blob: 5e661fb77baab811d9be09e0a83464c3acef9255 [file] [log] [blame]
Slava Shklyaev871be942018-09-12 14:52:02 +01001/*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19#include "VtsHalNeuralnetworks.h"
20
21#include "Callbacks.h"
22
23namespace android {
24namespace hardware {
25namespace neuralnetworks {
26namespace V1_2 {
27
Slava Shklyaev871be942018-09-12 14:52:02 +010028using V1_0::OperandLifeTime;
Slava Shklyaev871be942018-09-12 14:52:02 +010029using V1_1::ExecutionPreference;
30
31namespace vts {
32namespace functional {
33
Xusong Wangb5cb8f72018-10-31 08:43:12 -070034using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
35using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaev871be942018-09-12 14:52:02 +010036
37///////////////////////// UTILITY FUNCTIONS /////////////////////////
38
39static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
40 const Model& model) {
41 SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
42
43 Return<void> ret =
44 device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
45 EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
46 });
47 EXPECT_TRUE(ret.isOk());
48}
49
50static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
51 const Model& model, ExecutionPreference preference) {
52 SCOPED_TRACE(message + " [prepareModel_1_2]");
53
54 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
55 ASSERT_NE(nullptr, preparedModelCallback.get());
56 Return<ErrorStatus> prepareLaunchStatus =
57 device->prepareModel_1_2(model, preference, preparedModelCallback);
58 ASSERT_TRUE(prepareLaunchStatus.isOk());
59 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
60
61 preparedModelCallback->wait();
62 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
63 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
Xusong Wangb5cb8f72018-10-31 08:43:12 -070064 sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
Slava Shklyaev871be942018-09-12 14:52:02 +010065 ASSERT_EQ(nullptr, preparedModel.get());
66}
67
68static bool validExecutionPreference(ExecutionPreference preference) {
69 return preference == ExecutionPreference::LOW_POWER ||
70 preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
71 preference == ExecutionPreference::SUSTAINED_SPEED;
72}
73
74// Primary validation function. This function will take a valid model, apply a
75// mutation to it to invalidate the model, then pass it to interface calls that
76// use the model. Note that the model here is passed by value, and any mutation
77// to the model does not leave this function.
78static void validate(const sp<IDevice>& device, const std::string& message, Model model,
79 const std::function<void(Model*)>& mutation,
80 ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
81 mutation(&model);
82 if (validExecutionPreference(preference)) {
83 validateGetSupportedOperations(device, message, model);
84 }
85 validatePrepareModel(device, message, model, preference);
86}
87
88// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
89// so this is efficiently accomplished by moving the element to the end and
90// resizing the hidl_vec to one less.
91template <typename Type>
92static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
93 if (vec) {
94 std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
95 vec->resize(vec->size() - 1);
96 }
97}
98
99template <typename Type>
100static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
101 // assume vec is valid
102 const uint32_t index = vec->size();
103 vec->resize(index + 1);
104 (*vec)[index] = value;
105 return index;
106}
107
108static uint32_t addOperand(Model* model) {
109 return hidl_vec_push_back(&model->operands,
110 {
111 .type = OperandType::INT32,
112 .dimensions = {},
113 .numberOfConsumers = 0,
114 .scale = 0.0f,
115 .zeroPoint = 0,
116 .lifetime = OperandLifeTime::MODEL_INPUT,
117 .location = {.poolIndex = 0, .offset = 0, .length = 0},
118 });
119}
120
121static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
122 uint32_t index = addOperand(model);
123 model->operands[index].numberOfConsumers = 1;
124 model->operands[index].lifetime = lifetime;
125 return index;
126}
127
128///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
129
Michael K. Sandersc785d462018-10-30 15:16:54 +0000130static const uint32_t invalidOperandTypes[] = {
131 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MIN) - 1,
132 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MAX) + 1,
133 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MIN) - 1,
134 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100135};
136
137static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
138 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000139 for (uint32_t invalidOperandType : invalidOperandTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100140 const std::string message = "mutateOperandTypeTest: operand " +
141 std::to_string(operand) + " set to value " +
142 std::to_string(invalidOperandType);
143 validate(device, message, model, [operand, invalidOperandType](Model* model) {
144 model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
145 });
146 }
147 }
148}
149
150///////////////////////// VALIDATE OPERAND RANK /////////////////////////
151
152static uint32_t getInvalidRank(OperandType type) {
153 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800154 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100155 case OperandType::FLOAT32:
156 case OperandType::INT32:
157 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100158 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100159 return 1;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100160 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100161 case OperandType::TENSOR_FLOAT32:
162 case OperandType::TENSOR_INT32:
163 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800164 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000165 case OperandType::TENSOR_QUANT16_SYMM:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000166 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100167 return 0;
168 default:
169 return 0;
170 }
171}
172
173static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
174 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
175 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
Xusong Wanga3165812018-11-19 18:26:08 -0800176 if (invalidRank == 0) {
177 continue;
178 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100179 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
180 " has rank of " + std::to_string(invalidRank);
181 validate(device, message, model, [operand, invalidRank](Model* model) {
182 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
183 });
184 }
185}
186
187///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
188
189static float getInvalidScale(OperandType type) {
190 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800191 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100192 case OperandType::FLOAT32:
193 case OperandType::INT32:
194 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100195 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100196 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100197 case OperandType::TENSOR_FLOAT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000198 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100199 return 1.0f;
200 case OperandType::TENSOR_INT32:
201 return -1.0f;
202 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800203 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000204 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100205 return 0.0f;
206 default:
207 return 0.0f;
208 }
209}
210
211static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
212 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
213 const float invalidScale = getInvalidScale(model.operands[operand].type);
214 const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
215 " has scale of " + std::to_string(invalidScale);
216 validate(device, message, model, [operand, invalidScale](Model* model) {
217 model->operands[operand].scale = invalidScale;
218 });
219 }
220}
221
222///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
223
224static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
225 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800226 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100227 case OperandType::FLOAT32:
228 case OperandType::INT32:
229 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100230 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100231 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100232 case OperandType::TENSOR_FLOAT32:
233 case OperandType::TENSOR_INT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000234 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100235 return {1};
236 case OperandType::TENSOR_QUANT8_ASYMM:
237 return {-1, 256};
Xusong Wangd49f6652019-01-16 18:32:24 -0800238 case OperandType::TENSOR_QUANT16_ASYMM:
239 return {-1, 65536};
Lev Proleev48c88202018-11-13 15:42:36 +0000240 case OperandType::TENSOR_QUANT16_SYMM:
241 return {-32769, -1, 1, 32768};
Slava Shklyaev871be942018-09-12 14:52:02 +0100242 default:
243 return {};
244 }
245}
246
247static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
248 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
249 const std::vector<int32_t> invalidZeroPoints =
250 getInvalidZeroPoints(model.operands[operand].type);
251 for (int32_t invalidZeroPoint : invalidZeroPoints) {
252 const std::string message = "mutateOperandZeroPointTest: operand " +
253 std::to_string(operand) + " has zero point of " +
254 std::to_string(invalidZeroPoint);
255 validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
256 model->operands[operand].zeroPoint = invalidZeroPoint;
257 });
258 }
259 }
260}
261
262///////////////////////// VALIDATE EXTRA ??? /////////////////////////
263
264// TODO: Operand::lifetime
265// TODO: Operand::location
266
267///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
268
269static void mutateOperand(Operand* operand, OperandType type) {
270 Operand newOperand = *operand;
271 newOperand.type = type;
272 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800273 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100274 case OperandType::FLOAT32:
275 case OperandType::INT32:
276 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100277 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100278 newOperand.dimensions = hidl_vec<uint32_t>();
279 newOperand.scale = 0.0f;
280 newOperand.zeroPoint = 0;
281 break;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100282 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100283 case OperandType::TENSOR_FLOAT32:
284 newOperand.dimensions =
285 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
286 newOperand.scale = 0.0f;
287 newOperand.zeroPoint = 0;
288 break;
289 case OperandType::TENSOR_INT32:
290 newOperand.dimensions =
291 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
292 newOperand.zeroPoint = 0;
293 break;
294 case OperandType::TENSOR_QUANT8_ASYMM:
Xusong Wangd49f6652019-01-16 18:32:24 -0800295 case OperandType::TENSOR_QUANT16_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000296 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100297 newOperand.dimensions =
298 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
299 newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
300 break;
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000301 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
302 newOperand.dimensions =
303 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
304 newOperand.scale = 0.0f;
305 newOperand.zeroPoint = 0;
306
307 SymmPerChannelQuantParams channelQuant;
308 channelQuant.channelDim = 0;
309 channelQuant.scales = hidl_vec<float>(
310 operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0]) : 0);
311 for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
312 channelQuant.scales[i] = 1.0f;
313 }
314 newOperand.extraParams.channelQuant(std::move(channelQuant));
315 } break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100316 case OperandType::OEM:
317 case OperandType::TENSOR_OEM_BYTE:
318 default:
319 break;
320 }
321 *operand = newOperand;
322}
323
Xusong Wang5b747ae2018-10-05 11:49:13 -0700324static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
325 // Do not test OEM types
326 if (type == model.operands[operand].type || type == OperandType::OEM ||
327 type == OperandType::TENSOR_OEM_BYTE) {
328 return true;
329 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100330 for (const Operation& operation : model.operations) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700331 // Skip mutateOperationOperandTypeTest for the following operations.
332 // - LSH_PROJECTION's second argument is allowed to have any type.
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000333 // - ARGMIN and ARGMAX's first argument can be any of
334 // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
335 // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000336 // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000337 // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000338 // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Xusong Wang5b747ae2018-10-05 11:49:13 -0700339 switch (operation.type) {
340 case OperationType::LSH_PROJECTION: {
341 if (operand == operation.inputs[1]) {
342 return true;
343 }
344 } break;
345 case OperationType::CAST:
346 case OperationType::ARGMAX:
347 case OperationType::ARGMIN: {
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000348 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
349 type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700350 return true;
351 }
352 } break;
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000353 case OperationType::RANDOM_MULTINOMIAL: {
354 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
355 return true;
356 }
357 } break;
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000358 case OperationType::DEPTHWISE_CONV_2D:
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000359 case OperationType::CONV_2D: {
360 if (operand == 1 && (type == OperandType::TENSOR_QUANT8_ASYMM ||
361 type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
362 return true;
363 }
364 } break;
Xusong Wang5b747ae2018-10-05 11:49:13 -0700365 default:
366 break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100367 }
368 }
369 return false;
370}
371
372static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
373 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100374 for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700375 if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100376 continue;
377 }
378 const std::string message = "mutateOperationOperandTypeTest: operand " +
379 std::to_string(operand) + " set to type " +
380 toString(invalidOperandType);
381 validate(device, message, model, [operand, invalidOperandType](Model* model) {
382 mutateOperand(&model->operands[operand], invalidOperandType);
383 });
384 }
385 }
386}
387
388///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
389
Michael K. Sandersc785d462018-10-30 15:16:54 +0000390static const uint32_t invalidOperationTypes[] = {
391 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MIN) - 1,
392 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MAX) + 1,
393 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MIN) - 1,
394 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100395};
396
397static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
398 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000399 for (uint32_t invalidOperationType : invalidOperationTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100400 const std::string message = "mutateOperationTypeTest: operation " +
401 std::to_string(operation) + " set to value " +
402 std::to_string(invalidOperationType);
403 validate(device, message, model, [operation, invalidOperationType](Model* model) {
404 model->operations[operation].type =
405 static_cast<OperationType>(invalidOperationType);
406 });
407 }
408 }
409}
410
411///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
412
413static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
414 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
415 const uint32_t invalidOperand = model.operands.size();
416 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
417 const std::string message = "mutateOperationInputOperandIndexTest: operation " +
418 std::to_string(operation) + " input " +
419 std::to_string(input);
420 validate(device, message, model, [operation, input, invalidOperand](Model* model) {
421 model->operations[operation].inputs[input] = invalidOperand;
422 });
423 }
424 }
425}
426
427///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
428
429static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
430 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
431 const uint32_t invalidOperand = model.operands.size();
432 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
433 const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
434 std::to_string(operation) + " output " +
435 std::to_string(output);
436 validate(device, message, model, [operation, output, invalidOperand](Model* model) {
437 model->operations[operation].outputs[output] = invalidOperand;
438 });
439 }
440 }
441}
442
443///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
444
445static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
446 if (vec) {
447 // remove elements matching "value"
448 auto last = std::remove(vec->begin(), vec->end(), value);
449 vec->resize(std::distance(vec->begin(), last));
450
451 // decrement elements exceeding "value"
452 std::transform(vec->begin(), vec->end(), vec->begin(),
453 [value](uint32_t v) { return v > value ? v-- : v; });
454 }
455}
456
457static void removeOperand(Model* model, uint32_t index) {
458 hidl_vec_removeAt(&model->operands, index);
459 for (Operation& operation : model->operations) {
460 removeValueAndDecrementGreaterValues(&operation.inputs, index);
461 removeValueAndDecrementGreaterValues(&operation.outputs, index);
462 }
463 removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
464 removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
465}
466
Xusong Wang5b747ae2018-10-05 11:49:13 -0700467static bool removeOperandSkip(size_t operand, const Model& model) {
468 for (const Operation& operation : model.operations) {
469 // Skip removeOperandTest for the following operations.
470 // - SPLIT's outputs are not checked during prepareModel.
471 if (operation.type == OperationType::SPLIT) {
472 for (const size_t outOprand : operation.outputs) {
473 if (operand == outOprand) {
474 return true;
475 }
476 }
477 }
478 }
479 return false;
480}
481
Slava Shklyaev871be942018-09-12 14:52:02 +0100482static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
483 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700484 if (removeOperandSkip(operand, model)) {
485 continue;
486 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100487 const std::string message = "removeOperandTest: operand " + std::to_string(operand);
488 validate(device, message, model,
489 [operand](Model* model) { removeOperand(model, operand); });
490 }
491}
492
493///////////////////////// REMOVE OPERATION /////////////////////////
494
495static void removeOperation(Model* model, uint32_t index) {
496 for (uint32_t operand : model->operations[index].inputs) {
497 model->operands[operand].numberOfConsumers--;
498 }
499 hidl_vec_removeAt(&model->operations, index);
500}
501
502static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
503 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
504 const std::string message = "removeOperationTest: operation " + std::to_string(operation);
505 validate(device, message, model,
506 [operation](Model* model) { removeOperation(model, operation); });
507 }
508}
509
510///////////////////////// REMOVE OPERATION INPUT /////////////////////////
511
Xusong Wang5b747ae2018-10-05 11:49:13 -0700512static bool removeOperationInputSkip(const Operation& op, size_t input) {
513 // Skip removeOperationInputTest for the following operations.
514 // - CONCATENATION has at least 2 inputs, with the last element being INT32.
515 // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
516 // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
517 // layout parameter.
518 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
519 // parameter.
520 switch (op.type) {
521 case OperationType::CONCATENATION: {
522 if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
523 return true;
524 }
525 } break;
526 case OperationType::DEPTHWISE_CONV_2D: {
527 if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
528 return true;
529 }
530 } break;
531 case OperationType::CONV_2D:
532 case OperationType::AVERAGE_POOL_2D:
533 case OperationType::MAX_POOL_2D:
534 case OperationType::L2_POOL_2D: {
535 if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
536 return true;
537 }
538 } break;
539 case OperationType::RESIZE_BILINEAR: {
540 if (op.inputs.size() == 4 && input == 3) {
541 return true;
542 }
543 } break;
544 case OperationType::SPACE_TO_DEPTH:
545 case OperationType::DEPTH_TO_SPACE:
546 case OperationType::BATCH_TO_SPACE_ND: {
547 if (op.inputs.size() == 3 && input == 2) {
548 return true;
549 }
550 } break;
551 case OperationType::SPACE_TO_BATCH_ND: {
552 if (op.inputs.size() == 4 && input == 3) {
553 return true;
554 }
555 } break;
556 case OperationType::L2_NORMALIZATION: {
557 if (op.inputs.size() == 2 && input == 1) {
558 return true;
559 }
560 } break;
561 case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
562 if (op.inputs.size() == 6 && input == 5) {
563 return true;
564 }
565 } break;
566 case OperationType::SOFTMAX: {
567 if (op.inputs.size() == 3 && input == 2) {
568 return true;
569 }
570 } break;
571 default:
572 break;
573 }
574 return false;
575}
576
Slava Shklyaev871be942018-09-12 14:52:02 +0100577static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
578 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
579 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
580 const Operation& op = model.operations[operation];
Xusong Wang5b747ae2018-10-05 11:49:13 -0700581 if (removeOperationInputSkip(op, input)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100582 continue;
583 }
584 const std::string message = "removeOperationInputTest: operation " +
585 std::to_string(operation) + ", input " +
586 std::to_string(input);
587 validate(device, message, model, [operation, input](Model* model) {
588 uint32_t operand = model->operations[operation].inputs[input];
589 model->operands[operand].numberOfConsumers--;
590 hidl_vec_removeAt(&model->operations[operation].inputs, input);
591 });
592 }
593 }
594}
595
596///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
597
598static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
599 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
600 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
601 const std::string message = "removeOperationOutputTest: operation " +
602 std::to_string(operation) + ", output " +
603 std::to_string(output);
604 validate(device, message, model, [operation, output](Model* model) {
605 hidl_vec_removeAt(&model->operations[operation].outputs, output);
606 });
607 }
608 }
609}
610
611///////////////////////// MODEL VALIDATION /////////////////////////
612
613// TODO: remove model input
614// TODO: remove model output
615// TODO: add unused operation
616
617///////////////////////// ADD OPERATION INPUT /////////////////////////
618
Xusong Wang5b747ae2018-10-05 11:49:13 -0700619static bool addOperationInputSkip(const Operation& op) {
Xusong Wang64337282018-10-22 13:49:00 -0700620 // Skip addOperationInputTest for the following operations.
Xusong Wang5b747ae2018-10-05 11:49:13 -0700621 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
622 // parameter.
623 if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
624 (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
625 (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
Xusong Wang64337282018-10-22 13:49:00 -0700626 return true;
627 }
628 return false;
629}
630
Slava Shklyaev871be942018-09-12 14:52:02 +0100631static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
632 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Xusong Wang64337282018-10-22 13:49:00 -0700633 if (addOperationInputSkip(model.operations[operation])) {
634 continue;
635 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100636 const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
637 validate(device, message, model, [operation](Model* model) {
638 uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
639 hidl_vec_push_back(&model->operations[operation].inputs, index);
640 hidl_vec_push_back(&model->inputIndexes, index);
641 });
642 }
643}
644
645///////////////////////// ADD OPERATION OUTPUT /////////////////////////
646
647static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
648 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
649 const std::string message =
650 "addOperationOutputTest: operation " + std::to_string(operation);
651 validate(device, message, model, [operation](Model* model) {
652 uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
653 hidl_vec_push_back(&model->operations[operation].outputs, index);
654 hidl_vec_push_back(&model->outputIndexes, index);
655 });
656 }
657}
658
659///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
660
661static const int32_t invalidExecutionPreferences[] = {
662 static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
663 static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
664};
665
666static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
667 for (int32_t preference : invalidExecutionPreferences) {
668 const std::string message =
669 "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
670 validate(device, message, model, [](Model*) {},
671 static_cast<ExecutionPreference>(preference));
672 }
673}
674
675////////////////////////// ENTRY POINT //////////////////////////////
676
677void ValidationTest::validateModel(const Model& model) {
678 mutateOperandTypeTest(device, model);
679 mutateOperandRankTest(device, model);
680 mutateOperandScaleTest(device, model);
681 mutateOperandZeroPointTest(device, model);
682 mutateOperationOperandTypeTest(device, model);
683 mutateOperationTypeTest(device, model);
684 mutateOperationInputOperandIndexTest(device, model);
685 mutateOperationOutputOperandIndexTest(device, model);
686 removeOperandTest(device, model);
687 removeOperationTest(device, model);
688 removeOperationInputTest(device, model);
689 removeOperationOutputTest(device, model);
690 addOperationInputTest(device, model);
691 addOperationOutputTest(device, model);
692 mutateExecutionPreferenceTest(device, model);
693}
694
695} // namespace functional
696} // namespace vts
697} // namespace V1_2
698} // namespace neuralnetworks
699} // namespace hardware
700} // namespace android