 413 | if (inputLength >= MAX_WORD_LENGTH) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 414 | if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos |
| 415 | || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 416 | return; |
| 417 | |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 418 | const int newWordLength = firstWordLength + secondWordLength + 1; |
| 419 | // Allocating variable length array on stack |
| 420 | unsigned short word[newWordLength]; |
| 421 | const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); |
| 422 | if (DEBUG_DICT) { |
| 423 | LOGI("First freq: %d", firstFreq); |
| 424 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 425 | if (firstFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 426 | |
| 427 | for (int i = 0; i < firstWordLength; ++i) { |
| 428 | word[i] = mWord[i]; |
| 429 | } |
| 430 | |
| 431 | const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); |
| 432 | if (DEBUG_DICT) { |
| 433 | LOGI("Second freq: %d", secondFreq); |
| 434 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 435 | if (secondFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 436 | |
| 437 | word[firstWordLength] = SPACE; |
| 438 | for (int i = (firstWordLength + 1); i < newWordLength; ++i) { |
| 439 | word[i] = mWord[i - firstWordLength - 1]; |
| 440 | } |
| 441 | |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 442 | const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 443 | if (DEBUG_DICT) { |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 444 | LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 445 | } |
| 446 | addWord(word, newWordLength, pairFreq); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 447 | return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 448 | } |
| 449 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 450 | // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous |
| 451 | // interface. |
| 452 | inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, |
| 453 | const int inputLength, unsigned short *word) { |
| 454 | uint16_t inWord[inputLength]; |
| 455 | |
| 456 | for (int i = 0; i < inputLength; ++i) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 457 | inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 458 | } |
| 459 | return getMostFrequentWordLikeInner(inWord, inputLength, word); |
| 460 | } |
| 461 | |
| 462 | // This function will take the position of a character array within a CharGroup, |
| 463 | // and check it actually like-matches the word in inWord starting at startInputIndex, |
| 464 | // that is, it matches it with case and accents squashed. |
| 465 | // The function returns true if there was a full match, false otherwise. |
| 466 | // The function will copy on-the-fly the characters in the CharGroup to outNewWord. |
| 467 | // It will also place the end position of the array in outPos; in outInputIndex, |
| 468 | // it will place the index of the first char AFTER the match if there was a match, |
| 469 | // and the initial position if there was not. It makes sense because if there was |
| 470 | // a match we want to continue searching, but if there was not, we want to go to |
| 471 | // the next CharGroup. |
| 472 | // In and out parameters may point to the same location. This function takes care |
| 473 | // not to use any input parameters after it wrote into its outputs. |
| 474 | static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, |
| 475 | const uint8_t* const root, const int startPos, |
| 476 | const uint16_t* const inWord, const int startInputIndex, |
| 477 | int32_t* outNewWord, int* outInputIndex, int* outPos) { |
| 478 | const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); |
| 479 | int pos = startPos; |
| 480 | int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 481 | int32_t baseChar = Dictionary::toBaseLowerCase(character); |
| 482 | const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 483 | |
| 484 | if (baseChar != wChar) { |
| 485 | *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; |
| 486 | *outInputIndex = startInputIndex; |
| 487 | return false; |
| 488 | } |
| 489 | int inputIndex = startInputIndex; |
| 490 | outNewWord[inputIndex] = character; |
| 491 | if (hasMultipleChars) { |
| 492 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 493 | while (NOT_A_CHARACTER != character) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 494 | baseChar = Dictionary::toBaseLowerCase(character); |
| 495 | if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 496 | *outPos = BinaryFormat::skipOtherCharacters(root, pos); |
| 497 | *outInputIndex = startInputIndex; |
| 498 | return false; |
| 499 | } |
| 500 | outNewWord[inputIndex] = character; |
| 501 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 502 | } |
| 503 | } |
| 504 | *outInputIndex = inputIndex + 1; |
| 505 | *outPos = pos; |
| 506 | return true; |
| 507 | } |
| 508 | |
| 509 | // This function is invoked when a word like the word searched for is found. |
| 510 | // It will compare the frequency to the max frequency, and if greater, will |
| 511 | // copy the word into the output buffer. In output value maxFreq, it will |
| 512 | // write the new maximum frequency if it changed. |
| 513 | static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, |
| 514 | short unsigned int* outWord, int* maxFreq) { |
| 515 | if (freq > *maxFreq) { |
| 516 | for (int q = 0; q < length; ++q) |
| 517 | outWord[q] = newWord[q]; |
| 518 | outWord[length] = 0; |
| 519 | *maxFreq = freq; |
| 520 | } |
| 521 | } |
| 522 | |
| 523 | // Will find the highest frequency of the words like the one passed as an argument, |
| 524 | // that is, everything that only differs by case/accents. |
| 525 | int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, |
| 526 | const int length, short unsigned int* outWord) { |
| 527 | int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; |
| 528 | int depth = 0; |
| 529 | int maxFreq = -1; |
| 530 | const uint8_t* const root = DICT_ROOT; |
| 531 | |
| 532 | mStackChildCount[0] = root[0]; |
| 533 | mStackInputIndex[0] = 0; |
| 534 | mStackSiblingPos[0] = 1; |
| 535 | while (depth >= 0) { |
| 536 | const int charGroupCount = mStackChildCount[depth]; |
| 537 | int pos = mStackSiblingPos[depth]; |
| 538 | for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { |
| 539 | int inputIndex = mStackInputIndex[depth]; |
| 540 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| 541 | // Test whether all chars in this group match with the word we are searching for. If so, |
| 542 | // we want to traverse its children (or if the length match, evaluate its frequency). |
| 543 | // Note that this function will output the position regardless, but will only write |
| 544 | // into inputIndex if there is a match. |
| 545 | const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, |
| 546 | inputIndex, newWord, &inputIndex, &pos); |
| 547 | if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { |
| 548 | const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); |
| 549 | onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); |
| 550 | } |
| 551 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 552 | const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| 553 | const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| 554 | // If we had a match and the word has children, we want to traverse them. We don't have |
| 555 | // to traverse words longer than the one we are searching for, since they will not match |
| 556 | // anyway, so don't traverse unless inputIndex < length. |
| 557 | if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { |
| 558 | // Save position for this depth, to get back to this once children are done |
| 559 | mStackChildCount[depth] = charGroupIndex; |
| 560 | mStackSiblingPos[depth] = siblingPos; |
| 561 | // Prepare stack values for next depth |
| 562 | ++depth; |
| 563 | int childrenPos = childrenNodePos; |
| 564 | mStackChildCount[depth] = |
| 565 | BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); |
| 566 | mStackSiblingPos[depth] = childrenPos; |
| 567 | mStackInputIndex[depth] = inputIndex; |
| 568 | pos = childrenPos; |
| 569 | // Go to the next depth level. |
| 570 | ++depth; |
| 571 | break; |
| 572 | } else { |
| 573 | // No match, or no children, or word too long to ever match: go the next sibling. |
| 574 | pos = siblingPos; |
| 575 | } |
| 576 | } |
| 577 | --depth; |
| 578 | } |
| 579 | return maxFreq; |
| 580 | } |
| 581 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 582 | bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { |
Jean Chalard | 6a0e964 | 2011-07-25 18:17:11 +0900 | [diff] [blame] | 583 | return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 584 | } |
| 585 | |
| 586 | // TODO: remove this function. |
| 587 | int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, |
| 588 | int length) const { |
| 589 | return -1; |
| 590 | } |
| 591 | |
| 592 | // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. |
| 593 | // If the return value is false, then the caller should read in the output "nextSiblingPosition" |
| 594 | // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. |
| 595 | // It is worthy to note that when false is returned, the output values other than |
| 596 | // nextSiblingPosition are undefined. |
| 597 | // If the return value is true, then the caller must proceed to traverse the children of this |
| 598 | // node. processCurrentNode will output the information about the children: their count in |
| 599 | // newCount, their position in newChildrenPosition, the traverseAllNodes flag in |
| 600 | // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the |
| 601 | // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into |
| 602 | // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when |
| 603 | // there aren't any more nodes at this level, it merely returns the address of the first byte after |
| 604 | // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any |
| 605 | // given level, as output into newCount when traversing this level's parent. |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 606 | inline bool UnigramDictionary::processCurrentNode(const int initialPos, |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 607 | Correction *correction, int *newCount, |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 608 | int *newChildrenPosition, int *nextSiblingPosition) { |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 609 | if (DEBUG_DICT) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 610 | correction->checkState(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 611 | } |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 612 | int pos = initialPos; |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 613 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 614 | // Flags contain the following information: |
| 615 | // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: |
| 616 | // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address |
| 617 | // is on the specified number of bytes. |
| 618 | // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. |
| 619 | // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. |
| 620 | // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) |
| 621 | // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not |
| 622 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); |
| 623 | const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 624 | const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); |
| 625 | |
| 626 | bool needsToInvokeOnTerminal = false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 627 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 628 | // This gets only ONE character from the stream. Next there will be: |
| 629 | // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node |
| 630 | // else if FLAG_IS_TERMINAL: the frequency |
| 631 | // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address |
| 632 | // Note that you can't have a node that both is not a terminal and has no children. |
| 633 | int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); |
| 634 | assert(NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 635 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 636 | // We are going to loop through each character and make it look like it's a different |
| 637 | // node each time. To do that, we will process characters in this node in order until |
| 638 | // we find the character terminator. This is signalled by getCharCode* returning |
| 639 | // NOT_A_CHARACTER. |
| 640 | // As a special case, if there is only one character in this node, we must not read the |
| 641 | // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. |
| 642 | // This way, each loop run will look like a "virtual node". |
| 643 | do { |
| 644 | // We prefetch the next char. If 'c' is the last char of this node, we will have |
| 645 | // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node |
| 646 | // should behave as a terminal or not and whether we have children. |
| 647 | const int32_t nextc = hasMultipleChars |
| 648 | ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; |
| 649 | const bool isLastChar = (NOT_A_CHARACTER == nextc); |
| 650 | // If there are more chars in this nodes, then this virtual node is not a terminal. |
| 651 | // If we are on the last char, this virtual node is a terminal if this node is. |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 652 | const bool isTerminal = isLastChar && isTerminalNode; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 653 | |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 654 | Correction::CorrectionType stateType = correction->processCharAndCalcState( |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 655 | c, isTerminal); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 656 | if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL |
| 657 | || stateType == Correction::ON_TERMINAL) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 658 | needsToInvokeOnTerminal = true; |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 659 | } else if (stateType == Correction::UNRELATED) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 660 | // We found that this is an unrelated character, so we should give up traversing |
| 661 | // this node and its children entirely. |
| 662 | // However we may not be on the last virtual node yet so we skip the remaining |
| 663 | // characters in this node, the frequency if it's there, read the next sibling |
| 664 | // position to output it, then return false. |
| 665 | // We don't have to output other values because we return false, as in |
| 666 | // "don't traverse children". |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 667 | if (!isLastChar) { |
| 668 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 669 | } |
| 670 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 671 | *nextSiblingPosition = |
| 672 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 673 | return false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 674 | } |
| 675 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 676 | // Prepare for the next character. Promote the prefetched char to current char - the loop |
| 677 | // will take care of prefetching the next. If we finally found our last char, nextc will |
| 678 | // contain NOT_A_CHARACTER. |
| 679 | c = nextc; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 680 | } while (NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 681 | |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 682 | if (isTerminalNode) { |
| 683 | if (needsToInvokeOnTerminal) { |
| 684 | // The frequency should be here, because we come here only if this is actually |
| 685 | // a terminal node, and we are on its last char. |
| 686 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 687 | onTerminal(freq, mCorrection); |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 688 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 689 | |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 690 | // If there are more chars in this node, then this virtual node has children. |
| 691 | // If we are on the last char, this virtual node has children if this node has. |
| 692 | const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); |
| 693 | |
| 694 | // This character matched the typed character (enough to traverse the node at least) |
| 695 | // so we just evaluated it. Now we should evaluate this virtual node's children - that |
| 696 | // is, if it has any. If it has no children, we're done here - so we skip the end of |
| 697 | // the node, output the siblings position, and return false "don't traverse children". |
| 698 | // Note that !hasChildren implies isLastChar, so we know we don't have to skip any |
| 699 | // remaining char in this group for there can't be any. |
| 700 | if (!hasChildren) { |
| 701 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 702 | *nextSiblingPosition = |
| 703 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 704 | return false; |
| 705 | } |
| 706 | |
| 707 | // Optimization: Prune out words that are too long compared to how much was typed. |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 708 | if (correction->needsToPrune()) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 709 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 710 | *nextSiblingPosition = |
| 711 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 712 | if (DEBUG_DICT_FULL) { |
| 713 | LOGI("Traversing was pruned."); |
| 714 | } |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 715 | return false; |
| 716 | } |
| 717 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 718 | |
| 719 | // Now we finished processing this node, and we want to traverse children. If there are no |
| 720 | // children, we can't come here. |
| 721 | assert(BinaryFormat::hasChildrenInFlags(flags)); |
| 722 | |
| 723 | // If this node was a terminal it still has the frequency under the pointer (it may have been |
| 724 | // read, but not skipped - see readFrequencyWithoutMovingPointer). |
| 725 | // Next come the children position, then possibly attributes (attributes are bigrams only for |
| 726 | // now, maybe something related to shortcuts in the future). |
| 727 | // Once this is read, we still need to output the number of nodes in the immediate children of |
| 728 | // this node, so we read and output it before returning true, as in "please traverse children". |
| 729 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 730 | int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); |
| 731 | *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 732 | *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); |
| 733 | *newChildrenPosition = childrenPos; |
| 734 | return true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 735 | } |
| 736 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 737 | } // namespace latinime |