| /* |
| ** |
| ** Copyright 2010, The Android Open Source Project |
| ** |
| ** Licensed under the Apache License, Version 2.0 (the "License"); |
| ** you may not use this file except in compliance with the License. |
| ** You may obtain a copy of the License at |
| ** |
| ** http://www.apache.org/licenses/LICENSE-2.0 |
| ** |
| ** Unless required by applicable law or agreed to in writing, software |
| ** distributed under the License is distributed on an "AS IS" BASIS, |
| ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| ** See the License for the specific language governing permissions and |
| ** limitations under the License. |
| */ |
| |
| #include <assert.h> |
| #include <string.h> |
| |
| #define LOG_TAG "LatinIME: unigram_dictionary.cpp" |
| |
| #include "char_utils.h" |
| #include "dictionary.h" |
| #include "unigram_dictionary.h" |
| |
| #include "binary_format.h" |
| |
| namespace latinime { |
| |
| const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = |
| { { 'a', 'e' }, |
| { 'o', 'e' }, |
| { 'u', 'e' } }; |
| |
| // TODO: check the header |
| UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, |
| int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, |
| const bool isLatestDictVersion) |
| : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), |
| MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), |
| MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), |
| TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), |
| // TODO : remove this variable. |
| ROOT_POS(0), |
| BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), |
| MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { |
| if (DEBUG_DICT) { |
| LOGI("UnigramDictionary - constructor"); |
| } |
| mCorrection = new Correction(typedLetterMultiplier, fullWordMultiplier); |
| } |
| |
| UnigramDictionary::~UnigramDictionary() { |
| delete mCorrection; |
| } |
| |
| static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, |
| const int MAX_PROXIMITY_CHARS) { |
| return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; |
| } |
| |
| bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { |
| |
| // There can't be a digraph if we don't have at least 2 characters to examine |
| if (i + 2 > codesSize) return false; |
| |
| // Search for the first char of some digraph |
| int lastDigraphIndex = -1; |
| const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; |
| for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; |
| lastDigraphIndex >= 0; --lastDigraphIndex) { |
| if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; |
| } |
| // No match: return early |
| if (lastDigraphIndex < 0) return false; |
| |
| // It's an interesting digraph if the second char matches too. |
| return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; |
| } |
| |
| // Mostly the same arguments as the non-recursive version, except: |
| // codes is the original value. It points to the start of the work buffer, and gets passed as is. |
| // codesSize is the size of the user input (thus, it is the size of codesSrc). |
| // codesDest is the current point in the work buffer. |
| // codesSrc is the current point in the user-input, original, content-unmodified buffer. |
| // codesRemain is the remaining size in codesSrc. |
| void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, |
| const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, |
| const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, |
| const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { |
| |
| if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { |
| for (int i = 0; i < codesRemain; ++i) { |
| if (isDigraph(codesSrc, i, codesRemain)) { |
| // Found a digraph. We will try both spellings. eg. the word is "pruefen" |
| |
| // Copy the word up to the first char of the digraph, then continue processing |
| // on the remaining part of the word, skipping the second char of the digraph. |
| // In our example, copy "pru" and continue running on "fen" |
| // Make i the index of the second char of the digraph for simplicity. Forgetting |
| // to do that results in an infinite recursion so take care! |
| ++i; |
| memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); |
| getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| codesBuffer, codesBufferSize, flags, |
| codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, |
| currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, |
| frequencies); |
| |
| // Copy the second char of the digraph in place, then continue processing on |
| // the remaining part of the word. |
| // In our example, after "pru" in the buffer copy the "e", and continue on "fen" |
| memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, |
| BYTES_IN_ONE_CHAR); |
| getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, |
| codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, |
| outWords, frequencies); |
| return; |
| } |
| } |
| } |
| |
| // If we come here, we hit the end of the word: let's check it against the dictionary. |
| // In our example, we'll come here once for "prufen" and then once for "pruefen". |
| // If the word contains several digraphs, we'll come it for the product of them. |
| // eg. if the word is "ueberpruefen" we'll test, in order, against |
| // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". |
| const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; |
| if (0 != remainingBytes) |
| memcpy(codesDest, codesSrc, remainingBytes); |
| |
| getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
| (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); |
| } |
| |
| int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
| const int *ycoordinates, const int *codes, const int codesSize, const int flags, |
| unsigned short *outWords, int *frequencies) { |
| |
| if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) |
| { // Incrementally tune the word and try all possibilities |
| int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; |
| getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
| codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); |
| } else { // Normal processing |
| getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, |
| outWords, frequencies); |
| } |
| |
| PROF_START(20); |
| // Get the word count |
| int suggestedWordsCount = 0; |
| while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { |
| suggestedWordsCount++; |
| } |
| |
| if (DEBUG_DICT) { |
| LOGI("Returning %d words", suggestedWordsCount); |
| /// Print the returned words |
| for (int j = 0; j < suggestedWordsCount; ++j) { |
| #ifdef FLAG_DBG |
| short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; |
| char s[MAX_WORD_LENGTH]; |
| for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; |
| LOGI("%s %i", s, mFrequencies[j]); |
| #endif |
| } |
| } |
| PROF_END(20); |
| PROF_CLOSE; |
| return suggestedWordsCount; |
| } |
| |
| void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, |
| const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, |
| unsigned short *outWords, int *frequencies) { |
| |
| PROF_OPEN; |
| PROF_START(0); |
| initSuggestions( |
| proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); |
| if (DEBUG_DICT) assert(codesSize == mInputLength); |
| |
| const int maxDepth = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); |
| mCorrection->initCorrection(mProximityInfo, mInputLength, maxDepth); |
| PROF_END(0); |
| |
| // TODO: remove |
| PROF_START(1); |
| getSuggestionCandidates(); |
| PROF_END(1); |
| |
| PROF_START(2); |
| // Note: This line is intentionally left blank |
| PROF_END(2); |
| |
| PROF_START(3); |
| // Note: This line is intentionally left blank |
| PROF_END(3); |
| |
| PROF_START(4); |
| // Note: This line is intentionally left blank |
| PROF_END(4); |
| |
| PROF_START(5); |
| // Suggestions with missing space |
| if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER |
| && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { |
| for (int i = 1; i < codesSize; ++i) { |
| if (DEBUG_DICT) { |
| LOGI("--- Suggest missing space characters %d", i); |
| } |
| getMissingSpaceWords(mInputLength, i, mCorrection); |
| } |
| } |
| PROF_END(5); |
| |
| PROF_START(6); |
| if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { |
| // The first and last "mistyped spaces" are taken care of by excessive character handling |
| for (int i = 1; i < codesSize - 1; ++i) { |
| if (DEBUG_DICT) { |
| LOGI("--- Suggest words with proximity space %d", i); |
| } |
| const int x = xcoordinates[i]; |
| const int y = ycoordinates[i]; |
| if (DEBUG_PROXIMITY_INFO) { |
| LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", |
| i, x, y, proximityInfo->hasSpaceProximity(x, y)); |
| } |
| if (proximityInfo->hasSpaceProximity(x, y)) { |
| getMistypedSpaceWords(mInputLength, i, mCorrection); |
| } |
| } |
| } |
| PROF_END(6); |
| } |
| |
| void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
| const int *ycoordinates, const int *codes, const int codesSize, |
| unsigned short *outWords, int *frequencies) { |
| if (DEBUG_DICT) { |
| LOGI("initSuggest"); |
| } |
| mFrequencies = frequencies; |
| mOutputChars = outWords; |
| mInputLength = codesSize; |
| proximityInfo->setInputParams(codes, codesSize); |
| mProximityInfo = proximityInfo; |
| } |
| |
| static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { |
| if (c < nextLettersSize) { |
| nextLetters[c]++; |
| } |
| } |
| |
| // TODO: We need to optimize addWord by using STL or something |
| // TODO: This needs to take an const unsigned short* and not tinker with its contents |
| bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { |
| word[length] = 0; |
| if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { |
| #ifdef FLAG_DBG |
| char s[length + 1]; |
| for (int i = 0; i <= length; i++) s[i] = word[i]; |
| LOGI("Found word = %s, freq = %d", s, frequency); |
| #endif |
| } |
| if (length > MAX_WORD_LENGTH) { |
| if (DEBUG_DICT) { |
| LOGI("Exceeded max word length."); |
| } |
| return false; |
| } |
| |
| // Find the right insertion point |
| int insertAt = 0; |
| while (insertAt < MAX_WORDS) { |
| // TODO: How should we sort words with the same frequency? |
| if (frequency > mFrequencies[insertAt]) { |
| break; |
| } |
| insertAt++; |
| } |
| if (insertAt < MAX_WORDS) { |
| if (DEBUG_DICT) { |
| #ifdef FLAG_DBG |
| char s[length + 1]; |
| for (int i = 0; i <= length; i++) s[i] = word[i]; |
| LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); |
| #endif |
| } |
| memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), |
| (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), |
| (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); |
| mFrequencies[insertAt] = frequency; |
| memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), |
| (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), |
| (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); |
| unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; |
| while (length--) { |
| *dest++ = *word++; |
| } |
| *dest = 0; // NULL terminate |
| if (DEBUG_DICT) { |
| LOGI("Added word at %d", insertAt); |
| } |
| return true; |
| } |
| return false; |
| } |
| |
| static const char QUOTE = '\''; |
| static const char SPACE = ' '; |
| |
| void UnigramDictionary::getSuggestionCandidates() { |
| // TODO: Remove setCorrectionParams |
| mCorrection->setCorrectionParams(0, 0, 0, |
| -1 /* spaceProximityPos */, -1 /* missingSpacePos */); |
| int rootPosition = ROOT_POS; |
| // Get the number of children of root, then increment the position |
| int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); |
| int outputIndex = 0; |
| |
| mCorrection->initCorrectionState(rootPosition, childCount, (mInputLength <= 0)); |
| |
| // Depth first search |
| while (outputIndex >= 0) { |
| if (mCorrection->initProcessState(outputIndex)) { |
| int siblingPos = mCorrection->getTreeSiblingPos(outputIndex); |
| int firstChildPos; |
| |
| const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, |
| mCorrection, &childCount, &firstChildPos, &siblingPos); |
| // Update next sibling pos |
| mCorrection->setTreeSiblingPos(outputIndex, siblingPos); |
| |
| if (needsToTraverseChildrenNodes) { |
| // Goes to child node |
| outputIndex = mCorrection->goDownTree(outputIndex, childCount, firstChildPos); |
| } |
| } else { |
| // Goes to parent sibling node |
| outputIndex = mCorrection->getTreeParentIndex(outputIndex); |
| } |
| } |
| } |
| |
| static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; |
| inline static void multiplyIntCapped(const int multiplier, int *base) { |
| const int temp = *base; |
| if (temp != S_INT_MAX) { |
| // Branch if multiplier == 2 for the optimization |
| if (multiplier == 2) { |
| *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; |
| } else { |
| const int tempRetval = temp * multiplier; |
| *base = tempRetval >= temp ? tempRetval : S_INT_MAX; |
| } |
| } |
| } |
| |
| void UnigramDictionary::getMissingSpaceWords( |
| const int inputLength, const int missingSpacePos, Correction *correction) { |
| correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
| -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos); |
| getSplitTwoWordsSuggestion(inputLength, correction); |
| } |
| |
| void UnigramDictionary::getMistypedSpaceWords( |
| const int inputLength, const int spaceProximityPos, Correction *correction) { |
| correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
| -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */); |
| getSplitTwoWordsSuggestion(inputLength, correction); |
| } |
| |
| inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, |
| const int inputIndex, const int skipPos, const int depth) { |
| const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); |
| // Skip the ' or other letter and continue deeper |
| return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; |
| } |
| |
| inline void UnigramDictionary::onTerminal(const int freq, Correction *correction) { |
| int wordLength; |
| unsigned short* wordPointer; |
| const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); |
| if (finalFreq >= 0) { |
| addWord(wordPointer, wordLength, finalFreq); |
| } |
| } |
| |
| void UnigramDictionary::getSplitTwoWordsSuggestion( |
| const int inputLength, Correction* correction) { |
| const int spaceProximityPos = correction->getSpaceProximityPos(); |
| const int missingSpacePos = correction->getMissingSpacePos(); |
| if (DEBUG_DICT) { |
| int inputCount = 0; |
| if (spaceProximityPos >= 0) ++inputCount; |
| if (missingSpacePos >= 0) ++inputCount; |
| assert(inputCount <= 1); |
| } |
| const bool isSpaceProximity = spaceProximityPos >= 0; |
| const int firstWordStartPos = 0; |
| const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; |
| const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; |
| const int secondWordLength = isSpaceProximity |
| ? (inputLength - spaceProximityPos - 1) |
| : (inputLength - missingSpacePos); |
| |
| if (inputLength >= MAX_WORD_LENGTH) return; |
| if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos |
| || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) |
| return; |
| |
| const int newWordLength = firstWordLength + secondWordLength + 1; |
| // Allocating variable length array on stack |
| unsigned short word[newWordLength]; |
| const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); |
| if (DEBUG_DICT) { |
| LOGI("First freq: %d", firstFreq); |
| } |
| if (firstFreq <= 0) return; |
| |
| for (int i = 0; i < firstWordLength; ++i) { |
| word[i] = mWord[i]; |
| } |
| |
| const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); |
| if (DEBUG_DICT) { |
| LOGI("Second freq: %d", secondFreq); |
| } |
| if (secondFreq <= 0) return; |
| |
| word[firstWordLength] = SPACE; |
| for (int i = (firstWordLength + 1); i < newWordLength; ++i) { |
| word[i] = mWord[i - firstWordLength - 1]; |
| } |
| |
| const int pairFreq = mCorrection->getFreqForSplitTwoWords(firstFreq, secondFreq); |
| if (DEBUG_DICT) { |
| LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); |
| } |
| addWord(word, newWordLength, pairFreq); |
| return; |
| } |
| |
| // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous |
| // interface. |
| inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, |
| const int inputLength, unsigned short *word) { |
| uint16_t inWord[inputLength]; |
| |
| for (int i = 0; i < inputLength; ++i) { |
| inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); |
| } |
| return getMostFrequentWordLikeInner(inWord, inputLength, word); |
| } |
| |
| // This function will take the position of a character array within a CharGroup, |
| // and check it actually like-matches the word in inWord starting at startInputIndex, |
| // that is, it matches it with case and accents squashed. |
| // The function returns true if there was a full match, false otherwise. |
| // The function will copy on-the-fly the characters in the CharGroup to outNewWord. |
| // It will also place the end position of the array in outPos; in outInputIndex, |
| // it will place the index of the first char AFTER the match if there was a match, |
| // and the initial position if there was not. It makes sense because if there was |
| // a match we want to continue searching, but if there was not, we want to go to |
| // the next CharGroup. |
| // In and out parameters may point to the same location. This function takes care |
| // not to use any input parameters after it wrote into its outputs. |
| static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, |
| const uint8_t* const root, const int startPos, |
| const uint16_t* const inWord, const int startInputIndex, |
| int32_t* outNewWord, int* outInputIndex, int* outPos) { |
| const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); |
| int pos = startPos; |
| int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| int32_t baseChar = Dictionary::toBaseLowerCase(character); |
| const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); |
| |
| if (baseChar != wChar) { |
| *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; |
| *outInputIndex = startInputIndex; |
| return false; |
| } |
| int inputIndex = startInputIndex; |
| outNewWord[inputIndex] = character; |
| if (hasMultipleChars) { |
| character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| while (NOT_A_CHARACTER != character) { |
| baseChar = Dictionary::toBaseLowerCase(character); |
| if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { |
| *outPos = BinaryFormat::skipOtherCharacters(root, pos); |
| *outInputIndex = startInputIndex; |
| return false; |
| } |
| outNewWord[inputIndex] = character; |
| character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| } |
| } |
| *outInputIndex = inputIndex + 1; |
| *outPos = pos; |
| return true; |
| } |
| |
| // This function is invoked when a word like the word searched for is found. |
| // It will compare the frequency to the max frequency, and if greater, will |
| // copy the word into the output buffer. In output value maxFreq, it will |
| // write the new maximum frequency if it changed. |
| static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, |
| short unsigned int* outWord, int* maxFreq) { |
| if (freq > *maxFreq) { |
| for (int q = 0; q < length; ++q) |
| outWord[q] = newWord[q]; |
| outWord[length] = 0; |
| *maxFreq = freq; |
| } |
| } |
| |
| // Will find the highest frequency of the words like the one passed as an argument, |
| // that is, everything that only differs by case/accents. |
| int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, |
| const int length, short unsigned int* outWord) { |
| int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; |
| int depth = 0; |
| int maxFreq = -1; |
| const uint8_t* const root = DICT_ROOT; |
| |
| mStackChildCount[0] = root[0]; |
| mStackInputIndex[0] = 0; |
| mStackSiblingPos[0] = 1; |
| while (depth >= 0) { |
| const int charGroupCount = mStackChildCount[depth]; |
| int pos = mStackSiblingPos[depth]; |
| for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { |
| int inputIndex = mStackInputIndex[depth]; |
| const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| // Test whether all chars in this group match with the word we are searching for. If so, |
| // we want to traverse its children (or if the length match, evaluate its frequency). |
| // Note that this function will output the position regardless, but will only write |
| // into inputIndex if there is a match. |
| const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, |
| inputIndex, newWord, &inputIndex, &pos); |
| if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { |
| const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); |
| onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); |
| } |
| pos = BinaryFormat::skipFrequency(flags, pos); |
| const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| // If we had a match and the word has children, we want to traverse them. We don't have |
| // to traverse words longer than the one we are searching for, since they will not match |
| // anyway, so don't traverse unless inputIndex < length. |
| if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { |
| // Save position for this depth, to get back to this once children are done |
| mStackChildCount[depth] = charGroupIndex; |
| mStackSiblingPos[depth] = siblingPos; |
| // Prepare stack values for next depth |
| ++depth; |
| int childrenPos = childrenNodePos; |
| mStackChildCount[depth] = |
| BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); |
| mStackSiblingPos[depth] = childrenPos; |
| mStackInputIndex[depth] = inputIndex; |
| pos = childrenPos; |
| // Go to the next depth level. |
| ++depth; |
| break; |
| } else { |
| // No match, or no children, or word too long to ever match: go the next sibling. |
| pos = siblingPos; |
| } |
| } |
| --depth; |
| } |
| return maxFreq; |
| } |
| |
| bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { |
| return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); |
| } |
| |
| // TODO: remove this function. |
| int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, |
| int length) const { |
| return -1; |
| } |
| |
| // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. |
| // If the return value is false, then the caller should read in the output "nextSiblingPosition" |
| // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. |
| // It is worthy to note that when false is returned, the output values other than |
| // nextSiblingPosition are undefined. |
| // If the return value is true, then the caller must proceed to traverse the children of this |
| // node. processCurrentNode will output the information about the children: their count in |
| // newCount, their position in newChildrenPosition, the traverseAllNodes flag in |
| // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the |
| // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into |
| // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when |
| // there aren't any more nodes at this level, it merely returns the address of the first byte after |
| // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any |
| // given level, as output into newCount when traversing this level's parent. |
| inline bool UnigramDictionary::processCurrentNode(const int initialPos, |
| Correction *correction, int *newCount, |
| int *newChildrenPosition, int *nextSiblingPosition) { |
| if (DEBUG_DICT) { |
| correction->checkState(); |
| } |
| int pos = initialPos; |
| |
| // Flags contain the following information: |
| // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: |
| // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address |
| // is on the specified number of bytes. |
| // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. |
| // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. |
| // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) |
| // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not |
| const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); |
| const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); |
| const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); |
| |
| bool needsToInvokeOnTerminal = false; |
| |
| // This gets only ONE character from the stream. Next there will be: |
| // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node |
| // else if FLAG_IS_TERMINAL: the frequency |
| // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address |
| // Note that you can't have a node that both is not a terminal and has no children. |
| int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); |
| assert(NOT_A_CHARACTER != c); |
| |
| // We are going to loop through each character and make it look like it's a different |
| // node each time. To do that, we will process characters in this node in order until |
| // we find the character terminator. This is signalled by getCharCode* returning |
| // NOT_A_CHARACTER. |
| // As a special case, if there is only one character in this node, we must not read the |
| // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. |
| // This way, each loop run will look like a "virtual node". |
| do { |
| // We prefetch the next char. If 'c' is the last char of this node, we will have |
| // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node |
| // should behave as a terminal or not and whether we have children. |
| const int32_t nextc = hasMultipleChars |
| ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; |
| const bool isLastChar = (NOT_A_CHARACTER == nextc); |
| // If there are more chars in this nodes, then this virtual node is not a terminal. |
| // If we are on the last char, this virtual node is a terminal if this node is. |
| const bool isTerminal = isLastChar && isTerminalNode; |
| |
| Correction::CorrectionType stateType = correction->processCharAndCalcState( |
| c, isTerminal); |
| if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL |
| || stateType == Correction::ON_TERMINAL) { |
| needsToInvokeOnTerminal = true; |
| } else if (stateType == Correction::UNRELATED) { |
| // We found that this is an unrelated character, so we should give up traversing |
| // this node and its children entirely. |
| // However we may not be on the last virtual node yet so we skip the remaining |
| // characters in this node, the frequency if it's there, read the next sibling |
| // position to output it, then return false. |
| // We don't have to output other values because we return false, as in |
| // "don't traverse children". |
| if (!isLastChar) { |
| pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| } |
| pos = BinaryFormat::skipFrequency(flags, pos); |
| *nextSiblingPosition = |
| BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| return false; |
| } |
| |
| // Prepare for the next character. Promote the prefetched char to current char - the loop |
| // will take care of prefetching the next. If we finally found our last char, nextc will |
| // contain NOT_A_CHARACTER. |
| c = nextc; |
| } while (NOT_A_CHARACTER != c); |
| |
| if (isTerminalNode) { |
| if (needsToInvokeOnTerminal) { |
| // The frequency should be here, because we come here only if this is actually |
| // a terminal node, and we are on its last char. |
| const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
| onTerminal(freq, mCorrection); |
| } |
| |
| // If there are more chars in this node, then this virtual node has children. |
| // If we are on the last char, this virtual node has children if this node has. |
| const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); |
| |
| // This character matched the typed character (enough to traverse the node at least) |
| // so we just evaluated it. Now we should evaluate this virtual node's children - that |
| // is, if it has any. If it has no children, we're done here - so we skip the end of |
| // the node, output the siblings position, and return false "don't traverse children". |
| // Note that !hasChildren implies isLastChar, so we know we don't have to skip any |
| // remaining char in this group for there can't be any. |
| if (!hasChildren) { |
| pos = BinaryFormat::skipFrequency(flags, pos); |
| *nextSiblingPosition = |
| BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| return false; |
| } |
| |
| // Optimization: Prune out words that are too long compared to how much was typed. |
| if (correction->needsToPrune()) { |
| pos = BinaryFormat::skipFrequency(flags, pos); |
| *nextSiblingPosition = |
| BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| if (DEBUG_DICT_FULL) { |
| LOGI("Traversing was pruned."); |
| } |
| return false; |
| } |
| } |
| |
| // Now we finished processing this node, and we want to traverse children. If there are no |
| // children, we can't come here. |
| assert(BinaryFormat::hasChildrenInFlags(flags)); |
| |
| // If this node was a terminal it still has the frequency under the pointer (it may have been |
| // read, but not skipped - see readFrequencyWithoutMovingPointer). |
| // Next come the children position, then possibly attributes (attributes are bigrams only for |
| // now, maybe something related to shortcuts in the future). |
| // Once this is read, we still need to output the number of nodes in the immediate children of |
| // this node, so we read and output it before returning true, as in "please traverse children". |
| pos = BinaryFormat::skipFrequency(flags, pos); |
| int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); |
| *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); |
| *newChildrenPosition = childrenPos; |
| return true; |
| } |
| |
| } // namespace latinime |