blob: 464fc14abb5022497ba8154e75a5960c6aeb59a1 [file] [log] [blame]
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butlercf22a572017-09-22 13:26:12 -070017#include "Callbacks.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070018#include "TestHarness.h"
Miao Wang4862d612018-02-05 17:26:54 -080019#include "Utils.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070020
21#include <android-base/logging.h>
Miao Wang4862d612018-02-05 17:26:54 -080022#include <android/hardware/neuralnetworks/1.0/IDevice.h>
23#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
24#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
25#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
26#include <android/hardware/neuralnetworks/1.0/types.h>
27#include <android/hidl/allocator/1.0/IAllocator.h>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070028#include <android/hidl/memory/1.0/IMemory.h>
29#include <hidlmemory/mapping.h>
Michael Butler0897ab32017-10-04 02:38:42 -070030#include <iostream>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070031
32namespace android {
33namespace hardware {
34namespace neuralnetworks {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070035
36namespace generated_tests {
Michael Butlercf22a572017-09-22 13:26:12 -070037using ::android::hardware::neuralnetworks::V1_0::implementation::ExecutionCallback;
38using ::android::hardware::neuralnetworks::V1_0::implementation::PreparedModelCallback;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010039using ::test_helper::compare;
40using ::test_helper::expectMultinomialDistributionWithinTolerance;
Mika Raentod534d322018-04-17 16:49:50 +010041using ::test_helper::filter;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010042using ::test_helper::Float32Operands;
Mika Raentod534d322018-04-17 16:49:50 +010043using ::test_helper::for_all;
44using ::test_helper::for_each;
Mika Raentod534d322018-04-17 16:49:50 +010045using ::test_helper::Int32Operands;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010046using ::test_helper::MixedTyped;
47using ::test_helper::MixedTypedExample;
Mika Raentod534d322018-04-17 16:49:50 +010048using ::test_helper::Quant8Operands;
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010049using ::test_helper::resize_accordingly;
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070050
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070051template <typename T>
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070052void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
53 MixedTyped& test = *dst;
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070054 for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
55 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070056 char* begin = src + ra[index].location.offset;
57 memcpy(m.data(), begin, ra[index].location.length);
58 });
59}
60
61void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
62 copy_back_<float>(dst, ra, src);
63 copy_back_<int32_t>(dst, ra, src);
64 copy_back_<uint8_t>(dst, ra, src);
Lev Proleevd36b7a82018-11-02 12:44:11 +000065 static_assert(3 == std::tuple_size<MixedTyped>::value,
66 "Number of types in MixedTyped changed, but copy_back function wasn't updated");
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070067}
68
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070069// Top level driver for models and examples generated by test_generator.py
70// Test driver for those generated from ml/nn/runtime/test/spec
Miao Wang4862d612018-02-05 17:26:54 -080071void EvaluatePreparedModel(sp<IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010072 const std::vector<MixedTypedExample>& examples, float fpAtol = 1e-5f,
Xusong Wangf6235f82018-08-28 16:50:01 -070073 float fpRtol = 1e-5f) {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070074 const uint32_t INPUT = 0;
75 const uint32_t OUTPUT = 1;
76
77 int example_no = 1;
78 for (auto& example : examples) {
79 SCOPED_TRACE(example_no++);
80
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +010081 const MixedTyped& inputs = example.operands.first;
82 const MixedTyped& golden = example.operands.second;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070083
84 std::vector<RequestArgument> inputs_info, outputs_info;
85 uint32_t inputSize = 0, outputSize = 0;
86
87 // This function only partially specifies the metadata (vector of RequestArguments).
88 // The contents are copied over below.
89 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
90 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
91 RequestArgument arg = {
92 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
93 .dimensions = {},
94 };
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -070095 RequestArgument arg_empty = {
96 .hasNoValue = true,
97 };
98 inputs_info[index] = s ? arg : arg_empty;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070099 inputSize += s;
100 });
101 // Compute offset for inputs 1 and so on
102 {
103 size_t offset = 0;
104 for (auto& i : inputs_info) {
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700105 if (!i.hasNoValue) i.location.offset = offset;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700106 offset += i.location.length;
107 }
108 }
109
110 MixedTyped test; // holding test results
111
112 // Go through all outputs, initialize RequestArgument descriptors
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700113 resize_accordingly(golden, test);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700114 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
115 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
116 RequestArgument arg = {
117 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
118 .dimensions = {},
119 };
120 outputs_info[index] = arg;
121 outputSize += s;
122 });
123 // Compute offset for outputs 1 and so on
124 {
125 size_t offset = 0;
126 for (auto& i : outputs_info) {
127 i.location.offset = offset;
128 offset += i.location.length;
129 }
130 }
Miao Wang4862d612018-02-05 17:26:54 -0800131 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
132 nn::allocateSharedMemory(outputSize)};
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700133 ASSERT_NE(0ull, pools[INPUT].size());
134 ASSERT_NE(0ull, pools[OUTPUT].size());
135
136 // load data
137 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
138 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
139 ASSERT_NE(nullptr, inputMemory.get());
140 ASSERT_NE(nullptr, outputMemory.get());
141 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
142 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
143 ASSERT_NE(nullptr, inputPtr);
144 ASSERT_NE(nullptr, outputPtr);
145 inputMemory->update();
146 outputMemory->update();
147
148 // Go through all inputs, copy the values
149 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
150 char* begin = (char*)p;
151 char* end = begin + s;
152 // TODO: handle more than one input
153 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
154 });
155
156 inputMemory->commit();
157 outputMemory->commit();
Michael Butlercf22a572017-09-22 13:26:12 -0700158
159 // launch execution
160 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
161 ASSERT_NE(nullptr, executionCallback.get());
162 Return<ErrorStatus> executionLaunchStatus = preparedModel->execute(
163 {.inputs = inputs_info, .outputs = outputs_info, .pools = pools}, executionCallback);
164 ASSERT_TRUE(executionLaunchStatus.isOk());
165 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
166
167 // retrieve execution status
168 executionCallback->wait();
169 ErrorStatus executionReturnStatus = executionCallback->getStatus();
170 EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700171
172 // validate results
173 outputMemory->read();
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700174 copy_back(&test, outputs_info, outputPtr);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700175 outputMemory->commit();
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700176 // Filter out don't cares
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -0700177 MixedTyped filtered_golden = filter(golden, is_ignored);
178 MixedTyped filtered_test = filter(test, is_ignored);
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700179
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700180 // We want "close-enough" results for float
Xusong Wangf6235f82018-08-28 16:50:01 -0700181 compare(filtered_golden, filtered_test, fpAtol, fpRtol);
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100182
183 if (example.expectedMultinomialDistributionTolerance > 0) {
184 expectMultinomialDistributionWithinTolerance(test, example);
185 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700186 }
187}
188
Michael Butler7ed61352018-03-22 16:37:57 -0700189void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100190 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800191 V1_0::Model model = create_model();
192
193 // see if service can handle model
194 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800195 Return<void> supportedCall = device->getSupportedOperations(
Michael Butler1ae02d62018-02-26 15:24:46 -0800196 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
197 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800198 ASSERT_NE(0ul, supported.size());
199 fullySupportsModel =
200 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
201 });
202 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800203
204 // launch prepare model
205 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
206 ASSERT_NE(nullptr, preparedModelCallback.get());
Miao Wang4862d612018-02-05 17:26:54 -0800207 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
208 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800209 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800210
211 // retrieve prepared model
212 preparedModelCallback->wait();
213 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
214 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
Miao Wang4862d612018-02-05 17:26:54 -0800215
216 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800217 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800218 ASSERT_EQ(nullptr, preparedModel.get());
219 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
220 "prepare model that it does not support.";
221 std::cout << "[ ] Early termination of test because vendor service cannot "
222 "prepare model that it does not support."
223 << std::endl;
224 return;
225 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800226 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800227 ASSERT_NE(nullptr, preparedModel.get());
228
Xusong Wangf6235f82018-08-28 16:50:01 -0700229 float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
230 EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
Miao Wang4862d612018-02-05 17:26:54 -0800231}
232
Michael Butler7ed61352018-03-22 16:37:57 -0700233void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100234 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wang4862d612018-02-05 17:26:54 -0800235 V1_1::Model model = create_model();
236
237 // see if service can handle model
238 bool fullySupportsModel = false;
Miao Wang4862d612018-02-05 17:26:54 -0800239 Return<void> supportedCall = device->getSupportedOperations_1_1(
Michael Butler1ae02d62018-02-26 15:24:46 -0800240 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
241 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wang4862d612018-02-05 17:26:54 -0800242 ASSERT_NE(0ul, supported.size());
243 fullySupportsModel =
244 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
245 });
246 ASSERT_TRUE(supportedCall.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800247
248 // launch prepare model
249 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
250 ASSERT_NE(nullptr, preparedModelCallback.get());
Michael Butlerf02692d2018-04-11 16:30:09 -0700251 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
252 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
Miao Wang4862d612018-02-05 17:26:54 -0800253 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler1ae02d62018-02-26 15:24:46 -0800254 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wang4862d612018-02-05 17:26:54 -0800255
256 // retrieve prepared model
257 preparedModelCallback->wait();
258 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
259 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
Miao Wang4862d612018-02-05 17:26:54 -0800260
261 // early termination if vendor service cannot fully prepare model
Michael Butler1ae02d62018-02-26 15:24:46 -0800262 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wang4862d612018-02-05 17:26:54 -0800263 ASSERT_EQ(nullptr, preparedModel.get());
264 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
265 "prepare model that it does not support.";
266 std::cout << "[ ] Early termination of test because vendor service cannot "
267 "prepare model that it does not support."
268 << std::endl;
269 return;
270 }
Michael Butler1ae02d62018-02-26 15:24:46 -0800271 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wang4862d612018-02-05 17:26:54 -0800272 ASSERT_NE(nullptr, preparedModel.get());
273
Xusong Wangf6235f82018-08-28 16:50:01 -0700274 // TODO: Adjust the error limit based on testing.
275 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
276 float fpAtol = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
277 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
278 float fpRtol = !model.relaxComputationFloat32toFloat16 ? 5.0f * 1.1920928955078125e-7f
279 : 5.0f * 0.0009765625f;
280 EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
Miao Wang4862d612018-02-05 17:26:54 -0800281}
282
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100283// TODO: Reduce code duplication.
284void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
Michael K. Sandersda3bdbc2018-10-19 14:39:09 +0100285 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Slava Shklyaevfeb87a92018-09-12 14:52:02 +0100286 V1_2::Model model = create_model();
287
288 // see if service can handle model
289 bool fullySupportsModel = false;
290 Return<void> supportedCall = device->getSupportedOperations_1_2(
291 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
292 ASSERT_EQ(ErrorStatus::NONE, status);
293 ASSERT_NE(0ul, supported.size());
294 fullySupportsModel =
295 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
296 });
297 ASSERT_TRUE(supportedCall.isOk());
298
299 // launch prepare model
300 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
301 ASSERT_NE(nullptr, preparedModelCallback.get());
302 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
303 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
304 ASSERT_TRUE(prepareLaunchStatus.isOk());
305 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
306
307 // retrieve prepared model
308 preparedModelCallback->wait();
309 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
310 sp<IPreparedModel> preparedModel = preparedModelCallback->getPreparedModel();
311
312 // early termination if vendor service cannot fully prepare model
313 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
314 ASSERT_EQ(nullptr, preparedModel.get());
315 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
316 "prepare model that it does not support.";
317 std::cout << "[ ] Early termination of test because vendor service cannot "
318 "prepare model that it does not support."
319 << std::endl;
320 return;
321 }
322 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
323 ASSERT_NE(nullptr, preparedModel.get());
324
325 // TODO: Adjust the error limit based on testing.
326 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
327 float fpAtol = !model.relaxComputationFloat32toFloat16 ? 1e-5f : 5.0f * 0.0009765625f;
328 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
329 float fpRtol = !model.relaxComputationFloat32toFloat16 ? 5.0f * 1.1920928955078125e-7f
330 : 5.0f * 0.0009765625f;
331 EvaluatePreparedModel(preparedModel, is_ignored, examples, fpAtol, fpRtol);
332}
333
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700334} // namespace generated_tests
335
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700336} // namespace neuralnetworks
337} // namespace hardware
338} // namespace android