blob: aa23fec6195fec3e70574f83bed07ea6b23b5578 [file] [log] [blame]
Slava Shklyaev871be942018-09-12 14:52:02 +01001/*
2 * Copyright (C) 2018 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#define LOG_TAG "neuralnetworks_hidl_hal_test"
18
19#include "VtsHalNeuralnetworks.h"
20
21#include "Callbacks.h"
22
23namespace android {
24namespace hardware {
25namespace neuralnetworks {
26namespace V1_2 {
27
28using V1_0::IPreparedModel;
Slava Shklyaev871be942018-09-12 14:52:02 +010029using V1_0::OperandLifeTime;
Slava Shklyaev871be942018-09-12 14:52:02 +010030using V1_1::ExecutionPreference;
31
32namespace vts {
33namespace functional {
34
35using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
36using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
37
38///////////////////////// UTILITY FUNCTIONS /////////////////////////
39
40static void validateGetSupportedOperations(const sp<IDevice>& device, const std::string& message,
41 const Model& model) {
42 SCOPED_TRACE(message + " [getSupportedOperations_1_2]");
43
44 Return<void> ret =
45 device->getSupportedOperations_1_2(model, [&](ErrorStatus status, const hidl_vec<bool>&) {
46 EXPECT_EQ(ErrorStatus::INVALID_ARGUMENT, status);
47 });
48 EXPECT_TRUE(ret.isOk());
49}
50
51static void validatePrepareModel(const sp<IDevice>& device, const std::string& message,
52 const Model& model, ExecutionPreference preference) {
53 SCOPED_TRACE(message + " [prepareModel_1_2]");
54
55 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
56 ASSERT_NE(nullptr, preparedModelCallback.get());
57 Return<ErrorStatus> prepareLaunchStatus =
58 device->prepareModel_1_2(model, preference, preparedModelCallback);
59 ASSERT_TRUE(prepareLaunchStatus.isOk());
60 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, static_cast<ErrorStatus>(prepareLaunchStatus));
61
62 preparedModelCallback->wait();
63 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
64 ASSERT_EQ(ErrorStatus::INVALID_ARGUMENT, prepareReturnStatus);
65 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
66 ASSERT_EQ(nullptr, preparedModel.get());
67}
68
69static bool validExecutionPreference(ExecutionPreference preference) {
70 return preference == ExecutionPreference::LOW_POWER ||
71 preference == ExecutionPreference::FAST_SINGLE_ANSWER ||
72 preference == ExecutionPreference::SUSTAINED_SPEED;
73}
74
75// Primary validation function. This function will take a valid model, apply a
76// mutation to it to invalidate the model, then pass it to interface calls that
77// use the model. Note that the model here is passed by value, and any mutation
78// to the model does not leave this function.
79static void validate(const sp<IDevice>& device, const std::string& message, Model model,
80 const std::function<void(Model*)>& mutation,
81 ExecutionPreference preference = ExecutionPreference::FAST_SINGLE_ANSWER) {
82 mutation(&model);
83 if (validExecutionPreference(preference)) {
84 validateGetSupportedOperations(device, message, model);
85 }
86 validatePrepareModel(device, message, model, preference);
87}
88
89// Delete element from hidl_vec. hidl_vec doesn't support a "remove" operation,
90// so this is efficiently accomplished by moving the element to the end and
91// resizing the hidl_vec to one less.
92template <typename Type>
93static void hidl_vec_removeAt(hidl_vec<Type>* vec, uint32_t index) {
94 if (vec) {
95 std::rotate(vec->begin() + index, vec->begin() + index + 1, vec->end());
96 vec->resize(vec->size() - 1);
97 }
98}
99
100template <typename Type>
101static uint32_t hidl_vec_push_back(hidl_vec<Type>* vec, const Type& value) {
102 // assume vec is valid
103 const uint32_t index = vec->size();
104 vec->resize(index + 1);
105 (*vec)[index] = value;
106 return index;
107}
108
109static uint32_t addOperand(Model* model) {
110 return hidl_vec_push_back(&model->operands,
111 {
112 .type = OperandType::INT32,
113 .dimensions = {},
114 .numberOfConsumers = 0,
115 .scale = 0.0f,
116 .zeroPoint = 0,
117 .lifetime = OperandLifeTime::MODEL_INPUT,
118 .location = {.poolIndex = 0, .offset = 0, .length = 0},
119 });
120}
121
122static uint32_t addOperand(Model* model, OperandLifeTime lifetime) {
123 uint32_t index = addOperand(model);
124 model->operands[index].numberOfConsumers = 1;
125 model->operands[index].lifetime = lifetime;
126 return index;
127}
128
129///////////////////////// VALIDATE MODEL OPERAND TYPE /////////////////////////
130
Michael K. Sandersc785d462018-10-30 15:16:54 +0000131static const uint32_t invalidOperandTypes[] = {
132 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MIN) - 1,
133 static_cast<uint32_t>(OperandTypeRange::OPERAND_FUNDAMENTAL_MAX) + 1,
134 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MIN) - 1,
135 static_cast<uint32_t>(OperandTypeRange::OPERAND_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100136};
137
138static void mutateOperandTypeTest(const sp<IDevice>& device, const Model& model) {
139 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000140 for (uint32_t invalidOperandType : invalidOperandTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100141 const std::string message = "mutateOperandTypeTest: operand " +
142 std::to_string(operand) + " set to value " +
143 std::to_string(invalidOperandType);
144 validate(device, message, model, [operand, invalidOperandType](Model* model) {
145 model->operands[operand].type = static_cast<OperandType>(invalidOperandType);
146 });
147 }
148 }
149}
150
151///////////////////////// VALIDATE OPERAND RANK /////////////////////////
152
153static uint32_t getInvalidRank(OperandType type) {
154 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800155 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100156 case OperandType::FLOAT32:
157 case OperandType::INT32:
158 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100159 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100160 return 1;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100161 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100162 case OperandType::TENSOR_FLOAT32:
163 case OperandType::TENSOR_INT32:
164 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000165 case OperandType::TENSOR_QUANT16_SYMM:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000166 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100167 return 0;
168 default:
169 return 0;
170 }
171}
172
173static void mutateOperandRankTest(const sp<IDevice>& device, const Model& model) {
174 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
175 const uint32_t invalidRank = getInvalidRank(model.operands[operand].type);
176 const std::string message = "mutateOperandRankTest: operand " + std::to_string(operand) +
177 " has rank of " + std::to_string(invalidRank);
178 validate(device, message, model, [operand, invalidRank](Model* model) {
179 model->operands[operand].dimensions = std::vector<uint32_t>(invalidRank, 0);
180 });
181 }
182}
183
184///////////////////////// VALIDATE OPERAND SCALE /////////////////////////
185
186static float getInvalidScale(OperandType type) {
187 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800188 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100189 case OperandType::FLOAT32:
190 case OperandType::INT32:
191 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100192 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100193 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100194 case OperandType::TENSOR_FLOAT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000195 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100196 return 1.0f;
197 case OperandType::TENSOR_INT32:
198 return -1.0f;
199 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000200 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100201 return 0.0f;
202 default:
203 return 0.0f;
204 }
205}
206
207static void mutateOperandScaleTest(const sp<IDevice>& device, const Model& model) {
208 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
209 const float invalidScale = getInvalidScale(model.operands[operand].type);
210 const std::string message = "mutateOperandScaleTest: operand " + std::to_string(operand) +
211 " has scale of " + std::to_string(invalidScale);
212 validate(device, message, model, [operand, invalidScale](Model* model) {
213 model->operands[operand].scale = invalidScale;
214 });
215 }
216}
217
218///////////////////////// VALIDATE OPERAND ZERO POINT /////////////////////////
219
220static std::vector<int32_t> getInvalidZeroPoints(OperandType type) {
221 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800222 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100223 case OperandType::FLOAT32:
224 case OperandType::INT32:
225 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100226 case OperandType::BOOL:
Michael K. Sanders19d63452018-10-12 09:10:15 +0100227 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100228 case OperandType::TENSOR_FLOAT32:
229 case OperandType::TENSOR_INT32:
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000230 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100231 return {1};
232 case OperandType::TENSOR_QUANT8_ASYMM:
233 return {-1, 256};
Lev Proleev48c88202018-11-13 15:42:36 +0000234 case OperandType::TENSOR_QUANT16_SYMM:
235 return {-32769, -1, 1, 32768};
Slava Shklyaev871be942018-09-12 14:52:02 +0100236 default:
237 return {};
238 }
239}
240
241static void mutateOperandZeroPointTest(const sp<IDevice>& device, const Model& model) {
242 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
243 const std::vector<int32_t> invalidZeroPoints =
244 getInvalidZeroPoints(model.operands[operand].type);
245 for (int32_t invalidZeroPoint : invalidZeroPoints) {
246 const std::string message = "mutateOperandZeroPointTest: operand " +
247 std::to_string(operand) + " has zero point of " +
248 std::to_string(invalidZeroPoint);
249 validate(device, message, model, [operand, invalidZeroPoint](Model* model) {
250 model->operands[operand].zeroPoint = invalidZeroPoint;
251 });
252 }
253 }
254}
255
256///////////////////////// VALIDATE EXTRA ??? /////////////////////////
257
258// TODO: Operand::lifetime
259// TODO: Operand::location
260
261///////////////////////// VALIDATE OPERATION OPERAND TYPE /////////////////////////
262
263static void mutateOperand(Operand* operand, OperandType type) {
264 Operand newOperand = *operand;
265 newOperand.type = type;
266 switch (type) {
Xusong Wang7bca34b2018-12-05 14:21:51 -0800267 case OperandType::FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100268 case OperandType::FLOAT32:
269 case OperandType::INT32:
270 case OperandType::UINT32:
Lev Proleevabad9ea2018-10-01 11:18:31 +0100271 case OperandType::BOOL:
Slava Shklyaev871be942018-09-12 14:52:02 +0100272 newOperand.dimensions = hidl_vec<uint32_t>();
273 newOperand.scale = 0.0f;
274 newOperand.zeroPoint = 0;
275 break;
Michael K. Sanders19d63452018-10-12 09:10:15 +0100276 case OperandType::TENSOR_FLOAT16:
Slava Shklyaev871be942018-09-12 14:52:02 +0100277 case OperandType::TENSOR_FLOAT32:
278 newOperand.dimensions =
279 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
280 newOperand.scale = 0.0f;
281 newOperand.zeroPoint = 0;
282 break;
283 case OperandType::TENSOR_INT32:
284 newOperand.dimensions =
285 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
286 newOperand.zeroPoint = 0;
287 break;
288 case OperandType::TENSOR_QUANT8_ASYMM:
Lev Proleev48c88202018-11-13 15:42:36 +0000289 case OperandType::TENSOR_QUANT16_SYMM:
Slava Shklyaev871be942018-09-12 14:52:02 +0100290 newOperand.dimensions =
291 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
292 newOperand.scale = operand->scale != 0.0f ? operand->scale : 1.0f;
293 break;
Przemyslaw Szczepaniakfaa59b82018-11-08 15:22:17 +0000294 case OperandType::TENSOR_QUANT8_SYMM_PER_CHANNEL: {
295 newOperand.dimensions =
296 operand->dimensions.size() > 0 ? operand->dimensions : hidl_vec<uint32_t>({1});
297 newOperand.scale = 0.0f;
298 newOperand.zeroPoint = 0;
299
300 SymmPerChannelQuantParams channelQuant;
301 channelQuant.channelDim = 0;
302 channelQuant.scales = hidl_vec<float>(
303 operand->dimensions.size() > 0 ? static_cast<size_t>(operand->dimensions[0]) : 0);
304 for (size_t i = 0; i < channelQuant.scales.size(); ++i) {
305 channelQuant.scales[i] = 1.0f;
306 }
307 newOperand.extraParams.channelQuant(std::move(channelQuant));
308 } break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100309 case OperandType::OEM:
310 case OperandType::TENSOR_OEM_BYTE:
311 default:
312 break;
313 }
314 *operand = newOperand;
315}
316
Xusong Wang5b747ae2018-10-05 11:49:13 -0700317static bool mutateOperationOperandTypeSkip(size_t operand, OperandType type, const Model& model) {
318 // Do not test OEM types
319 if (type == model.operands[operand].type || type == OperandType::OEM ||
320 type == OperandType::TENSOR_OEM_BYTE) {
321 return true;
322 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100323 for (const Operation& operation : model.operations) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700324 // Skip mutateOperationOperandTypeTest for the following operations.
325 // - LSH_PROJECTION's second argument is allowed to have any type.
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000326 // - ARGMIN and ARGMAX's first argument can be any of
327 // TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
328 // - CAST's argument can be any of TENSOR_(FLOAT16|FLOAT32|INT32|QUANT8_ASYMM).
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000329 // - RANDOM_MULTINOMIAL's argument can be either TENSOR_FLOAT16 or TENSOR_FLOAT32.
Xusong Wang5b747ae2018-10-05 11:49:13 -0700330 switch (operation.type) {
331 case OperationType::LSH_PROJECTION: {
332 if (operand == operation.inputs[1]) {
333 return true;
334 }
335 } break;
336 case OperationType::CAST:
337 case OperationType::ARGMAX:
338 case OperationType::ARGMIN: {
Michael K. Sandersbbdab2f2018-11-28 10:35:08 +0000339 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32 ||
340 type == OperandType::TENSOR_INT32 || type == OperandType::TENSOR_QUANT8_ASYMM) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700341 return true;
342 }
343 } break;
Michael K. Sanders5b2615b2018-12-06 12:34:07 +0000344 case OperationType::RANDOM_MULTINOMIAL: {
345 if (type == OperandType::TENSOR_FLOAT16 || type == OperandType::TENSOR_FLOAT32) {
346 return true;
347 }
348 } break;
Xusong Wang5b747ae2018-10-05 11:49:13 -0700349 default:
350 break;
Slava Shklyaev871be942018-09-12 14:52:02 +0100351 }
352 }
353 return false;
354}
355
356static void mutateOperationOperandTypeTest(const sp<IDevice>& device, const Model& model) {
357 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100358 for (OperandType invalidOperandType : hidl_enum_range<OperandType>{}) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700359 if (mutateOperationOperandTypeSkip(operand, invalidOperandType, model)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100360 continue;
361 }
362 const std::string message = "mutateOperationOperandTypeTest: operand " +
363 std::to_string(operand) + " set to type " +
364 toString(invalidOperandType);
365 validate(device, message, model, [operand, invalidOperandType](Model* model) {
366 mutateOperand(&model->operands[operand], invalidOperandType);
367 });
368 }
369 }
370}
371
372///////////////////////// VALIDATE MODEL OPERATION TYPE /////////////////////////
373
Michael K. Sandersc785d462018-10-30 15:16:54 +0000374static const uint32_t invalidOperationTypes[] = {
375 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MIN) - 1,
376 static_cast<uint32_t>(OperationTypeRange::OPERATION_FUNDAMENTAL_MAX) + 1,
377 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MIN) - 1,
378 static_cast<uint32_t>(OperationTypeRange::OPERATION_OEM_MAX) + 1,
Slava Shklyaev871be942018-09-12 14:52:02 +0100379};
380
381static void mutateOperationTypeTest(const sp<IDevice>& device, const Model& model) {
382 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Michael K. Sandersc785d462018-10-30 15:16:54 +0000383 for (uint32_t invalidOperationType : invalidOperationTypes) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100384 const std::string message = "mutateOperationTypeTest: operation " +
385 std::to_string(operation) + " set to value " +
386 std::to_string(invalidOperationType);
387 validate(device, message, model, [operation, invalidOperationType](Model* model) {
388 model->operations[operation].type =
389 static_cast<OperationType>(invalidOperationType);
390 });
391 }
392 }
393}
394
395///////////////////////// VALIDATE MODEL OPERATION INPUT OPERAND INDEX /////////////////////////
396
397static void mutateOperationInputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
398 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
399 const uint32_t invalidOperand = model.operands.size();
400 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
401 const std::string message = "mutateOperationInputOperandIndexTest: operation " +
402 std::to_string(operation) + " input " +
403 std::to_string(input);
404 validate(device, message, model, [operation, input, invalidOperand](Model* model) {
405 model->operations[operation].inputs[input] = invalidOperand;
406 });
407 }
408 }
409}
410
411///////////////////////// VALIDATE MODEL OPERATION OUTPUT OPERAND INDEX /////////////////////////
412
413static void mutateOperationOutputOperandIndexTest(const sp<IDevice>& device, const Model& model) {
414 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
415 const uint32_t invalidOperand = model.operands.size();
416 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
417 const std::string message = "mutateOperationOutputOperandIndexTest: operation " +
418 std::to_string(operation) + " output " +
419 std::to_string(output);
420 validate(device, message, model, [operation, output, invalidOperand](Model* model) {
421 model->operations[operation].outputs[output] = invalidOperand;
422 });
423 }
424 }
425}
426
427///////////////////////// REMOVE OPERAND FROM EVERYTHING /////////////////////////
428
429static void removeValueAndDecrementGreaterValues(hidl_vec<uint32_t>* vec, uint32_t value) {
430 if (vec) {
431 // remove elements matching "value"
432 auto last = std::remove(vec->begin(), vec->end(), value);
433 vec->resize(std::distance(vec->begin(), last));
434
435 // decrement elements exceeding "value"
436 std::transform(vec->begin(), vec->end(), vec->begin(),
437 [value](uint32_t v) { return v > value ? v-- : v; });
438 }
439}
440
441static void removeOperand(Model* model, uint32_t index) {
442 hidl_vec_removeAt(&model->operands, index);
443 for (Operation& operation : model->operations) {
444 removeValueAndDecrementGreaterValues(&operation.inputs, index);
445 removeValueAndDecrementGreaterValues(&operation.outputs, index);
446 }
447 removeValueAndDecrementGreaterValues(&model->inputIndexes, index);
448 removeValueAndDecrementGreaterValues(&model->outputIndexes, index);
449}
450
Xusong Wang5b747ae2018-10-05 11:49:13 -0700451static bool removeOperandSkip(size_t operand, const Model& model) {
452 for (const Operation& operation : model.operations) {
453 // Skip removeOperandTest for the following operations.
454 // - SPLIT's outputs are not checked during prepareModel.
455 if (operation.type == OperationType::SPLIT) {
456 for (const size_t outOprand : operation.outputs) {
457 if (operand == outOprand) {
458 return true;
459 }
460 }
461 }
462 }
463 return false;
464}
465
Slava Shklyaev871be942018-09-12 14:52:02 +0100466static void removeOperandTest(const sp<IDevice>& device, const Model& model) {
467 for (size_t operand = 0; operand < model.operands.size(); ++operand) {
Xusong Wang5b747ae2018-10-05 11:49:13 -0700468 if (removeOperandSkip(operand, model)) {
469 continue;
470 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100471 const std::string message = "removeOperandTest: operand " + std::to_string(operand);
472 validate(device, message, model,
473 [operand](Model* model) { removeOperand(model, operand); });
474 }
475}
476
477///////////////////////// REMOVE OPERATION /////////////////////////
478
479static void removeOperation(Model* model, uint32_t index) {
480 for (uint32_t operand : model->operations[index].inputs) {
481 model->operands[operand].numberOfConsumers--;
482 }
483 hidl_vec_removeAt(&model->operations, index);
484}
485
486static void removeOperationTest(const sp<IDevice>& device, const Model& model) {
487 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
488 const std::string message = "removeOperationTest: operation " + std::to_string(operation);
489 validate(device, message, model,
490 [operation](Model* model) { removeOperation(model, operation); });
491 }
492}
493
494///////////////////////// REMOVE OPERATION INPUT /////////////////////////
495
Xusong Wang5b747ae2018-10-05 11:49:13 -0700496static bool removeOperationInputSkip(const Operation& op, size_t input) {
497 // Skip removeOperationInputTest for the following operations.
498 // - CONCATENATION has at least 2 inputs, with the last element being INT32.
499 // - CONV_2D, DEPTHWISE_CONV_2D, MAX_POOL_2D, AVERAGE_POOL_2D, L2_POOL_2D, RESIZE_BILINEAR,
500 // SPACE_TO_DEPTH, SPACE_TO_DEPTH, SPACE_TO_BATCH_ND, BATCH_TO_SPACE_ND can have an optional
501 // layout parameter.
502 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional axis
503 // parameter.
504 switch (op.type) {
505 case OperationType::CONCATENATION: {
506 if (op.inputs.size() > 2 && input != op.inputs.size() - 1) {
507 return true;
508 }
509 } break;
510 case OperationType::DEPTHWISE_CONV_2D: {
511 if ((op.inputs.size() == 12 && input == 11) || (op.inputs.size() == 9 && input == 8)) {
512 return true;
513 }
514 } break;
515 case OperationType::CONV_2D:
516 case OperationType::AVERAGE_POOL_2D:
517 case OperationType::MAX_POOL_2D:
518 case OperationType::L2_POOL_2D: {
519 if ((op.inputs.size() == 11 && input == 10) || (op.inputs.size() == 8 && input == 7)) {
520 return true;
521 }
522 } break;
523 case OperationType::RESIZE_BILINEAR: {
524 if (op.inputs.size() == 4 && input == 3) {
525 return true;
526 }
527 } break;
528 case OperationType::SPACE_TO_DEPTH:
529 case OperationType::DEPTH_TO_SPACE:
530 case OperationType::BATCH_TO_SPACE_ND: {
531 if (op.inputs.size() == 3 && input == 2) {
532 return true;
533 }
534 } break;
535 case OperationType::SPACE_TO_BATCH_ND: {
536 if (op.inputs.size() == 4 && input == 3) {
537 return true;
538 }
539 } break;
540 case OperationType::L2_NORMALIZATION: {
541 if (op.inputs.size() == 2 && input == 1) {
542 return true;
543 }
544 } break;
545 case OperationType::LOCAL_RESPONSE_NORMALIZATION: {
546 if (op.inputs.size() == 6 && input == 5) {
547 return true;
548 }
549 } break;
550 case OperationType::SOFTMAX: {
551 if (op.inputs.size() == 3 && input == 2) {
552 return true;
553 }
554 } break;
555 default:
556 break;
557 }
558 return false;
559}
560
Slava Shklyaev871be942018-09-12 14:52:02 +0100561static void removeOperationInputTest(const sp<IDevice>& device, const Model& model) {
562 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
563 for (size_t input = 0; input < model.operations[operation].inputs.size(); ++input) {
564 const Operation& op = model.operations[operation];
Xusong Wang5b747ae2018-10-05 11:49:13 -0700565 if (removeOperationInputSkip(op, input)) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100566 continue;
567 }
568 const std::string message = "removeOperationInputTest: operation " +
569 std::to_string(operation) + ", input " +
570 std::to_string(input);
571 validate(device, message, model, [operation, input](Model* model) {
572 uint32_t operand = model->operations[operation].inputs[input];
573 model->operands[operand].numberOfConsumers--;
574 hidl_vec_removeAt(&model->operations[operation].inputs, input);
575 });
576 }
577 }
578}
579
580///////////////////////// REMOVE OPERATION OUTPUT /////////////////////////
581
582static void removeOperationOutputTest(const sp<IDevice>& device, const Model& model) {
583 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
584 for (size_t output = 0; output < model.operations[operation].outputs.size(); ++output) {
585 const std::string message = "removeOperationOutputTest: operation " +
586 std::to_string(operation) + ", output " +
587 std::to_string(output);
588 validate(device, message, model, [operation, output](Model* model) {
589 hidl_vec_removeAt(&model->operations[operation].outputs, output);
590 });
591 }
592 }
593}
594
595///////////////////////// MODEL VALIDATION /////////////////////////
596
597// TODO: remove model input
598// TODO: remove model output
599// TODO: add unused operation
600
601///////////////////////// ADD OPERATION INPUT /////////////////////////
602
Xusong Wang5b747ae2018-10-05 11:49:13 -0700603static bool addOperationInputSkip(const Operation& op) {
Xusong Wang64337282018-10-22 13:49:00 -0700604 // Skip addOperationInputTest for the following operations.
Xusong Wang5b747ae2018-10-05 11:49:13 -0700605 // - L2_NORMALIZATION, LOCAL_RESPONSE_NORMALIZATION, SOFTMAX can have an optional INT32 axis
606 // parameter.
607 if ((op.type == OperationType::L2_NORMALIZATION && op.inputs.size() == 1) ||
608 (op.type == OperationType::LOCAL_RESPONSE_NORMALIZATION && op.inputs.size() == 5) ||
609 (op.type == OperationType::SOFTMAX && op.inputs.size() == 2)) {
Xusong Wang64337282018-10-22 13:49:00 -0700610 return true;
611 }
612 return false;
613}
614
Slava Shklyaev871be942018-09-12 14:52:02 +0100615static void addOperationInputTest(const sp<IDevice>& device, const Model& model) {
616 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
Xusong Wang64337282018-10-22 13:49:00 -0700617 if (addOperationInputSkip(model.operations[operation])) {
618 continue;
619 }
Slava Shklyaev871be942018-09-12 14:52:02 +0100620 const std::string message = "addOperationInputTest: operation " + std::to_string(operation);
621 validate(device, message, model, [operation](Model* model) {
622 uint32_t index = addOperand(model, OperandLifeTime::MODEL_INPUT);
623 hidl_vec_push_back(&model->operations[operation].inputs, index);
624 hidl_vec_push_back(&model->inputIndexes, index);
625 });
626 }
627}
628
629///////////////////////// ADD OPERATION OUTPUT /////////////////////////
630
631static void addOperationOutputTest(const sp<IDevice>& device, const Model& model) {
632 for (size_t operation = 0; operation < model.operations.size(); ++operation) {
633 const std::string message =
634 "addOperationOutputTest: operation " + std::to_string(operation);
635 validate(device, message, model, [operation](Model* model) {
636 uint32_t index = addOperand(model, OperandLifeTime::MODEL_OUTPUT);
637 hidl_vec_push_back(&model->operations[operation].outputs, index);
638 hidl_vec_push_back(&model->outputIndexes, index);
639 });
640 }
641}
642
643///////////////////////// VALIDATE EXECUTION PREFERENCE /////////////////////////
644
645static const int32_t invalidExecutionPreferences[] = {
646 static_cast<int32_t>(ExecutionPreference::LOW_POWER) - 1, // lower bound
647 static_cast<int32_t>(ExecutionPreference::SUSTAINED_SPEED) + 1, // upper bound
648};
649
650static void mutateExecutionPreferenceTest(const sp<IDevice>& device, const Model& model) {
651 for (int32_t preference : invalidExecutionPreferences) {
652 const std::string message =
653 "mutateExecutionPreferenceTest: preference " + std::to_string(preference);
654 validate(device, message, model, [](Model*) {},
655 static_cast<ExecutionPreference>(preference));
656 }
657}
658
659////////////////////////// ENTRY POINT //////////////////////////////
660
661void ValidationTest::validateModel(const Model& model) {
662 mutateOperandTypeTest(device, model);
663 mutateOperandRankTest(device, model);
664 mutateOperandScaleTest(device, model);
665 mutateOperandZeroPointTest(device, model);
666 mutateOperationOperandTypeTest(device, model);
667 mutateOperationTypeTest(device, model);
668 mutateOperationInputOperandIndexTest(device, model);
669 mutateOperationOutputOperandIndexTest(device, model);
670 removeOperandTest(device, model);
671 removeOperationTest(device, model);
672 removeOperationInputTest(device, model);
673 removeOperationOutputTest(device, model);
674 addOperationInputTest(device, model);
675 addOperationOutputTest(device, model);
676 mutateExecutionPreferenceTest(device, model);
677}
678
679} // namespace functional
680} // namespace vts
681} // namespace V1_2
682} // namespace neuralnetworks
683} // namespace hardware
684} // namespace android