blob: ab524c2679da7c33c3ad5dcdae00ed57e8317791 [file] [log] [blame]
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butlercf22a572017-09-22 13:26:12 -070017#include "Callbacks.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070018#include "TestHarness.h"
Miao Wang4862d612018-02-05 17:26:54 -080019#include "Utils.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070020
21#include <android-base/logging.h>
Miao Wang4862d612018-02-05 17:26:54 -080022#include <android/hardware/neuralnetworks/1.0/IDevice.h>
23#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
24#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
25#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
26#include <android/hardware/neuralnetworks/1.0/types.h>
Xusong Wang1a06e772018-10-31 08:43:12 -070027#include <android/hardware/neuralnetworks/1.1/IDevice.h>
28#include <android/hardware/neuralnetworks/1.2/IDevice.h>
29#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
30#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
31#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
Miao Wang4862d612018-02-05 17:26:54 -080032#include <android/hidl/allocator/1.0/IAllocator.h>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070033#include <android/hidl/memory/1.0/IMemory.h>
34#include <hidlmemory/mapping.h>
Michael Butler0897ab32017-10-04 02:38:42 -070035#include <iostream>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070036
37namespace android {
38namespace hardware {
39namespace neuralnetworks {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070040
41namespace generated_tests {
Xusong Wang1a06e772018-10-31 08:43:12 -070042using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
43using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaevdc98cb02018-11-30 17:55:12 +000044using ::test_helper::bool8;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010045using ::test_helper::compare;
46using ::test_helper::expectMultinomialDistributionWithinTolerance;
Mika Raentod534d322018-04-17 16:49:50 +010047using ::test_helper::filter;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010048using ::test_helper::Float32Operands;
Mika Raentod534d322018-04-17 16:49:50 +010049using ::test_helper::for_all;
50using ::test_helper::for_each;
Mika Raentod534d322018-04-17 16:49:50 +010051using ::test_helper::Int32Operands;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010052using ::test_helper::MixedTyped;
53using ::test_helper::MixedTypedExample;
Michael K. Sanders650fd182018-10-30 14:44:48 +000054using ::test_helper::MixedTypedIndex;
Mika Raentod534d322018-04-17 16:49:50 +010055using ::test_helper::Quant8Operands;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010056using ::test_helper::resize_accordingly;
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070057
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070058template <typename T>
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070059void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
60 MixedTyped& test = *dst;
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070061 for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
62 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070063 char* begin = src + ra[index].location.offset;
64 memcpy(m.data(), begin, ra[index].location.length);
65 });
66}
67
68void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
69 copy_back_<float>(dst, ra, src);
70 copy_back_<int32_t>(dst, ra, src);
71 copy_back_<uint8_t>(dst, ra, src);
Lev Proleeved7ce7a2018-11-05 13:20:06 +000072 copy_back_<int16_t>(dst, ra, src);
Michael K. Sanders650fd182018-10-30 14:44:48 +000073 copy_back_<_Float16>(dst, ra, src);
Slava Shklyaevdc98cb02018-11-30 17:55:12 +000074 copy_back_<bool8>(dst, ra, src);
75 static_assert(6 == std::tuple_size<MixedTyped>::value,
Lev Proleevd36b7a82018-11-02 12:44:11 +000076 "Number of types in MixedTyped changed, but copy_back function wasn't updated");
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070077}
78
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070079// Top level driver for models and examples generated by test_generator.py
80// Test driver for those generated from ml/nn/runtime/test/spec
Xusong Wang1a06e772018-10-31 08:43:12 -070081static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
82 const Request& request,
83 sp<ExecutionCallback>& callback) {
84 return preparedModel->execute(request, callback);
85}
86static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
87 const Request& request,
88 sp<ExecutionCallback>& callback) {
89 return preparedModel->execute_1_2(request, callback);
90}
91template <typename T_IPreparedModel>
92void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael K. Sanders650fd182018-10-30 14:44:48 +000093 const std::vector<MixedTypedExample>& examples,
94 bool hasRelaxedFloat32Model = false, float fpAtol = 1e-5f,
Xusong Wangf6235f82018-08-28 16:50:01 -070095 float fpRtol = 1e-5f) {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070096 const uint32_t INPUT = 0;
97 const uint32_t OUTPUT = 1;
98
99 int example_no = 1;
100 for (auto& example : examples) {
101 SCOPED_TRACE(example_no++);
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100102 const MixedTyped& inputs = example.operands.first;
103 const MixedTyped& golden = example.operands.second;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700104
Michael K. Sanders650fd182018-10-30 14:44:48 +0000105 const bool hasFloat16Inputs = !std::get<MixedTypedIndex<_Float16>::index>(inputs).empty();
106 if (hasRelaxedFloat32Model || hasFloat16Inputs) {
107 // TODO: Adjust the error limit based on testing.
108 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
109 fpAtol = 5.0f * 0.0009765625f;
110 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
111 fpRtol = 5.0f * 0.0009765625f;
112 }
113
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700114 std::vector<RequestArgument> inputs_info, outputs_info;
115 uint32_t inputSize = 0, outputSize = 0;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700116 // This function only partially specifies the metadata (vector of RequestArguments).
117 // The contents are copied over below.
118 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
119 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
120 RequestArgument arg = {
121 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
122 .dimensions = {},
123 };
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700124 RequestArgument arg_empty = {
125 .hasNoValue = true,
126 };
127 inputs_info[index] = s ? arg : arg_empty;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700128 inputSize += s;
129 });
130 // Compute offset for inputs 1 and so on
131 {
132 size_t offset = 0;
133 for (auto& i : inputs_info) {
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700134 if (!i.hasNoValue) i.location.offset = offset;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700135 offset += i.location.length;
136 }
137 }
138
139 MixedTyped test; // holding test results
140
141 // Go through all outputs, initialize RequestArgument descriptors
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700142 resize_accordingly(golden, test);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700143 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
144 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
145 RequestArgument arg = {
146 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
147 .dimensions = {},
148 };
149 outputs_info[index] = arg;
150 outputSize += s;
151 });
152 // Compute offset for outputs 1 and so on
153 {
154 size_t offset = 0;
155 for (auto& i : outputs_info) {
156 i.location.offset = offset;
157 offset += i.location.length;
158 }
159 }
Miao Wang4862d612018-02-05 17:26:54 -0800160 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
161 nn::allocateSharedMemory(outputSize)};
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700162 ASSERT_NE(0ull, pools[INPUT].size());
163 ASSERT_NE(0ull, pools[OUTPUT].size());
164
165 // load data
166 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
167 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
168 ASSERT_NE(nullptr, inputMemory.get());
169 ASSERT_NE(nullptr, outputMemory.get());
170 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
171 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
172 ASSERT_NE(nullptr, inputPtr);
173 ASSERT_NE(nullptr, outputPtr);
174 inputMemory->update();
175 outputMemory->update();
176
177 // Go through all inputs, copy the values
178 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
179 char* begin = (char*)p;
180 char* end = begin + s;
181 // TODO: handle more than one input
182 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
183 });
184
185 inputMemory->commit();
186 outputMemory->commit();
Michael Butlercf22a572017-09-22 13:26:12 -0700187
188 // launch execution
189 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
190 ASSERT_NE(nullptr, executionCallback.get());
Xusong Wang1a06e772018-10-31 08:43:12 -0700191 Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
192 preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
193 executionCallback);
Michael Butlercf22a572017-09-22 13:26:12 -0700194 ASSERT_TRUE(executionLaunchStatus.isOk());
195 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
196
197 // retrieve execution status
198 executionCallback->wait();
199 ErrorStatus executionReturnStatus = executionCallback->getStatus();
200 EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700201
202 // validate results
203 outputMemory->read();
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700204 copy_back(&test, outputs_info, outputPtr);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700205 outputMemory->commit();
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700206 // Filter out don't cares
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -0700207 MixedTyped filtered_golden = filter(golden, is_ignored);
208 MixedTyped filtered_test = filter(test, is_ignored);
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700209
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700210 // We want "close-enough" results for float
Xusong Wangf6235f82018-08-28 16:50:01 -0700211 compare(filtered_golden, filtered_test, fpAtol, fpRtol);
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100212
213 if (example.expectedMultinomialDistributionTolerance > 0) {
214 expectMultinomialDistributionWithinTolerance(test, example);
215 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700216 }
217}
218
Xusong Wang1a06e772018-10-31 08:43:12 -0700219static void getPreparedModel(sp<PreparedModelCallback> callback,
220 sp<V1_0::IPreparedModel>* preparedModel) {
221 *preparedModel = callback->getPreparedModel();
222}
223static void getPreparedModel(sp<PreparedModelCallback> callback,
224 sp<V1_2::IPreparedModel>* preparedModel) {
225 sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
226 *preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
227}
228
Michael Butler7ed61352018-03-22 16:37:57 -0700229void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100230 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800231 V1_0::Model model = create_model();
232
233 // see if service can handle model
234 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800235 Return<void> supportedCall = device->getSupportedOperations(
Michael Butler1ae02d62018-02-26 15:24:46 -0800236 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
237 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800238 ASSERT_NE(0ul, supported.size());
239 fullySupportsModel =
240 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
241 });
242 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800243
244 // launch prepare model
245 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
246 ASSERT_NE(nullptr, preparedModelCallback.get());
Miao Wang4862d612018-02-05 17:26:54 -0800247 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
248 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800249 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800250
251 // retrieve prepared model
252 preparedModelCallback->wait();
253 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700254 sp<V1_0::IPreparedModel> preparedModel;
255 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wang4862d612018-02-05 17:26:54 -0800256
257 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800258 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800259 ASSERT_EQ(nullptr, preparedModel.get());
260 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
261 "prepare model that it does not support.";
262 std::cout << "[ ] Early termination of test because vendor service cannot "
263 "prepare model that it does not support."
264 << std::endl;
265 return;
266 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800267 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800268 ASSERT_NE(nullptr, preparedModel.get());
269
Xusong Wangf6235f82018-08-28 16:50:01 -0700270 float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
Michael K. Sanders650fd182018-10-30 14:44:48 +0000271 EvaluatePreparedModel(preparedModel, is_ignored, examples,
272 /*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol);
Miao Wang4862d612018-02-05 17:26:54 -0800273}
274
Michael Butler7ed61352018-03-22 16:37:57 -0700275void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100276 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800277 V1_1::Model model = create_model();
278
279 // see if service can handle model
280 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800281 Return<void> supportedCall = device->getSupportedOperations_1_1(
Michael Butler1ae02d62018-02-26 15:24:46 -0800282 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
283 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800284 ASSERT_NE(0ul, supported.size());
285 fullySupportsModel =
286 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
287 });
288 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800289
290 // launch prepare model
291 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
292 ASSERT_NE(nullptr, preparedModelCallback.get());
Michael Butlerf02692d2018-04-11 16:30:09 -0700293 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
294 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
Miao Wang4862d612018-02-05 17:26:54 -0800295 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800296 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800297
298 // retrieve prepared model
299 preparedModelCallback->wait();
300 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700301 sp<V1_0::IPreparedModel> preparedModel;
302 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wang4862d612018-02-05 17:26:54 -0800303
304 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800305 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800306 ASSERT_EQ(nullptr, preparedModel.get());
307 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
308 "prepare model that it does not support.";
309 std::cout << "[ ] Early termination of test because vendor service cannot "
310 "prepare model that it does not support."
311 << std::endl;
312 return;
313 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800314 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800315 ASSERT_NE(nullptr, preparedModel.get());
316
Michael K. Sanders650fd182018-10-30 14:44:48 +0000317 EvaluatePreparedModel(preparedModel, is_ignored, examples,
318 model.relaxComputationFloat32toFloat16);
Miao Wang4862d612018-02-05 17:26:54 -0800319}
320
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100321// TODO: Reduce code duplication.
322void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100323 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100324 V1_2::Model model = create_model();
325
326 // see if service can handle model
327 bool fullySupportsModel = false;
328 Return<void> supportedCall = device->getSupportedOperations_1_2(
329 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
330 ASSERT_EQ(ErrorStatus::NONE, status);
331 ASSERT_NE(0ul, supported.size());
332 fullySupportsModel =
333 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
334 });
335 ASSERT_TRUE(supportedCall.isOk());
336
337 // launch prepare model
338 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
339 ASSERT_NE(nullptr, preparedModelCallback.get());
340 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
341 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
342 ASSERT_TRUE(prepareLaunchStatus.isOk());
343 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
344
345 // retrieve prepared model
346 preparedModelCallback->wait();
347 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wang1a06e772018-10-31 08:43:12 -0700348 sp<V1_2::IPreparedModel> preparedModel;
349 getPreparedModel(preparedModelCallback, &preparedModel);
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100350
351 // early termination if vendor service cannot fully prepare model
352 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
353 ASSERT_EQ(nullptr, preparedModel.get());
354 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
355 "prepare model that it does not support.";
356 std::cout << "[ ] Early termination of test because vendor service cannot "
357 "prepare model that it does not support."
358 << std::endl;
359 return;
360 }
361 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
362 ASSERT_NE(nullptr, preparedModel.get());
363
Michael K. Sanders650fd182018-10-30 14:44:48 +0000364 EvaluatePreparedModel(preparedModel, is_ignored, examples,
365 model.relaxComputationFloat32toFloat16);
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100366}
367
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700368} // namespace generated_tests
369
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700370} // namespace neuralnetworks
371} // namespace hardware
372} // namespace android