blob: db10f6d5a27ba20b5e3fa3877658b20fd650fcc0 [file] [log] [blame]
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butlercf22a572017-09-22 13:26:12 -070017#include "Callbacks.h"
Michael Butler29471a82019-01-15 11:02:55 -080018#include "ExecutionBurstController.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070019#include "TestHarness.h"
Miao Wang4862d612018-02-05 17:26:54 -080020#include "Utils.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070021
22#include <android-base/logging.h>
Miao Wang4862d612018-02-05 17:26:54 -080023#include <android/hardware/neuralnetworks/1.0/IDevice.h>
24#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
25#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
26#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
27#include <android/hardware/neuralnetworks/1.0/types.h>
Xusong Wang1a06e772018-10-31 08:43:12 -070028#include <android/hardware/neuralnetworks/1.1/IDevice.h>
29#include <android/hardware/neuralnetworks/1.2/IDevice.h>
30#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
31#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
32#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
Miao Wang4862d612018-02-05 17:26:54 -080033#include <android/hidl/allocator/1.0/IAllocator.h>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070034#include <android/hidl/memory/1.0/IMemory.h>
35#include <hidlmemory/mapping.h>
Michael Butler0897ab32017-10-04 02:38:42 -070036#include <iostream>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070037
38namespace android {
39namespace hardware {
40namespace neuralnetworks {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070041
42namespace generated_tests {
Xusong Wang1a06e772018-10-31 08:43:12 -070043using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
44using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaevdc98cb02018-11-30 17:55:12 +000045using ::test_helper::bool8;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010046using ::test_helper::compare;
47using ::test_helper::expectMultinomialDistributionWithinTolerance;
Mika Raentod534d322018-04-17 16:49:50 +010048using ::test_helper::filter;
49using ::test_helper::for_all;
50using ::test_helper::for_each;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010051using ::test_helper::MixedTyped;
52using ::test_helper::MixedTypedExample;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010053using ::test_helper::resize_accordingly;
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070054
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070055template <typename T>
David Gross55a3d322019-01-23 14:01:52 -080056void copy_back_(std::map<int, std::vector<T>>* dst, const std::vector<RequestArgument>& ra,
57 char* src) {
58 for_each<T>(*dst, [&ra, src](int index, std::vector<T>& m) {
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070059 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070060 char* begin = src + ra[index].location.offset;
61 memcpy(m.data(), begin, ra[index].location.length);
62 });
63}
64
65void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
David Gross55a3d322019-01-23 14:01:52 -080066 copy_back_(&dst->float32Operands, ra, src);
67 copy_back_(&dst->int32Operands, ra, src);
68 copy_back_(&dst->quant8AsymmOperands, ra, src);
69 copy_back_(&dst->quant16SymmOperands, ra, src);
70 copy_back_(&dst->float16Operands, ra, src);
71 copy_back_(&dst->bool8Operands, ra, src);
72 copy_back_(&dst->quant8ChannelOperands, ra, src);
73 copy_back_(&dst->quant16AsymmOperands, ra, src);
74 static_assert(8 == MixedTyped::kNumTypes,
Lev Proleevd36b7a82018-11-02 12:44:11 +000075 "Number of types in MixedTyped changed, but copy_back function wasn't updated");
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070076}
77
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070078// Top level driver for models and examples generated by test_generator.py
79// Test driver for those generated from ml/nn/runtime/test/spec
Xusong Wang1a06e772018-10-31 08:43:12 -070080static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
David Gross55a3d322019-01-23 14:01:52 -080081 const Request& request, MeasureTiming,
Xusong Wang1a06e772018-10-31 08:43:12 -070082 sp<ExecutionCallback>& callback) {
83 return preparedModel->execute(request, callback);
84}
85static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
David Gross55a3d322019-01-23 14:01:52 -080086 const Request& request, MeasureTiming measure,
Xusong Wang1a06e772018-10-31 08:43:12 -070087 sp<ExecutionCallback>& callback) {
David Gross55a3d322019-01-23 14:01:52 -080088 return preparedModel->execute_1_2(request, measure, callback);
Xusong Wang1a06e772018-10-31 08:43:12 -070089}
Xusong Wangb50bc312018-11-07 09:33:59 -080090static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>&, const Request&,
David Gross55a3d322019-01-23 14:01:52 -080091 MeasureTiming, hidl_vec<OutputShape>*, Timing*) {
David Gross4592ed12018-12-21 11:20:26 -080092 ADD_FAILURE() << "asking for synchronous execution at V1_0";
93 return ErrorStatus::GENERAL_FAILURE;
94}
95static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
David Gross55a3d322019-01-23 14:01:52 -080096 const Request& request, MeasureTiming measure,
97 hidl_vec<OutputShape>* outputShapes,
98 Timing* timing) {
Xusong Wangb50bc312018-11-07 09:33:59 -080099 ErrorStatus result;
100 Return<void> ret = preparedModel->executeSynchronously(
David Gross55a3d322019-01-23 14:01:52 -0800101 request, measure,
102 [&result, outputShapes, timing](ErrorStatus error, const hidl_vec<OutputShape>& shapes,
103 const Timing& time) {
104 result = error;
105 *outputShapes = shapes;
106 *timing = time;
107 });
Xusong Wangb50bc312018-11-07 09:33:59 -0800108 if (!ret.isOk()) {
109 return ErrorStatus::GENERAL_FAILURE;
110 }
111 return result;
David Gross4592ed12018-12-21 11:20:26 -0800112}
Michael Butler29471a82019-01-15 11:02:55 -0800113static std::unique_ptr<::android::nn::ExecutionBurstController> CreateBurst(
114 const sp<V1_0::IPreparedModel>&) {
115 ADD_FAILURE() << "asking for burst execution at V1_0";
116 return nullptr;
117}
118static std::unique_ptr<::android::nn::ExecutionBurstController> CreateBurst(
119 const sp<V1_2::IPreparedModel>& preparedModel) {
120 return ::android::nn::createExecutionBurstController(preparedModel, /*blocking=*/true);
121}
122enum class Executor { ASYNC, SYNC, BURST };
David Gross4592ed12018-12-21 11:20:26 -0800123const float kDefaultAtol = 1e-5f;
124const float kDefaultRtol = 1e-5f;
Xusong Wang1a06e772018-10-31 08:43:12 -0700125template <typename T_IPreparedModel>
126void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael Butler29471a82019-01-15 11:02:55 -0800127 const std::vector<MixedTypedExample>& examples, bool hasRelaxedFloat32Model, float fpAtol,
128 float fpRtol, Executor executor, MeasureTiming measure, bool testDynamicOutputShape) {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700129 const uint32_t INPUT = 0;
130 const uint32_t OUTPUT = 1;
131
132 int example_no = 1;
133 for (auto& example : examples) {
134 SCOPED_TRACE(example_no++);
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100135 const MixedTyped& inputs = example.operands.first;
136 const MixedTyped& golden = example.operands.second;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700137
David Gross55a3d322019-01-23 14:01:52 -0800138 const bool hasFloat16Inputs = !inputs.float16Operands.empty();
Michael K. Sanders650fd182018-10-30 14:44:48 +0000139 if (hasRelaxedFloat32Model || hasFloat16Inputs) {
140 // TODO: Adjust the error limit based on testing.
141 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
142 fpAtol = 5.0f * 0.0009765625f;
143 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
144 fpRtol = 5.0f * 0.0009765625f;
145 }
146
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700147 std::vector<RequestArgument> inputs_info, outputs_info;
148 uint32_t inputSize = 0, outputSize = 0;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700149 // This function only partially specifies the metadata (vector of RequestArguments).
150 // The contents are copied over below.
151 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
152 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
153 RequestArgument arg = {
154 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
155 .dimensions = {},
156 };
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700157 RequestArgument arg_empty = {
158 .hasNoValue = true,
159 };
160 inputs_info[index] = s ? arg : arg_empty;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700161 inputSize += s;
162 });
163 // Compute offset for inputs 1 and so on
164 {
165 size_t offset = 0;
166 for (auto& i : inputs_info) {
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700167 if (!i.hasNoValue) i.location.offset = offset;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700168 offset += i.location.length;
169 }
170 }
171
172 MixedTyped test; // holding test results
173
174 // Go through all outputs, initialize RequestArgument descriptors
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700175 resize_accordingly(golden, test);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700176 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
177 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
178 RequestArgument arg = {
179 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
180 .dimensions = {},
181 };
182 outputs_info[index] = arg;
183 outputSize += s;
184 });
185 // Compute offset for outputs 1 and so on
186 {
187 size_t offset = 0;
188 for (auto& i : outputs_info) {
189 i.location.offset = offset;
190 offset += i.location.length;
191 }
192 }
Miao Wang4862d612018-02-05 17:26:54 -0800193 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
194 nn::allocateSharedMemory(outputSize)};
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700195 ASSERT_NE(0ull, pools[INPUT].size());
196 ASSERT_NE(0ull, pools[OUTPUT].size());
197
198 // load data
199 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
200 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
201 ASSERT_NE(nullptr, inputMemory.get());
202 ASSERT_NE(nullptr, outputMemory.get());
203 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
204 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
205 ASSERT_NE(nullptr, inputPtr);
206 ASSERT_NE(nullptr, outputPtr);
207 inputMemory->update();
208 outputMemory->update();
209
210 // Go through all inputs, copy the values
211 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
212 char* begin = (char*)p;
213 char* end = begin + s;
214 // TODO: handle more than one input
215 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
216 });
217
218 inputMemory->commit();
219 outputMemory->commit();
Michael Butlercf22a572017-09-22 13:26:12 -0700220
Michael Butler29471a82019-01-15 11:02:55 -0800221 const Request request = {.inputs = inputs_info, .outputs = outputs_info, .pools = pools};
222
Xusong Wangb50bc312018-11-07 09:33:59 -0800223 ErrorStatus executionStatus;
224 hidl_vec<OutputShape> outputShapes;
David Gross55a3d322019-01-23 14:01:52 -0800225 Timing timing;
Michael Butler29471a82019-01-15 11:02:55 -0800226 switch (executor) {
227 case Executor::ASYNC: {
228 SCOPED_TRACE("asynchronous");
Michael Butlercf22a572017-09-22 13:26:12 -0700229
Michael Butler29471a82019-01-15 11:02:55 -0800230 // launch execution
231 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
232 ASSERT_NE(nullptr, executionCallback.get());
233 Return<ErrorStatus> executionLaunchStatus =
234 ExecutePreparedModel(preparedModel, request, measure, executionCallback);
235 ASSERT_TRUE(executionLaunchStatus.isOk());
236 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
David Gross4592ed12018-12-21 11:20:26 -0800237
Michael Butler29471a82019-01-15 11:02:55 -0800238 // retrieve execution status
239 executionCallback->wait();
240 executionStatus = executionCallback->getStatus();
241 outputShapes = executionCallback->getOutputShapes();
242 timing = executionCallback->getTiming();
David Gross4592ed12018-12-21 11:20:26 -0800243
Michael Butler29471a82019-01-15 11:02:55 -0800244 break;
245 }
246 case Executor::SYNC: {
247 SCOPED_TRACE("synchronous");
248
249 // execute
250 Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
251 preparedModel, request, measure, &outputShapes, &timing);
252 ASSERT_TRUE(executionReturnStatus.isOk());
253 executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
254
255 break;
256 }
257 case Executor::BURST: {
258 SCOPED_TRACE("burst");
259
260 // create burst
261 const std::unique_ptr<::android::nn::ExecutionBurstController> controller =
262 CreateBurst(preparedModel);
263 ASSERT_NE(nullptr, controller.get());
264
265 // create memory keys
266 std::vector<intptr_t> keys(request.pools.size());
267 for (size_t i = 0; i < keys.size(); ++i) {
268 keys[i] = reinterpret_cast<intptr_t>(&request.pools[i]);
269 }
270
271 // execute burst
272 std::tie(executionStatus, outputShapes, timing) =
273 controller->compute(request, measure, keys);
274
275 break;
276 }
David Gross4592ed12018-12-21 11:20:26 -0800277 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700278
David Gross55a3d322019-01-23 14:01:52 -0800279 if (testDynamicOutputShape && executionStatus != ErrorStatus::NONE) {
280 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
281 "execute model that it does not support.";
282 std::cout << "[ ] Early termination of test because vendor service cannot "
283 "execute model that it does not support."
284 << std::endl;
285 return;
286 }
Xusong Wangb50bc312018-11-07 09:33:59 -0800287 ASSERT_EQ(ErrorStatus::NONE, executionStatus);
David Gross55a3d322019-01-23 14:01:52 -0800288 if (measure == MeasureTiming::NO) {
289 EXPECT_EQ(UINT64_MAX, timing.timeOnDevice);
290 EXPECT_EQ(UINT64_MAX, timing.timeInDriver);
291 } else {
292 if (timing.timeOnDevice != UINT64_MAX && timing.timeInDriver != UINT64_MAX) {
293 EXPECT_LE(timing.timeOnDevice, timing.timeInDriver);
294 }
295 }
296
297 // Go through all outputs, overwrite output dimensions with returned output shapes
298 if (testDynamicOutputShape) {
299 ASSERT_NE(outputShapes.size(), 0);
300 for_each<uint32_t>(test.operandDimensions,
301 [&outputShapes](int idx, std::vector<uint32_t>& dim) {
302 dim = outputShapes[idx].dimensions;
303 });
304 }
Xusong Wangb50bc312018-11-07 09:33:59 -0800305
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700306 // validate results
307 outputMemory->read();
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700308 copy_back(&test, outputs_info, outputPtr);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700309 outputMemory->commit();
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700310 // Filter out don't cares
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -0700311 MixedTyped filtered_golden = filter(golden, is_ignored);
312 MixedTyped filtered_test = filter(test, is_ignored);
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700313
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700314 // We want "close-enough" results for float
Xusong Wangf6235f82018-08-28 16:50:01 -0700315 compare(filtered_golden, filtered_test, fpAtol, fpRtol);
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100316
317 if (example.expectedMultinomialDistributionTolerance > 0) {
318 expectMultinomialDistributionWithinTolerance(test, example);
319 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700320 }
321}
David Gross4592ed12018-12-21 11:20:26 -0800322template <typename T_IPreparedModel>
323void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael Butler29471a82019-01-15 11:02:55 -0800324 const std::vector<MixedTypedExample>& examples, bool hasRelaxedFloat32Model,
325 Executor executor, MeasureTiming measure, bool testDynamicOutputShape) {
David Gross4592ed12018-12-21 11:20:26 -0800326 EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
Michael Butler29471a82019-01-15 11:02:55 -0800327 kDefaultRtol, executor, measure, testDynamicOutputShape);
David Gross4592ed12018-12-21 11:20:26 -0800328}
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700329
Xusong Wang1a06e772018-10-31 08:43:12 -0700330static void getPreparedModel(sp<PreparedModelCallback> callback,
331 sp<V1_0::IPreparedModel>* preparedModel) {
332 *preparedModel = callback->getPreparedModel();
333}
334static void getPreparedModel(sp<PreparedModelCallback> callback,
335 sp<V1_2::IPreparedModel>* preparedModel) {
336 sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
337 *preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
338}
339
Michael Butler7ed61352018-03-22 16:37:57 -0700340void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100341 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800342 V1_0::Model model = create_model();
343
344 // see if service can handle model
345 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800346 Return<void> supportedCall = device->getSupportedOperations(
Michael Butler1ae02d62018-02-26 15:24:46 -0800347 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
348 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800349 ASSERT_NE(0ul, supported.size());
350 fullySupportsModel =
351 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
352 });
353 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800354
355 // launch prepare model
356 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
357 ASSERT_NE(nullptr, preparedModelCallback.get());
Miao Wang4862d612018-02-05 17:26:54 -0800358 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
359 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800360 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800361
362 // retrieve prepared model
363 preparedModelCallback->wait();
364 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700365 sp<V1_0::IPreparedModel> preparedModel;
366 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wang4862d612018-02-05 17:26:54 -0800367
368 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800369 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800370 ASSERT_EQ(nullptr, preparedModel.get());
371 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
372 "prepare model that it does not support.";
373 std::cout << "[ ] Early termination of test because vendor service cannot "
374 "prepare model that it does not support."
375 << std::endl;
Miao Wangd2668b52019-01-08 12:27:35 -0800376 GTEST_SKIP();
Miao Wang4862d612018-02-05 17:26:54 -0800377 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800378 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800379 ASSERT_NE(nullptr, preparedModel.get());
380
Xusong Wangf6235f82018-08-28 16:50:01 -0700381 float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
Michael K. Sanders650fd182018-10-30 14:44:48 +0000382 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800383 /*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol, Executor::ASYNC, MeasureTiming::NO,
384 /*testDynamicOutputShape=*/false);
Miao Wang4862d612018-02-05 17:26:54 -0800385}
386
Michael Butler7ed61352018-03-22 16:37:57 -0700387void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100388 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800389 V1_1::Model model = create_model();
390
391 // see if service can handle model
392 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800393 Return<void> supportedCall = device->getSupportedOperations_1_1(
Michael Butler1ae02d62018-02-26 15:24:46 -0800394 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
395 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800396 ASSERT_NE(0ul, supported.size());
397 fullySupportsModel =
398 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
399 });
400 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800401
402 // launch prepare model
403 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
404 ASSERT_NE(nullptr, preparedModelCallback.get());
Michael Butlerf02692d2018-04-11 16:30:09 -0700405 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
406 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
Miao Wang4862d612018-02-05 17:26:54 -0800407 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800408 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800409
410 // retrieve prepared model
411 preparedModelCallback->wait();
412 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700413 sp<V1_0::IPreparedModel> preparedModel;
414 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wang4862d612018-02-05 17:26:54 -0800415
416 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800417 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800418 ASSERT_EQ(nullptr, preparedModel.get());
419 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
420 "prepare model that it does not support.";
421 std::cout << "[ ] Early termination of test because vendor service cannot "
422 "prepare model that it does not support."
423 << std::endl;
Miao Wangd2668b52019-01-08 12:27:35 -0800424 GTEST_SKIP();
Miao Wang4862d612018-02-05 17:26:54 -0800425 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800426 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800427 ASSERT_NE(nullptr, preparedModel.get());
428
Michael K. Sanders650fd182018-10-30 14:44:48 +0000429 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800430 model.relaxComputationFloat32toFloat16, 1e-5f, 1e-5f, Executor::ASYNC,
431 MeasureTiming::NO, /*testDynamicOutputShape=*/false);
Miao Wang4862d612018-02-05 17:26:54 -0800432}
433
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100434// TODO: Reduce code duplication.
435void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
David Gross55a3d322019-01-23 14:01:52 -0800436 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples,
437 bool testDynamicOutputShape) {
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100438 V1_2::Model model = create_model();
439
440 // see if service can handle model
441 bool fullySupportsModel = false;
442 Return<void> supportedCall = device->getSupportedOperations_1_2(
443 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
444 ASSERT_EQ(ErrorStatus::NONE, status);
445 ASSERT_NE(0ul, supported.size());
446 fullySupportsModel =
447 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
448 });
449 ASSERT_TRUE(supportedCall.isOk());
450
451 // launch prepare model
452 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
453 ASSERT_NE(nullptr, preparedModelCallback.get());
454 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
455 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
456 ASSERT_TRUE(prepareLaunchStatus.isOk());
457 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
458
459 // retrieve prepared model
460 preparedModelCallback->wait();
461 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700462 sp<V1_2::IPreparedModel> preparedModel;
463 getPreparedModel(preparedModelCallback, &preparedModel);
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100464
465 // early termination if vendor service cannot fully prepare model
466 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
467 ASSERT_EQ(nullptr, preparedModel.get());
468 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
469 "prepare model that it does not support.";
470 std::cout << "[ ] Early termination of test because vendor service cannot "
471 "prepare model that it does not support."
472 << std::endl;
Miao Wangd2668b52019-01-08 12:27:35 -0800473 GTEST_SKIP();
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100474 }
475 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
476 ASSERT_NE(nullptr, preparedModel.get());
477
Michael K. Sanders650fd182018-10-30 14:44:48 +0000478 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800479 model.relaxComputationFloat32toFloat16, Executor::ASYNC, MeasureTiming::NO,
480 testDynamicOutputShape);
David Gross4592ed12018-12-21 11:20:26 -0800481 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800482 model.relaxComputationFloat32toFloat16, Executor::SYNC, MeasureTiming::NO,
483 testDynamicOutputShape);
David Gross55a3d322019-01-23 14:01:52 -0800484 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800485 model.relaxComputationFloat32toFloat16, Executor::BURST, MeasureTiming::NO,
486 testDynamicOutputShape);
David Gross55a3d322019-01-23 14:01:52 -0800487 EvaluatePreparedModel(preparedModel, is_ignored, examples,
Michael Butler29471a82019-01-15 11:02:55 -0800488 model.relaxComputationFloat32toFloat16, Executor::ASYNC, MeasureTiming::YES,
489 testDynamicOutputShape);
490 EvaluatePreparedModel(preparedModel, is_ignored, examples,
491 model.relaxComputationFloat32toFloat16, Executor::SYNC, MeasureTiming::YES,
492 testDynamicOutputShape);
493 EvaluatePreparedModel(preparedModel, is_ignored, examples,
494 model.relaxComputationFloat32toFloat16, Executor::BURST, MeasureTiming::YES,
495 testDynamicOutputShape);
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100496}
497
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700498} // namespace generated_tests
499
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700500} // namespace neuralnetworks
501} // namespace hardware
502} // namespace android