satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 1 | /* |
| 2 | ** |
| 3 | ** Copyright 2010, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
satok | 48e432c | 2010-12-06 17:38:58 +0900 | [diff] [blame] | 18 | #include <assert.h> |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 19 | #include <string.h> |
| 20 | |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 21 | #define LOG_TAG "LatinIME: unigram_dictionary.cpp" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 22 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 23 | #include "char_utils.h" |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 24 | #include "dictionary.h" |
| 25 | #include "unigram_dictionary.h" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 26 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 27 | #include "binary_format.h" |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 28 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 29 | namespace latinime { |
| 30 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 31 | const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = |
| 32 | { { 'a', 'e' }, |
| 33 | { 'o', 'e' }, |
| 34 | { 'u', 'e' } }; |
| 35 | |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 36 | // TODO: check the header |
| 37 | UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 38 | int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, |
satok | 18c28f4 | 2010-12-02 18:11:54 +0900 | [diff] [blame] | 39 | const bool isLatestDictVersion) |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 40 | : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 41 | MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 42 | MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), |
| 43 | TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 44 | // TODO : remove this variable. |
| 45 | ROOT_POS(0), |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 46 | BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 47 | MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 48 | if (DEBUG_DICT) { |
| 49 | LOGI("UnigramDictionary - constructor"); |
| 50 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 51 | mCorrectionState = new CorrectionState(typedLetterMultiplier, fullWordMultiplier); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 52 | } |
| 53 | |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 54 | UnigramDictionary::~UnigramDictionary() { |
| 55 | delete mCorrectionState; |
| 56 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 57 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 58 | static inline unsigned int getCodesBufferSize(const int* codes, const int codesSize, |
| 59 | const int MAX_PROXIMITY_CHARS) { |
| 60 | return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; |
| 61 | } |
| 62 | |
| 63 | bool UnigramDictionary::isDigraph(const int* codes, const int i, const int codesSize) const { |
| 64 | |
| 65 | // There can't be a digraph if we don't have at least 2 characters to examine |
| 66 | if (i + 2 > codesSize) return false; |
| 67 | |
| 68 | // Search for the first char of some digraph |
| 69 | int lastDigraphIndex = -1; |
| 70 | const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; |
| 71 | for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; |
| 72 | lastDigraphIndex >= 0; --lastDigraphIndex) { |
| 73 | if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; |
| 74 | } |
| 75 | // No match: return early |
| 76 | if (lastDigraphIndex < 0) return false; |
| 77 | |
| 78 | // It's an interesting digraph if the second char matches too. |
| 79 | return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; |
| 80 | } |
| 81 | |
| 82 | // Mostly the same arguments as the non-recursive version, except: |
| 83 | // codes is the original value. It points to the start of the work buffer, and gets passed as is. |
| 84 | // codesSize is the size of the user input (thus, it is the size of codesSrc). |
| 85 | // codesDest is the current point in the work buffer. |
| 86 | // codesSrc is the current point in the user-input, original, content-unmodified buffer. |
| 87 | // codesRemain is the remaining size in codesSrc. |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 88 | void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 89 | const int *xcoordinates, const int* ycoordinates, const int *codesBuffer, |
| 90 | const int codesBufferSize, const int flags, const int* codesSrc, const int codesRemain, |
satok | 3c4bb77 | 2011-03-04 22:50:19 -0800 | [diff] [blame] | 91 | const int currentDepth, int* codesDest, unsigned short* outWords, int* frequencies) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 92 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 93 | if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { |
| 94 | for (int i = 0; i < codesRemain; ++i) { |
| 95 | if (isDigraph(codesSrc, i, codesRemain)) { |
| 96 | // Found a digraph. We will try both spellings. eg. the word is "pruefen" |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 97 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 98 | // Copy the word up to the first char of the digraph, then continue processing |
| 99 | // on the remaining part of the word, skipping the second char of the digraph. |
| 100 | // In our example, copy "pru" and continue running on "fen" |
| 101 | // Make i the index of the second char of the digraph for simplicity. Forgetting |
| 102 | // to do that results in an infinite recursion so take care! |
| 103 | ++i; |
| 104 | memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); |
| 105 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 106 | codesBuffer, codesBufferSize, flags, |
| 107 | codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, |
| 108 | currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, outWords, |
| 109 | frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 110 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 111 | // Copy the second char of the digraph in place, then continue processing on |
| 112 | // the remaining part of the word. |
| 113 | // In our example, after "pru" in the buffer copy the "e", and continue on "fen" |
| 114 | memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 115 | BYTES_IN_ONE_CHAR); |
| 116 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 117 | codesBuffer, codesBufferSize, flags, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 118 | codesRemain - i, currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, |
| 119 | outWords, frequencies); |
| 120 | return; |
| 121 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 122 | } |
| 123 | } |
| 124 | |
| 125 | // If we come here, we hit the end of the word: let's check it against the dictionary. |
| 126 | // In our example, we'll come here once for "prufen" and then once for "pruefen". |
| 127 | // If the word contains several digraphs, we'll come it for the product of them. |
| 128 | // eg. if the word is "ueberpruefen" we'll test, in order, against |
| 129 | // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". |
| 130 | const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; |
| 131 | if (0 != remainingBytes) |
| 132 | memcpy(codesDest, codesSrc, remainingBytes); |
| 133 | |
| 134 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
| 135 | (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, outWords, frequencies); |
| 136 | } |
| 137 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 138 | int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 139 | const int *ycoordinates, const int *codes, const int codesSize, const int flags, |
| 140 | unsigned short *outWords, int *frequencies) { |
| 141 | |
| 142 | if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) |
| 143 | { // Incrementally tune the word and try all possibilities |
| 144 | int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; |
| 145 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 146 | codesSize, flags, codes, codesSize, 0, codesBuffer, outWords, frequencies); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 147 | } else { // Normal processing |
| 148 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, |
| 149 | outWords, frequencies); |
| 150 | } |
| 151 | |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 152 | PROF_START(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 153 | // Get the word count |
| 154 | int suggestedWordsCount = 0; |
| 155 | while (suggestedWordsCount < MAX_WORDS && mFrequencies[suggestedWordsCount] > 0) { |
| 156 | suggestedWordsCount++; |
| 157 | } |
| 158 | |
| 159 | if (DEBUG_DICT) { |
| 160 | LOGI("Returning %d words", suggestedWordsCount); |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 161 | /// Print the returned words |
| 162 | for (int j = 0; j < suggestedWordsCount; ++j) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 163 | #ifdef FLAG_DBG |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 164 | short unsigned int* w = mOutputChars + j * MAX_WORD_LENGTH; |
| 165 | char s[MAX_WORD_LENGTH]; |
| 166 | for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; |
| 167 | LOGI("%s %i", s, mFrequencies[j]); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 168 | #endif |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 169 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 170 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 171 | PROF_END(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 172 | PROF_CLOSE; |
| 173 | return suggestedWordsCount; |
| 174 | } |
| 175 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 176 | void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 177 | const int *xcoordinates, const int *ycoordinates, const int *codes, const int codesSize, |
| 178 | unsigned short *outWords, int *frequencies) { |
| 179 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 180 | PROF_OPEN; |
| 181 | PROF_START(0); |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 182 | initSuggestions( |
| 183 | proximityInfo, xcoordinates, ycoordinates, codes, codesSize, outWords, frequencies); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 184 | mCorrectionState->initCorrectionState(mProximityInfo, mInputLength); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 185 | if (DEBUG_DICT) assert(codesSize == mInputLength); |
| 186 | |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 187 | const int MAX_DEPTH = min(mInputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 188 | PROF_END(0); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 189 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 190 | PROF_START(1); |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 191 | getSuggestionCandidates(-1, -1, -1, MAX_DEPTH); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 192 | PROF_END(1); |
| 193 | |
| 194 | PROF_START(2); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 195 | // Suggestion with missing character |
| 196 | if (SUGGEST_WORDS_WITH_MISSING_CHARACTER) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 197 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 198 | if (DEBUG_DICT) { |
| 199 | LOGI("--- Suggest missing characters %d", i); |
| 200 | } |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 201 | getSuggestionCandidates(i, -1, -1, MAX_DEPTH); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 202 | } |
| 203 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 204 | PROF_END(2); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 205 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 206 | PROF_START(3); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 207 | // Suggestion with excessive character |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 208 | if (SUGGEST_WORDS_WITH_EXCESSIVE_CHARACTER |
| 209 | && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_EXCESSIVE_CHARACTER_SUGGESTION) { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 210 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 211 | if (DEBUG_DICT) { |
| 212 | LOGI("--- Suggest excessive characters %d", i); |
| 213 | } |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 214 | getSuggestionCandidates(-1, i, -1, MAX_DEPTH); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 215 | } |
| 216 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 217 | PROF_END(3); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 218 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 219 | PROF_START(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 220 | // Suggestion with transposed characters |
| 221 | // Only suggest words that length is mInputLength |
| 222 | if (SUGGEST_WORDS_WITH_TRANSPOSED_CHARACTERS) { |
| 223 | for (int i = 0; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 224 | if (DEBUG_DICT) { |
| 225 | LOGI("--- Suggest transposed characters %d", i); |
| 226 | } |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 227 | getSuggestionCandidates(-1, -1, i, mInputLength - 1); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 228 | } |
| 229 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 230 | PROF_END(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 231 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 232 | PROF_START(5); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 233 | // Suggestions with missing space |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 234 | if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER |
| 235 | && mInputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 236 | for (int i = 1; i < codesSize; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 237 | if (DEBUG_DICT) { |
| 238 | LOGI("--- Suggest missing space characters %d", i); |
| 239 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 240 | getMissingSpaceWords(mInputLength, i, mCorrectionState); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 241 | } |
| 242 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 243 | PROF_END(5); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 244 | |
| 245 | PROF_START(6); |
Jean Chalard | e93b1f22 | 2011-06-01 17:12:25 +0900 | [diff] [blame] | 246 | if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 247 | // The first and last "mistyped spaces" are taken care of by excessive character handling |
| 248 | for (int i = 1; i < codesSize - 1; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 249 | if (DEBUG_DICT) { |
| 250 | LOGI("--- Suggest words with proximity space %d", i); |
| 251 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 252 | const int x = xcoordinates[i]; |
| 253 | const int y = ycoordinates[i]; |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 254 | if (DEBUG_PROXIMITY_INFO) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 255 | LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", |
| 256 | i, x, y, proximityInfo->hasSpaceProximity(x, y)); |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 257 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 258 | if (proximityInfo->hasSpaceProximity(x, y)) { |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 259 | getMistypedSpaceWords(mInputLength, i, mCorrectionState); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 260 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 261 | } |
| 262 | } |
| 263 | PROF_END(6); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 264 | } |
| 265 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 266 | void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xcoordinates, |
| 267 | const int *ycoordinates, const int *codes, const int codesSize, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 268 | unsigned short *outWords, int *frequencies) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 269 | if (DEBUG_DICT) { |
| 270 | LOGI("initSuggest"); |
| 271 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 272 | mFrequencies = frequencies; |
| 273 | mOutputChars = outWords; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 274 | mInputLength = codesSize; |
| 275 | mMaxEditDistance = mInputLength < 5 ? 2 : mInputLength / 2; |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 276 | proximityInfo->setInputParams(codes, codesSize); |
| 277 | mProximityInfo = proximityInfo; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 278 | } |
| 279 | |
Jean Chalard | 8124e64 | 2011-06-16 22:33:41 +0900 | [diff] [blame] | 280 | static inline void registerNextLetter(unsigned short c, int *nextLetters, int nextLettersSize) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 281 | if (c < nextLettersSize) { |
| 282 | nextLetters[c]++; |
| 283 | } |
| 284 | } |
| 285 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 286 | // TODO: We need to optimize addWord by using STL or something |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 287 | // TODO: This needs to take an const unsigned short* and not tinker with its contents |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 288 | bool UnigramDictionary::addWord(unsigned short *word, int length, int frequency) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 289 | word[length] = 0; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 290 | if (DEBUG_DICT && DEBUG_SHOW_FOUND_WORD) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 291 | #ifdef FLAG_DBG |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 292 | char s[length + 1]; |
| 293 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 294 | LOGI("Found word = %s, freq = %d", s, frequency); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 295 | #endif |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 296 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 297 | if (length > MAX_WORD_LENGTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 298 | if (DEBUG_DICT) { |
| 299 | LOGI("Exceeded max word length."); |
| 300 | } |
satok | f5cded1 | 2010-12-06 21:28:24 +0900 | [diff] [blame] | 301 | return false; |
| 302 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 303 | |
| 304 | // Find the right insertion point |
| 305 | int insertAt = 0; |
| 306 | while (insertAt < MAX_WORDS) { |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 307 | // TODO: How should we sort words with the same frequency? |
| 308 | if (frequency > mFrequencies[insertAt]) { |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 309 | break; |
| 310 | } |
| 311 | insertAt++; |
| 312 | } |
| 313 | if (insertAt < MAX_WORDS) { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 314 | if (DEBUG_DICT) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 315 | #ifdef FLAG_DBG |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 316 | char s[length + 1]; |
| 317 | for (int i = 0; i <= length; i++) s[i] = word[i]; |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 318 | LOGI("Added word = %s, freq = %d, %d", s, frequency, S_INT_MAX); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 319 | #endif |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 320 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 321 | memmove((char*) mFrequencies + (insertAt + 1) * sizeof(mFrequencies[0]), |
| 322 | (char*) mFrequencies + insertAt * sizeof(mFrequencies[0]), |
| 323 | (MAX_WORDS - insertAt - 1) * sizeof(mFrequencies[0])); |
| 324 | mFrequencies[insertAt] = frequency; |
| 325 | memmove((char*) mOutputChars + (insertAt + 1) * MAX_WORD_LENGTH * sizeof(short), |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 326 | (char*) mOutputChars + insertAt * MAX_WORD_LENGTH * sizeof(short), |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 327 | (MAX_WORDS - insertAt - 1) * sizeof(short) * MAX_WORD_LENGTH); |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 328 | unsigned short *dest = mOutputChars + insertAt * MAX_WORD_LENGTH; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 329 | while (length--) { |
| 330 | *dest++ = *word++; |
| 331 | } |
| 332 | *dest = 0; // NULL terminate |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 333 | if (DEBUG_DICT) { |
| 334 | LOGI("Added word at %d", insertAt); |
| 335 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 336 | return true; |
| 337 | } |
| 338 | return false; |
| 339 | } |
| 340 | |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 341 | static const char QUOTE = '\''; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 342 | static const char SPACE = ' '; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 343 | |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 344 | void UnigramDictionary::getSuggestionCandidates(const int skipPos, |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 345 | const int excessivePos, const int transposedPos, const int maxDepth) { |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 346 | if (DEBUG_DICT) { |
| 347 | LOGI("getSuggestionCandidates %d", maxDepth); |
| 348 | assert(transposedPos + 1 < mInputLength); |
| 349 | assert(excessivePos < mInputLength); |
| 350 | assert(missingPos < mInputLength); |
| 351 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 352 | mCorrectionState->setCorrectionParams(skipPos, excessivePos, transposedPos, |
| 353 | -1 /* spaceProximityPos */, -1 /* missingSpacePos */); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 354 | int rootPosition = ROOT_POS; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 355 | // Get the number of children of root, then increment the position |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 356 | int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 357 | int depth = 0; |
| 358 | |
| 359 | mStackChildCount[0] = childCount; |
| 360 | mStackTraverseAll[0] = (mInputLength <= 0); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 361 | mStackInputIndex[0] = 0; |
| 362 | mStackDiffs[0] = 0; |
| 363 | mStackSiblingPos[0] = rootPosition; |
Jean Chalard | 17e44a7 | 2011-06-16 22:51:11 +0900 | [diff] [blame] | 364 | mStackOutputIndex[0] = 0; |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 365 | mStackMatchedCount[0] = 0; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 366 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 367 | // Depth first search |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 368 | while (depth >= 0) { |
| 369 | if (mStackChildCount[depth] > 0) { |
| 370 | --mStackChildCount[depth]; |
| 371 | bool traverseAllNodes = mStackTraverseAll[depth]; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 372 | int diffs = mStackDiffs[depth]; |
| 373 | int siblingPos = mStackSiblingPos[depth]; |
| 374 | int firstChildPos; |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 375 | mCorrectionState->initProcessState( |
| 376 | mStackMatchedCount[depth], mStackInputIndex[depth], mStackOutputIndex[depth]); |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 377 | |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 378 | // depth will never be greater than maxDepth because in that case, |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 379 | // needsToTraverseChildrenNodes should be false |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 380 | const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, |
| 381 | maxDepth, traverseAllNodes, diffs, |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 382 | mCorrectionState, &childCount, |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 383 | &firstChildPos, &traverseAllNodes, &diffs, |
| 384 | &siblingPos); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 385 | // Update next sibling pos |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 386 | mStackSiblingPos[depth] = siblingPos; |
| 387 | if (needsToTraverseChildrenNodes) { |
| 388 | // Goes to child node |
| 389 | ++depth; |
| 390 | mStackChildCount[depth] = childCount; |
| 391 | mStackTraverseAll[depth] = traverseAllNodes; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 392 | mStackDiffs[depth] = diffs; |
| 393 | mStackSiblingPos[depth] = firstChildPos; |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 394 | |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 395 | mCorrectionState->getProcessState(&mStackMatchedCount[depth], |
| 396 | &mStackInputIndex[depth], &mStackOutputIndex[depth]); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 397 | } |
| 398 | } else { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 399 | // Goes to parent sibling node |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 400 | --depth; |
| 401 | } |
| 402 | } |
| 403 | } |
| 404 | |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 405 | static const int TWO_31ST_DIV_2 = S_INT_MAX / 2; |
| 406 | inline static void multiplyIntCapped(const int multiplier, int *base) { |
| 407 | const int temp = *base; |
| 408 | if (temp != S_INT_MAX) { |
| 409 | // Branch if multiplier == 2 for the optimization |
| 410 | if (multiplier == 2) { |
| 411 | *base = TWO_31ST_DIV_2 >= temp ? temp << 1 : S_INT_MAX; |
| 412 | } else { |
| 413 | const int tempRetval = temp * multiplier; |
| 414 | *base = tempRetval >= temp ? tempRetval : S_INT_MAX; |
| 415 | } |
| 416 | } |
| 417 | } |
| 418 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 419 | void UnigramDictionary::getMissingSpaceWords( |
| 420 | const int inputLength, const int missingSpacePos, CorrectionState *correctionState) { |
| 421 | correctionState->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
| 422 | -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos); |
| 423 | getSplitTwoWordsSuggestion(inputLength, correctionState); |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 424 | } |
| 425 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 426 | void UnigramDictionary::getMistypedSpaceWords( |
| 427 | const int inputLength, const int spaceProximityPos, CorrectionState *correctionState) { |
| 428 | correctionState->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
| 429 | -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */); |
| 430 | getSplitTwoWordsSuggestion(inputLength, correctionState); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 431 | } |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 432 | |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 433 | inline bool UnigramDictionary::needsToSkipCurrentNode(const unsigned short c, |
satok | 6831926 | 2010-12-03 19:38:08 +0900 | [diff] [blame] | 434 | const int inputIndex, const int skipPos, const int depth) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 435 | const unsigned short userTypedChar = mProximityInfo->getPrimaryCharAt(inputIndex); |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 436 | // Skip the ' or other letter and continue deeper |
| 437 | return (c == QUOTE && userTypedChar != QUOTE) || skipPos == depth; |
| 438 | } |
| 439 | |
satok | 28bd03b | 2010-12-03 16:39:16 +0900 | [diff] [blame] | 440 | |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 441 | inline void UnigramDictionary::onTerminal( |
| 442 | unsigned short int* word, const int freq, CorrectionState *correctionState) { |
| 443 | const int finalFreq = correctionState->getFinalFreq(word, freq); |
| 444 | if (finalFreq >= 0) { |
| 445 | addWord(word, correctionState->getOutputIndex() + 1, finalFreq); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 446 | } |
| 447 | } |
| 448 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 449 | void UnigramDictionary::getSplitTwoWordsSuggestion( |
| 450 | const int inputLength, CorrectionState* correctionState) { |
| 451 | const int spaceProximityPos = correctionState->getSpaceProximityPos(); |
| 452 | const int missingSpacePos = correctionState->getMissingSpacePos(); |
| 453 | if (DEBUG_DICT) { |
| 454 | int inputCount = 0; |
| 455 | if (spaceProximityPos >= 0) ++inputCount; |
| 456 | if (missingSpacePos >= 0) ++inputCount; |
| 457 | assert(inputCount <= 1); |
| 458 | } |
| 459 | const bool isSpaceProximity = spaceProximityPos >= 0; |
| 460 | const int firstWordStartPos = 0; |
| 461 | const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; |
| 462 | const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; |
| 463 | const int secondWordLength = isSpaceProximity |
| 464 | ? (inputLength - spaceProximityPos - 1) |
| 465 | : (inputLength - missingSpacePos); |
| 466 | |
| 467 | if (inputLength >= MAX_WORD_LENGTH) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 468 | if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos |
| 469 | || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 470 | return; |
| 471 | |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 472 | const int newWordLength = firstWordLength + secondWordLength + 1; |
| 473 | // Allocating variable length array on stack |
| 474 | unsigned short word[newWordLength]; |
| 475 | const int firstFreq = getMostFrequentWordLike(firstWordStartPos, firstWordLength, mWord); |
| 476 | if (DEBUG_DICT) { |
| 477 | LOGI("First freq: %d", firstFreq); |
| 478 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 479 | if (firstFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 480 | |
| 481 | for (int i = 0; i < firstWordLength; ++i) { |
| 482 | word[i] = mWord[i]; |
| 483 | } |
| 484 | |
| 485 | const int secondFreq = getMostFrequentWordLike(secondWordStartPos, secondWordLength, mWord); |
| 486 | if (DEBUG_DICT) { |
| 487 | LOGI("Second freq: %d", secondFreq); |
| 488 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 489 | if (secondFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 490 | |
| 491 | word[firstWordLength] = SPACE; |
| 492 | for (int i = (firstWordLength + 1); i < newWordLength; ++i) { |
| 493 | word[i] = mWord[i - firstWordLength - 1]; |
| 494 | } |
| 495 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 496 | const int pairFreq = mCorrectionState->getFreqForSplitTwoWords(firstFreq, secondFreq); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 497 | if (DEBUG_DICT) { |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 498 | LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 499 | } |
| 500 | addWord(word, newWordLength, pairFreq); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 501 | return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 502 | } |
| 503 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 504 | // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous |
| 505 | // interface. |
| 506 | inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, |
| 507 | const int inputLength, unsigned short *word) { |
| 508 | uint16_t inWord[inputLength]; |
| 509 | |
| 510 | for (int i = 0; i < inputLength; ++i) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 511 | inWord[i] = (uint16_t)mProximityInfo->getPrimaryCharAt(startInputIndex + i); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 512 | } |
| 513 | return getMostFrequentWordLikeInner(inWord, inputLength, word); |
| 514 | } |
| 515 | |
| 516 | // This function will take the position of a character array within a CharGroup, |
| 517 | // and check it actually like-matches the word in inWord starting at startInputIndex, |
| 518 | // that is, it matches it with case and accents squashed. |
| 519 | // The function returns true if there was a full match, false otherwise. |
| 520 | // The function will copy on-the-fly the characters in the CharGroup to outNewWord. |
| 521 | // It will also place the end position of the array in outPos; in outInputIndex, |
| 522 | // it will place the index of the first char AFTER the match if there was a match, |
| 523 | // and the initial position if there was not. It makes sense because if there was |
| 524 | // a match we want to continue searching, but if there was not, we want to go to |
| 525 | // the next CharGroup. |
| 526 | // In and out parameters may point to the same location. This function takes care |
| 527 | // not to use any input parameters after it wrote into its outputs. |
| 528 | static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, |
| 529 | const uint8_t* const root, const int startPos, |
| 530 | const uint16_t* const inWord, const int startInputIndex, |
| 531 | int32_t* outNewWord, int* outInputIndex, int* outPos) { |
| 532 | const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); |
| 533 | int pos = startPos; |
| 534 | int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 535 | int32_t baseChar = Dictionary::toBaseLowerCase(character); |
| 536 | const uint16_t wChar = Dictionary::toBaseLowerCase(inWord[startInputIndex]); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 537 | |
| 538 | if (baseChar != wChar) { |
| 539 | *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; |
| 540 | *outInputIndex = startInputIndex; |
| 541 | return false; |
| 542 | } |
| 543 | int inputIndex = startInputIndex; |
| 544 | outNewWord[inputIndex] = character; |
| 545 | if (hasMultipleChars) { |
| 546 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 547 | while (NOT_A_CHARACTER != character) { |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 548 | baseChar = Dictionary::toBaseLowerCase(character); |
| 549 | if (Dictionary::toBaseLowerCase(inWord[++inputIndex]) != baseChar) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 550 | *outPos = BinaryFormat::skipOtherCharacters(root, pos); |
| 551 | *outInputIndex = startInputIndex; |
| 552 | return false; |
| 553 | } |
| 554 | outNewWord[inputIndex] = character; |
| 555 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 556 | } |
| 557 | } |
| 558 | *outInputIndex = inputIndex + 1; |
| 559 | *outPos = pos; |
| 560 | return true; |
| 561 | } |
| 562 | |
| 563 | // This function is invoked when a word like the word searched for is found. |
| 564 | // It will compare the frequency to the max frequency, and if greater, will |
| 565 | // copy the word into the output buffer. In output value maxFreq, it will |
| 566 | // write the new maximum frequency if it changed. |
| 567 | static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, |
| 568 | short unsigned int* outWord, int* maxFreq) { |
| 569 | if (freq > *maxFreq) { |
| 570 | for (int q = 0; q < length; ++q) |
| 571 | outWord[q] = newWord[q]; |
| 572 | outWord[length] = 0; |
| 573 | *maxFreq = freq; |
| 574 | } |
| 575 | } |
| 576 | |
| 577 | // Will find the highest frequency of the words like the one passed as an argument, |
| 578 | // that is, everything that only differs by case/accents. |
| 579 | int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, |
| 580 | const int length, short unsigned int* outWord) { |
| 581 | int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; |
| 582 | int depth = 0; |
| 583 | int maxFreq = -1; |
| 584 | const uint8_t* const root = DICT_ROOT; |
| 585 | |
| 586 | mStackChildCount[0] = root[0]; |
| 587 | mStackInputIndex[0] = 0; |
| 588 | mStackSiblingPos[0] = 1; |
| 589 | while (depth >= 0) { |
| 590 | const int charGroupCount = mStackChildCount[depth]; |
| 591 | int pos = mStackSiblingPos[depth]; |
| 592 | for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { |
| 593 | int inputIndex = mStackInputIndex[depth]; |
| 594 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| 595 | // Test whether all chars in this group match with the word we are searching for. If so, |
| 596 | // we want to traverse its children (or if the length match, evaluate its frequency). |
| 597 | // Note that this function will output the position regardless, but will only write |
| 598 | // into inputIndex if there is a match. |
| 599 | const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, |
| 600 | inputIndex, newWord, &inputIndex, &pos); |
| 601 | if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { |
| 602 | const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); |
| 603 | onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); |
| 604 | } |
| 605 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 606 | const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| 607 | const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| 608 | // If we had a match and the word has children, we want to traverse them. We don't have |
| 609 | // to traverse words longer than the one we are searching for, since they will not match |
| 610 | // anyway, so don't traverse unless inputIndex < length. |
| 611 | if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { |
| 612 | // Save position for this depth, to get back to this once children are done |
| 613 | mStackChildCount[depth] = charGroupIndex; |
| 614 | mStackSiblingPos[depth] = siblingPos; |
| 615 | // Prepare stack values for next depth |
| 616 | ++depth; |
| 617 | int childrenPos = childrenNodePos; |
| 618 | mStackChildCount[depth] = |
| 619 | BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); |
| 620 | mStackSiblingPos[depth] = childrenPos; |
| 621 | mStackInputIndex[depth] = inputIndex; |
| 622 | pos = childrenPos; |
| 623 | // Go to the next depth level. |
| 624 | ++depth; |
| 625 | break; |
| 626 | } else { |
| 627 | // No match, or no children, or word too long to ever match: go the next sibling. |
| 628 | pos = siblingPos; |
| 629 | } |
| 630 | } |
| 631 | --depth; |
| 632 | } |
| 633 | return maxFreq; |
| 634 | } |
| 635 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 636 | bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { |
Jean Chalard | 6a0e964 | 2011-07-25 18:17:11 +0900 | [diff] [blame] | 637 | return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 638 | } |
| 639 | |
| 640 | // TODO: remove this function. |
| 641 | int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, |
| 642 | int length) const { |
| 643 | return -1; |
| 644 | } |
| 645 | |
| 646 | // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. |
| 647 | // If the return value is false, then the caller should read in the output "nextSiblingPosition" |
| 648 | // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. |
| 649 | // It is worthy to note that when false is returned, the output values other than |
| 650 | // nextSiblingPosition are undefined. |
| 651 | // If the return value is true, then the caller must proceed to traverse the children of this |
| 652 | // node. processCurrentNode will output the information about the children: their count in |
| 653 | // newCount, their position in newChildrenPosition, the traverseAllNodes flag in |
| 654 | // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the |
| 655 | // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into |
| 656 | // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when |
| 657 | // there aren't any more nodes at this level, it merely returns the address of the first byte after |
| 658 | // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any |
| 659 | // given level, as output into newCount when traversing this level's parent. |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 660 | inline bool UnigramDictionary::processCurrentNode(const int initialPos, const int maxDepth, |
| 661 | const bool initialTraverseAllNodes, const int initialDiffs, |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 662 | CorrectionState *correctionState, int *newCount, int *newChildrenPosition, |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 663 | bool *newTraverseAllNodes, int *newDiffs, int *nextSiblingPosition) { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 664 | const int skipPos = correctionState->getSkipPos(); |
| 665 | const int excessivePos = correctionState->getExcessivePos(); |
| 666 | const int transposedPos = correctionState->getTransposedPos(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 667 | if (DEBUG_DICT) { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 668 | correctionState->checkState(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 669 | } |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 670 | int pos = initialPos; |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 671 | int traverseAllNodes = initialTraverseAllNodes; |
| 672 | int diffs = initialDiffs; |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 673 | const int initialInputIndex = correctionState->getInputIndex(); |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 674 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 675 | // Flags contain the following information: |
| 676 | // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: |
| 677 | // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address |
| 678 | // is on the specified number of bytes. |
| 679 | // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. |
| 680 | // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. |
| 681 | // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) |
| 682 | // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not |
| 683 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); |
| 684 | const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 685 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 686 | // This gets only ONE character from the stream. Next there will be: |
| 687 | // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node |
| 688 | // else if FLAG_IS_TERMINAL: the frequency |
| 689 | // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address |
| 690 | // Note that you can't have a node that both is not a terminal and has no children. |
| 691 | int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); |
| 692 | assert(NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 693 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 694 | // We are going to loop through each character and make it look like it's a different |
| 695 | // node each time. To do that, we will process characters in this node in order until |
| 696 | // we find the character terminator. This is signalled by getCharCode* returning |
| 697 | // NOT_A_CHARACTER. |
| 698 | // As a special case, if there is only one character in this node, we must not read the |
| 699 | // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. |
| 700 | // This way, each loop run will look like a "virtual node". |
| 701 | do { |
| 702 | // We prefetch the next char. If 'c' is the last char of this node, we will have |
| 703 | // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node |
| 704 | // should behave as a terminal or not and whether we have children. |
| 705 | const int32_t nextc = hasMultipleChars |
| 706 | ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; |
| 707 | const bool isLastChar = (NOT_A_CHARACTER == nextc); |
| 708 | // If there are more chars in this nodes, then this virtual node is not a terminal. |
| 709 | // If we are on the last char, this virtual node is a terminal if this node is. |
| 710 | const bool isTerminal = isLastChar && (0 != (FLAG_IS_TERMINAL & flags)); |
| 711 | // If there are more chars in this node, then this virtual node has children. |
| 712 | // If we are on the last char, this virtual node has children if this node has. |
| 713 | const bool hasChildren = (!isLastChar) || BinaryFormat::hasChildrenInFlags(flags); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 714 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 715 | // This has to be done for each virtual char (this forwards the "inputIndex" which |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 716 | // is the index in the user-inputted chars, as read by proximity chars. |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 717 | if (excessivePos == correctionState->getOutputIndex() |
| 718 | && correctionState->getInputIndex() < mInputLength - 1) { |
| 719 | correctionState->incrementInputIndex(); |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 720 | } |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 721 | if (traverseAllNodes || needsToSkipCurrentNode( |
| 722 | c, correctionState->getInputIndex(), skipPos, correctionState->getOutputIndex())) { |
| 723 | mWord[correctionState->getOutputIndex()] = c; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 724 | if (traverseAllNodes && isTerminal) { |
| 725 | // The frequency should be here, because we come here only if this is actually |
| 726 | // a terminal node, and we are on its last char. |
| 727 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 728 | onTerminal(mWord, freq, mCorrectionState); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 729 | } |
| 730 | if (!hasChildren) { |
| 731 | // If we don't have children here, that means we finished processing all |
| 732 | // characters of this node (we are on the last virtual node), AND we are in |
| 733 | // traverseAllNodes mode, which means we are searching for *completions*. We |
| 734 | // should skip the frequency if we have a terminal, and report the position |
| 735 | // of the next sibling. We don't have to return other values because we are |
| 736 | // returning false, as in "don't traverse children". |
| 737 | if (isTerminal) pos = BinaryFormat::skipFrequency(flags, pos); |
| 738 | *nextSiblingPosition = |
| 739 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 740 | return false; |
| 741 | } |
| 742 | } else { |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 743 | int inputIndexForProximity = correctionState->getInputIndex(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 744 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 745 | if (transposedPos >= 0) { |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 746 | if (correctionState->getInputIndex() == transposedPos) { |
| 747 | ++inputIndexForProximity; |
| 748 | } |
| 749 | if (correctionState->getInputIndex() == (transposedPos + 1)) { |
| 750 | --inputIndexForProximity; |
| 751 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 752 | } |
| 753 | |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 754 | int matchedProximityCharId = mProximityInfo->getMatchedProximityId( |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 755 | inputIndexForProximity, c, mCorrectionState); |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 756 | if (ProximityInfo::UNRELATED_CHAR == matchedProximityCharId) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 757 | // We found that this is an unrelated character, so we should give up traversing |
| 758 | // this node and its children entirely. |
| 759 | // However we may not be on the last virtual node yet so we skip the remaining |
| 760 | // characters in this node, the frequency if it's there, read the next sibling |
| 761 | // position to output it, then return false. |
| 762 | // We don't have to output other values because we return false, as in |
| 763 | // "don't traverse children". |
| 764 | if (!isLastChar) { |
| 765 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 766 | } |
| 767 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 768 | *nextSiblingPosition = |
| 769 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 770 | return false; |
| 771 | } |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 772 | mWord[correctionState->getOutputIndex()] = c; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 773 | // If inputIndex is greater than mInputLength, that means there is no |
| 774 | // proximity chars. So, we don't need to check proximity. |
satok | d24df43 | 2011-07-14 15:43:42 +0900 | [diff] [blame] | 775 | if (ProximityInfo::SAME_OR_ACCENTED_OR_CAPITALIZED_CHAR == matchedProximityCharId) { |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 776 | correctionState->charMatched(); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 777 | } |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 778 | const bool isSameAsUserTypedLength = mInputLength |
| 779 | == correctionState->getInputIndex() + 1 |
| 780 | || (excessivePos == mInputLength - 1 |
| 781 | && correctionState->getInputIndex() == mInputLength - 2); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 782 | if (isSameAsUserTypedLength && isTerminal) { |
| 783 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 784 | onTerminal(mWord, freq, mCorrectionState); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 785 | } |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 786 | // Start traversing all nodes after the index exceeds the user typed length |
| 787 | traverseAllNodes = isSameAsUserTypedLength; |
| 788 | diffs = diffs |
| 789 | + ((ProximityInfo::NEAR_PROXIMITY_CHAR == matchedProximityCharId) ? 1 : 0); |
| 790 | // Finally, we are ready to go to the next character, the next "virtual node". |
| 791 | // We should advance the input index. |
| 792 | // We do this in this branch of the 'if traverseAllNodes' because we are still matching |
| 793 | // characters to input; the other branch is not matching them but searching for |
| 794 | // completions, this is why it does not have to do it. |
| 795 | correctionState->incrementInputIndex(); |
| 796 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 797 | // This character matched the typed character (enough to traverse the node at least) |
| 798 | // so we just evaluated it. Now we should evaluate this virtual node's children - that |
| 799 | // is, if it has any. If it has no children, we're done here - so we skip the end of |
| 800 | // the node, output the siblings position, and return false "don't traverse children". |
| 801 | // Note that !hasChildren implies isLastChar, so we know we don't have to skip any |
| 802 | // remaining char in this group for there can't be any. |
| 803 | if (!hasChildren) { |
| 804 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 805 | *nextSiblingPosition = |
| 806 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 807 | return false; |
| 808 | } |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 809 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 810 | // Optimization: Prune out words that are too long compared to how much was typed. |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 811 | if (correctionState->getOutputIndex() >= maxDepth || diffs > mMaxEditDistance) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 812 | // We are giving up parsing this node and its children. Skip the rest of the node, |
| 813 | // output the sibling position, and return that we don't want to traverse children. |
| 814 | if (!isLastChar) { |
| 815 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 816 | } |
| 817 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 818 | *nextSiblingPosition = |
| 819 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 820 | return false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 821 | } |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 822 | // Also, the next char is one "virtual node" depth more than this char. |
| 823 | correctionState->incrementOutputIndex(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 824 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 825 | // Prepare for the next character. Promote the prefetched char to current char - the loop |
| 826 | // will take care of prefetching the next. If we finally found our last char, nextc will |
| 827 | // contain NOT_A_CHARACTER. |
| 828 | c = nextc; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 829 | } while (NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 830 | |
| 831 | // If inputIndex is greater than mInputLength, that means there are no proximity chars. |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 832 | // Here, that's all we are interested in so we don't need to check for isSameAsUserTypedLength. |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame^] | 833 | if (mInputLength <= initialInputIndex) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 834 | traverseAllNodes = true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 835 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 836 | |
| 837 | // All the output values that are purely computation by this function are held in local |
| 838 | // variables. Output them to the caller. |
| 839 | *newTraverseAllNodes = traverseAllNodes; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 840 | *newDiffs = diffs; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 841 | |
| 842 | // Now we finished processing this node, and we want to traverse children. If there are no |
| 843 | // children, we can't come here. |
| 844 | assert(BinaryFormat::hasChildrenInFlags(flags)); |
| 845 | |
| 846 | // If this node was a terminal it still has the frequency under the pointer (it may have been |
| 847 | // read, but not skipped - see readFrequencyWithoutMovingPointer). |
| 848 | // Next come the children position, then possibly attributes (attributes are bigrams only for |
| 849 | // now, maybe something related to shortcuts in the future). |
| 850 | // Once this is read, we still need to output the number of nodes in the immediate children of |
| 851 | // this node, so we read and output it before returning true, as in "please traverse children". |
| 852 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 853 | int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); |
| 854 | *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 855 | *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); |
| 856 | *newChildrenPosition = childrenPos; |
| 857 | return true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 858 | } |
| 859 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 860 | } // namespace latinime |