blob: 1f9c99d891963180816cc6a94ef2e4a95d1476fd [file] [log] [blame]
Slava Shklyaev871be942018-09-12 14:52:02 +01001/*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19#include "VtsHalNeuralnetworks.h"
20
21#include "Callbacks.h"
22
23namespace android {
24namespace hardware {
25namespace neuralnetworks {
26namespace V1_2 {
27
Slava Shklyaev871be942018-09-12 14:52:02 +010028using V1_0::OperandLifeTime;
Slava Shklyaev871be942018-09-12 14:52:02 +010029using V1_1::ExecutionPreference;
30
31namespace vts {
32namespace functional {
33
Xusong Wangb5cb8f72018-10-31 08:43:12 -070034using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
35using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaev871be942018-09-12 14:52:02 +010036
37///////////////////////// UTILITY FUNCTIONS /////////////////////////
38
39static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
40 const Model& model) {
41 SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
42
43 Return<void> ret =
44 device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
45 EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
46 });
47 EXPECT_TRUE(ret.isOk());
48}
49
50static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
51 const Model& model, ExecutionPreference preference) {
52 SCOPED_TRACE(message + " [prepareModel_1_2]");
53
54 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
55 ASSERT_NE(nullptr, preparedModelCallback.get());
56 Return<ErrorStatus> prepareLaunchStatus =
57 device->prepareModel_1_2(model, preference, preparedModelCallback);
58 ASSERT_TRUE(prepareLaunchStatus.isOk());
59 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
60
61 preparedModelCallback->wait();
62 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
63 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
Xusong Wangb5cb8f72018-10-31 08:43:12 -070064 sp<IPreparedModel> preparedModel = getPreparedModel_1_2(preparedModelCallback);
Slava Shklyaev871be942018-09-12 14:52:02 +010065 ASSERT_EQ(nullptr, preparedModel.get());
66}
67
68static bool validExecutionPreference(ExecutionPreference preference) {
69 return preference == ExecutionPreference::LOW_POWER ||
70 preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
71 preference == ExecutionPreference::SUSTAINED_SPEED;
72}
73
74// Primary validation function. This function will take a valid model, apply a
75// mutation to it to invalidate the model, then pass it to interface calls that
76// use the model. Note that the model here is passed by value, and any mutation
77// to the model does not leave this function.
78static void validate(const sp<IDevice>& device, const std::string& message, Model model,
79 const std::function<void(Model*)>& mutation,
80 ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
81 mutation(&model);
82 if (validExecutionPreference(preference)) {
83 validateGetSupportedOperations(device, message, model);
84 }
85 validatePrepareModel(device, message, model, preference);
86}
87
88// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
89// so this is efficiently accomplished by moving the element to the end and
90// resizing the hidl_vec to one less.
91template <typename Type>
92static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
93 if (vec) {
94 std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
95 vec->resize(vec->size() - 1);
96 }
97}
98
99template <typename Type>
100static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
101 // assume vec is valid
102 const uint32_t index = vec->size();
103 vec->resize(index + 1);
104 (*vec)[index] = value;
105 return index;
106}
107
108static uint32_t addOperand(Model* model) {
109 return hidl_vec_push_back(&model->operands,
110 {
111 .type = OperandType::INT32,
112 .dimensions = {},
113 .numberOfConsumers = 0,
114 .scale = 0.0f,
115 .zeroPoint = 0,
116 .lifetime = OperandLifeTime::MODEL_INPUT,
117 .location = {.poolIndex = 0, .offset = 0, .length = 0},
118 });
119}
120
121static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
122 uint32_t index = addOperand(model);
123 model->operands[index].numberOfConsumers = 1;
124 model->operands[index].lifetime = lifetime;
125 return index;
126}
127
128///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
129
Michael K. Sandersc785d462018-10-30 15:16:54 +0000130static const uint32_t invalidOperandTypes[] = {
131 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MIN) - 1,
132 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MAX) + 1,
133 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MIN) - 1,
134 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100135};
136
137static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
138 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000139 for (uint32_t invalidOperandType : invalidOperandTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100140 const std::string message = "mutateOperandTypeTest: operand " +
141 std::to_string(operand) + " set to value " +
142 std::to_string(invalidOperandType);
143 validate(device, message, model, [operand, invalidOperandType](Model* model) {
144 model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
145 });
146 }
147 }
148}
149
150///////////////////////// VALIDATE OPERAND RANK /////////////////////////
151
152static uint32_t getInvalidRank(OperandType type) {
153 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800154 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100155 case OperandType::FLOAT32:
156 case OperandType::INT32:
157 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100158 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100159 return 1;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100160 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100161 case OperandType::TENSOR_FLOAT32:
162 case OperandType::TENSOR_INT32:
163 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000164 case OperandType::TENSOR_QUANT16_SYMM:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000165 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100166 return 0;
167 default:
168 return 0;
169 }
170}
171
172static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
173 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
174 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
Xusong Wanga3165812018-11-19 18:26:08 -0800175 if (invalidRank == 0) {
176 continue;
177 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100178 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
179 " has rank of " + std::to_string(invalidRank);
180 validate(device, message, model, [operand, invalidRank](Model* model) {
181 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
182 });
183 }
184}
185
186///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
187
188static float getInvalidScale(OperandType type) {
189 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800190 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100191 case OperandType::FLOAT32:
192 case OperandType::INT32:
193 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100194 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100195 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100196 case OperandType::TENSOR_FLOAT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000197 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100198 return 1.0f;
199 case OperandType::TENSOR_INT32:
200 return -1.0f;
201 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000202 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100203 return 0.0f;
204 default:
205 return 0.0f;
206 }
207}
208
209static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
210 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
211 const float invalidScale = getInvalidScale(model.operands[operand].type);
212 const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
213 " has scale of " + std::to_string(invalidScale);
214 validate(device, message, model, [operand, invalidScale](Model* model) {
215 model->operands[operand].scale = invalidScale;
216 });
217 }
218}
219
220///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
221
222static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
223 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800224 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100225 case OperandType::FLOAT32:
226 case OperandType::INT32:
227 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100228 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100229 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100230 case OperandType::TENSOR_FLOAT32:
231 case OperandType::TENSOR_INT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000232 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100233 return {1};
234 case OperandType::TENSOR_QUANT8_ASYMM:
235 return {-1, 256};
Lev Proleev48c88202018-11-13 15:42:36 +0000236 case OperandType::TENSOR_QUANT16_SYMM:
237 return {-32769, -1, 1, 32768};
Slava Shklyaev871be942018-09-12 14:52:02 +0100238 default:
239 return {};
240 }
241}
242
243static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
244 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
245 const std::vector<int32_t> invalidZeroPoints =
246 getInvalidZeroPoints(model.operands[operand].type);
247 for (int32_t invalidZeroPoint : invalidZeroPoints) {
248 const std::string message = "mutateOperandZeroPointTest: operand " +
249 std::to_string(operand) + " has zero point of " +
250 std::to_string(invalidZeroPoint);
251 validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
252 model->operands[operand].zeroPoint = invalidZeroPoint;
253 });
254 }
255 }
256}
257
258///////////////////////// VALIDATE EXTRA ??? /////////////////////////
259
260// TODO: Operand::lifetime
261// TODO: Operand::location
262
263///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
264
265static void mutateOperand(Operand* operand, OperandType type) {
266 Operand newOperand = *operand;
267 newOperand.type = type;
268 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800269 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100270 case OperandType::FLOAT32:
271 case OperandType::INT32:
272 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100273 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100274 newOperand.dimensions = hidl_vec<uint32_t>();
275 newOperand.scale = 0.0f;
276 newOperand.zeroPoint = 0;
277 break;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100278 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100279 case OperandType::TENSOR_FLOAT32:
280 newOperand.dimensions =
281 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
282 newOperand.scale = 0.0f;
283 newOperand.zeroPoint = 0;
284 break;
285 case OperandType::TENSOR_INT32:
286 newOperand.dimensions =
287 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
288 newOperand.zeroPoint = 0;
289 break;
290 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000291 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100292 newOperand.dimensions =
293 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
294 newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
295 break;
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000296 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
297 newOperand.dimensions =
298 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
299 newOperand.scale = 0.0f;
300 newOperand.zeroPoint = 0;
301
302 SymmPerChannelQuantParams channelQuant;
303 channelQuant.channelDim = 0;
304 channelQuant.scales = hidl_vec<float>(
305 operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0]) : 0);
306 for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
307 channelQuant.scales[i] = 1.0f;
308 }
309 newOperand.extraParams.channelQuant(std::move(channelQuant));
310 } break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100311 case OperandType::OEM:
312 case OperandType::TENSOR_OEM_BYTE:
313 default:
314 break;
315 }
316 *operand = newOperand;
317}
318
Xusong Wang5b747ae2018-10-05 11:49:13 -0700319static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
320 // Do not test OEM types
321 if (type == model.operands[operand].type || type == OperandType::OEM ||
322 type == OperandType::TENSOR_OEM_BYTE) {
323 return true;
324 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100325 for (const Operation& operation : model.operations) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700326 // Skip mutateOperationOperandTypeTest for the following operations.
327 // - LSH_PROJECTION's second argument is allowed to have any type.
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000328 // - ARGMIN and ARGMAX's first argument can be any of
329 // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
330 // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000331 // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000332 // - CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000333 // - DEPTHWISE_CONV_2D filter type (arg 1) can be QUANT8_ASYMM or QUANT8_SYMM_PER_CHANNEL
Xusong Wang5b747ae2018-10-05 11:49:13 -0700334 switch (operation.type) {
335 case OperationType::LSH_PROJECTION: {
336 if (operand == operation.inputs[1]) {
337 return true;
338 }
339 } break;
340 case OperationType::CAST:
341 case OperationType::ARGMAX:
342 case OperationType::ARGMIN: {
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000343 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
344 type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700345 return true;
346 }
347 } break;
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000348 case OperationType::RANDOM_MULTINOMIAL: {
349 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
350 return true;
351 }
352 } break;
Przemyslaw Szczepaniak47b91412018-12-11 13:42:27 +0000353 case OperationType::DEPTHWISE_CONV_2D:
Przemyslaw Szczepaniakf54f1262018-11-26 14:10:06 +0000354 case OperationType::CONV_2D: {
355 if (operand == 1 && (type == OperandType::TENSOR_QUANT8_ASYMM ||
356 type == OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL)) {
357 return true;
358 }
359 } break;
Xusong Wang5b747ae2018-10-05 11:49:13 -0700360 default:
361 break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100362 }
363 }
364 return false;
365}
366
367static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
368 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100369 for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700370 if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100371 continue;
372 }
373 const std::string message = "mutateOperationOperandTypeTest: operand " +
374 std::to_string(operand) + " set to type " +
375 toString(invalidOperandType);
376 validate(device, message, model, [operand, invalidOperandType](Model* model) {
377 mutateOperand(&model->operands[operand], invalidOperandType);
378 });
379 }
380 }
381}
382
383///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
384
Michael K. Sandersc785d462018-10-30 15:16:54 +0000385static const uint32_t invalidOperationTypes[] = {
386 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MIN) - 1,
387 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MAX) + 1,
388 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MIN) - 1,
389 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100390};
391
392static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
393 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000394 for (uint32_t invalidOperationType : invalidOperationTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100395 const std::string message = "mutateOperationTypeTest: operation " +
396 std::to_string(operation) + " set to value " +
397 std::to_string(invalidOperationType);
398 validate(device, message, model, [operation, invalidOperationType](Model* model) {
399 model->operations[operation].type =
400 static_cast<OperationType>(invalidOperationType);
401 });
402 }
403 }
404}
405
406///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
407
408static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
409 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
410 const uint32_t invalidOperand = model.operands.size();
411 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
412 const std::string message = "mutateOperationInputOperandIndexTest: operation " +
413 std::to_string(operation) + " input " +
414 std::to_string(input);
415 validate(device, message, model, [operation, input, invalidOperand](Model* model) {
416 model->operations[operation].inputs[input] = invalidOperand;
417 });
418 }
419 }
420}
421
422///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
423
424static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
425 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
426 const uint32_t invalidOperand = model.operands.size();
427 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
428 const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
429 std::to_string(operation) + " output " +
430 std::to_string(output);
431 validate(device, message, model, [operation, output, invalidOperand](Model* model) {
432 model->operations[operation].outputs[output] = invalidOperand;
433 });
434 }
435 }
436}
437
438///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
439
440static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
441 if (vec) {
442 // remove elements matching "value"
443 auto last = std::remove(vec->begin(), vec->end(), value);
444 vec->resize(std::distance(vec->begin(), last));
445
446 // decrement elements exceeding "value"
447 std::transform(vec->begin(), vec->end(), vec->begin(),
448 [value](uint32_t v) { return v > value ? v-- : v; });
449 }
450}
451
452static void removeOperand(Model* model, uint32_t index) {
453 hidl_vec_removeAt(&model->operands, index);
454 for (Operation& operation : model->operations) {
455 removeValueAndDecrementGreaterValues(&operation.inputs, index);
456 removeValueAndDecrementGreaterValues(&operation.outputs, index);
457 }
458 removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
459 removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
460}
461
Xusong Wang5b747ae2018-10-05 11:49:13 -0700462static bool removeOperandSkip(size_t operand, const Model& model) {
463 for (const Operation& operation : model.operations) {
464 // Skip removeOperandTest for the following operations.
465 // - SPLIT's outputs are not checked during prepareModel.
466 if (operation.type == OperationType::SPLIT) {
467 for (const size_t outOprand : operation.outputs) {
468 if (operand == outOprand) {
469 return true;
470 }
471 }
472 }
473 }
474 return false;
475}
476
Slava Shklyaev871be942018-09-12 14:52:02 +0100477static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
478 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700479 if (removeOperandSkip(operand, model)) {
480 continue;
481 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100482 const std::string message = "removeOperandTest: operand " + std::to_string(operand);
483 validate(device, message, model,
484 [operand](Model* model) { removeOperand(model, operand); });
485 }
486}
487
488///////////////////////// REMOVE OPERATION /////////////////////////
489
490static void removeOperation(Model* model, uint32_t index) {
491 for (uint32_t operand : model->operations[index].inputs) {
492 model->operands[operand].numberOfConsumers--;
493 }
494 hidl_vec_removeAt(&model->operations, index);
495}
496
497static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
498 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
499 const std::string message = "removeOperationTest: operation " + std::to_string(operation);
500 validate(device, message, model,
501 [operation](Model* model) { removeOperation(model, operation); });
502 }
503}
504
505///////////////////////// REMOVE OPERATION INPUT /////////////////////////
506
Xusong Wang5b747ae2018-10-05 11:49:13 -0700507static bool removeOperationInputSkip(const Operation& op, size_t input) {
508 // Skip removeOperationInputTest for the following operations.
509 // - CONCATENATION has at least 2 inputs, with the last element being INT32.
510 // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
511 // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
512 // layout parameter.
513 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
514 // parameter.
515 switch (op.type) {
516 case OperationType::CONCATENATION: {
517 if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
518 return true;
519 }
520 } break;
521 case OperationType::DEPTHWISE_CONV_2D: {
522 if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
523 return true;
524 }
525 } break;
526 case OperationType::CONV_2D:
527 case OperationType::AVERAGE_POOL_2D:
528 case OperationType::MAX_POOL_2D:
529 case OperationType::L2_POOL_2D: {
530 if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
531 return true;
532 }
533 } break;
534 case OperationType::RESIZE_BILINEAR: {
535 if (op.inputs.size() == 4 && input == 3) {
536 return true;
537 }
538 } break;
539 case OperationType::SPACE_TO_DEPTH:
540 case OperationType::DEPTH_TO_SPACE:
541 case OperationType::BATCH_TO_SPACE_ND: {
542 if (op.inputs.size() == 3 && input == 2) {
543 return true;
544 }
545 } break;
546 case OperationType::SPACE_TO_BATCH_ND: {
547 if (op.inputs.size() == 4 && input == 3) {
548 return true;
549 }
550 } break;
551 case OperationType::L2_NORMALIZATION: {
552 if (op.inputs.size() == 2 && input == 1) {
553 return true;
554 }
555 } break;
556 case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
557 if (op.inputs.size() == 6 && input == 5) {
558 return true;
559 }
560 } break;
561 case OperationType::SOFTMAX: {
562 if (op.inputs.size() == 3 && input == 2) {
563 return true;
564 }
565 } break;
566 default:
567 break;
568 }
569 return false;
570}
571
Slava Shklyaev871be942018-09-12 14:52:02 +0100572static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
573 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
574 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
575 const Operation& op = model.operations[operation];
Xusong Wang5b747ae2018-10-05 11:49:13 -0700576 if (removeOperationInputSkip(op, input)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100577 continue;
578 }
579 const std::string message = "removeOperationInputTest: operation " +
580 std::to_string(operation) + ", input " +
581 std::to_string(input);
582 validate(device, message, model, [operation, input](Model* model) {
583 uint32_t operand = model->operations[operation].inputs[input];
584 model->operands[operand].numberOfConsumers--;
585 hidl_vec_removeAt(&model->operations[operation].inputs, input);
586 });
587 }
588 }
589}
590
591///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
592
593static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
594 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
595 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
596 const std::string message = "removeOperationOutputTest: operation " +
597 std::to_string(operation) + ", output " +
598 std::to_string(output);
599 validate(device, message, model, [operation, output](Model* model) {
600 hidl_vec_removeAt(&model->operations[operation].outputs, output);
601 });
602 }
603 }
604}
605
606///////////////////////// MODEL VALIDATION /////////////////////////
607
608// TODO: remove model input
609// TODO: remove model output
610// TODO: add unused operation
611
612///////////////////////// ADD OPERATION INPUT /////////////////////////
613
Xusong Wang5b747ae2018-10-05 11:49:13 -0700614static bool addOperationInputSkip(const Operation& op) {
Xusong Wang64337282018-10-22 13:49:00 -0700615 // Skip addOperationInputTest for the following operations.
Xusong Wang5b747ae2018-10-05 11:49:13 -0700616 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
617 // parameter.
618 if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
619 (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
620 (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
Xusong Wang64337282018-10-22 13:49:00 -0700621 return true;
622 }
623 return false;
624}
625
Slava Shklyaev871be942018-09-12 14:52:02 +0100626static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
627 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Xusong Wang64337282018-10-22 13:49:00 -0700628 if (addOperationInputSkip(model.operations[operation])) {
629 continue;
630 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100631 const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
632 validate(device, message, model, [operation](Model* model) {
633 uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
634 hidl_vec_push_back(&model->operations[operation].inputs, index);
635 hidl_vec_push_back(&model->inputIndexes, index);
636 });
637 }
638}
639
640///////////////////////// ADD OPERATION OUTPUT /////////////////////////
641
642static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
643 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
644 const std::string message =
645 "addOperationOutputTest: operation " + std::to_string(operation);
646 validate(device, message, model, [operation](Model* model) {
647 uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
648 hidl_vec_push_back(&model->operations[operation].outputs, index);
649 hidl_vec_push_back(&model->outputIndexes, index);
650 });
651 }
652}
653
654///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
655
656static const int32_t invalidExecutionPreferences[] = {
657 static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
658 static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
659};
660
661static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
662 for (int32_t preference : invalidExecutionPreferences) {
663 const std::string message =
664 "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
665 validate(device, message, model, [](Model*) {},
666 static_cast<ExecutionPreference>(preference));
667 }
668}
669
670////////////////////////// ENTRY POINT //////////////////////////////
671
672void ValidationTest::validateModel(const Model& model) {
673 mutateOperandTypeTest(device, model);
674 mutateOperandRankTest(device, model);
675 mutateOperandScaleTest(device, model);
676 mutateOperandZeroPointTest(device, model);
677 mutateOperationOperandTypeTest(device, model);
678 mutateOperationTypeTest(device, model);
679 mutateOperationInputOperandIndexTest(device, model);
680 mutateOperationOutputOperandIndexTest(device, model);
681 removeOperandTest(device, model);
682 removeOperationTest(device, model);
683 removeOperationInputTest(device, model);
684 removeOperationOutputTest(device, model);
685 addOperationInputTest(device, model);
686 addOperationOutputTest(device, model);
687 mutateExecutionPreferenceTest(device, model);
688}
689
690} // namespace functional
691} // namespace vts
692} // namespace V1_2
693} // namespace neuralnetworks
694} // namespace hardware
695} // namespace android