blob: 049d06a540ef00669b5f87263788af6a3036fbe0 [file] [log] [blame]
/*
* Copyright (C) 2021 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "AidlSensorHalWrapper.h"
#include "ISensorsWrapper.h"
#include "SensorDeviceUtils.h"
#include "android/hardware/sensors/2.0/types.h"
#include <aidl/android/hardware/sensors/BnSensorsCallback.h>
#include <aidlcommonsupport/NativeHandle.h>
#include <android-base/logging.h>
#include <android/binder_manager.h>
using ::aidl::android::hardware::sensors::AdditionalInfo;
using ::aidl::android::hardware::sensors::DynamicSensorInfo;
using ::aidl::android::hardware::sensors::Event;
using ::aidl::android::hardware::sensors::ISensors;
using ::aidl::android::hardware::sensors::SensorInfo;
using ::aidl::android::hardware::sensors::SensorStatus;
using ::aidl::android::hardware::sensors::SensorType;
using ::android::AidlMessageQueue;
using ::android::hardware::EventFlag;
using ::android::hardware::sensors::V2_1::implementation::MAX_RECEIVE_BUFFER_EVENT_COUNT;
namespace android {
namespace {
status_t convertToStatus(ndk::ScopedAStatus status) {
if (status.isOk()) {
return OK;
} else {
switch (status.getExceptionCode()) {
case EX_ILLEGAL_ARGUMENT: {
return BAD_VALUE;
}
case EX_SECURITY: {
return PERMISSION_DENIED;
}
case EX_UNSUPPORTED_OPERATION: {
return INVALID_OPERATION;
}
case EX_SERVICE_SPECIFIC: {
switch (status.getServiceSpecificError()) {
case ISensors::ERROR_BAD_VALUE: {
return BAD_VALUE;
}
case ISensors::ERROR_NO_MEMORY: {
return NO_MEMORY;
}
default: {
return UNKNOWN_ERROR;
}
}
}
default: {
return UNKNOWN_ERROR;
}
}
}
}
void convertToSensor(const SensorInfo &src, sensor_t *dst) {
dst->name = strdup(src.name.c_str());
dst->vendor = strdup(src.vendor.c_str());
dst->version = src.version;
dst->handle = src.sensorHandle;
dst->type = (int)src.type;
dst->maxRange = src.maxRange;
dst->resolution = src.resolution;
dst->power = src.power;
dst->minDelay = src.minDelayUs;
dst->fifoReservedEventCount = src.fifoReservedEventCount;
dst->fifoMaxEventCount = src.fifoMaxEventCount;
dst->stringType = strdup(src.typeAsString.c_str());
dst->requiredPermission = strdup(src.requiredPermission.c_str());
dst->maxDelay = src.maxDelayUs;
dst->flags = src.flags;
dst->reserved[0] = dst->reserved[1] = 0;
}
void convertToSensorEvent(const Event &src, sensors_event_t *dst) {
*dst = {.version = sizeof(sensors_event_t),
.sensor = src.sensorHandle,
.type = (int32_t)src.sensorType,
.reserved0 = 0,
.timestamp = src.timestamp};
switch (src.sensorType) {
case SensorType::META_DATA: {
// Legacy HALs expect the handle reference in the meta data field.
// Copy it over from the handle of the event.
dst->meta_data.what = (int32_t)src.payload.get<Event::EventPayload::meta>().what;
dst->meta_data.sensor = src.sensorHandle;
// Set the sensor handle to 0 to maintain compatibility.
dst->sensor = 0;
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
dst->acceleration.x = src.payload.get<Event::EventPayload::vec3>().x;
dst->acceleration.y = src.payload.get<Event::EventPayload::vec3>().y;
dst->acceleration.z = src.payload.get<Event::EventPayload::vec3>().z;
dst->acceleration.status = (int32_t)src.payload.get<Event::EventPayload::vec3>().status;
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
dst->data[0] = src.payload.get<Event::EventPayload::vec4>().x;
dst->data[1] = src.payload.get<Event::EventPayload::vec4>().y;
dst->data[2] = src.payload.get<Event::EventPayload::vec4>().z;
dst->data[3] = src.payload.get<Event::EventPayload::vec4>().w;
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
dst->data[0] = src.payload.get<Event::EventPayload::data>().values[0];
dst->data[1] = src.payload.get<Event::EventPayload::data>().values[1];
dst->data[2] = src.payload.get<Event::EventPayload::data>().values[2];
dst->data[3] = src.payload.get<Event::EventPayload::data>().values[3];
dst->data[4] = src.payload.get<Event::EventPayload::data>().values[4];
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED: {
dst->uncalibrated_gyro.x_uncalib = src.payload.get<Event::EventPayload::uncal>().x;
dst->uncalibrated_gyro.y_uncalib = src.payload.get<Event::EventPayload::uncal>().y;
dst->uncalibrated_gyro.z_uncalib = src.payload.get<Event::EventPayload::uncal>().z;
dst->uncalibrated_gyro.x_bias = src.payload.get<Event::EventPayload::uncal>().xBias;
dst->uncalibrated_gyro.y_bias = src.payload.get<Event::EventPayload::uncal>().yBias;
dst->uncalibrated_gyro.z_bias = src.payload.get<Event::EventPayload::uncal>().zBias;
break;
}
case SensorType::HINGE_ANGLE:
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT: {
dst->data[0] = src.payload.get<Event::EventPayload::scalar>();
break;
}
case SensorType::STEP_COUNTER: {
dst->u64.step_counter = src.payload.get<Event::EventPayload::stepCount>();
break;
}
case SensorType::HEART_RATE: {
dst->heart_rate.bpm = src.payload.get<Event::EventPayload::heartRate>().bpm;
dst->heart_rate.status =
(int8_t)src.payload.get<Event::EventPayload::heartRate>().status;
break;
}
case SensorType::POSE_6DOF: { // 15 floats
for (size_t i = 0; i < 15; ++i) {
dst->data[i] = src.payload.get<Event::EventPayload::pose6DOF>().values[i];
}
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
dst->dynamic_sensor_meta.connected =
src.payload.get<Event::EventPayload::dynamic>().connected;
dst->dynamic_sensor_meta.handle =
src.payload.get<Event::EventPayload::dynamic>().sensorHandle;
dst->dynamic_sensor_meta.sensor = NULL; // to be filled in later
memcpy(dst->dynamic_sensor_meta.uuid,
src.payload.get<Event::EventPayload::dynamic>().uuid.values.data(), 16);
break;
}
case SensorType::ADDITIONAL_INFO: {
const AdditionalInfo &srcInfo = src.payload.get<Event::EventPayload::additional>();
additional_info_event_t *dstInfo = &dst->additional_info;
dstInfo->type = (int32_t)srcInfo.type;
dstInfo->serial = srcInfo.serial;
switch (srcInfo.payload.getTag()) {
case AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32: {
const auto &values =
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataInt32>()
.values;
CHECK_EQ(values.size() * sizeof(int32_t), sizeof(dstInfo->data_int32));
memcpy(dstInfo->data_int32, values.data(), sizeof(dstInfo->data_int32));
break;
}
case AdditionalInfo::AdditionalInfoPayload::Tag::dataFloat: {
const auto &values =
srcInfo.payload.get<AdditionalInfo::AdditionalInfoPayload::dataFloat>()
.values;
CHECK_EQ(values.size() * sizeof(float), sizeof(dstInfo->data_float));
memcpy(dstInfo->data_float, values.data(), sizeof(dstInfo->data_float));
break;
}
default: {
ALOGE("Invalid sensor additional info tag: %d", srcInfo.payload.getTag());
}
}
break;
}
default: {
CHECK_GE((int32_t)src.sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
memcpy(dst->data, src.payload.get<Event::EventPayload::data>().values.data(),
16 * sizeof(float));
break;
}
}
}
void convertFromSensorEvent(const sensors_event_t &src, Event *dst) {
*dst = {
.timestamp = src.timestamp,
.sensorHandle = src.sensor,
.sensorType = (SensorType) src.type,
};
switch (dst->sensorType) {
case SensorType::META_DATA: {
Event::EventPayload::MetaData meta;
meta.what = (Event::EventPayload::MetaData::MetaDataEventType)src.meta_data.what;
// Legacy HALs contain the handle reference in the meta data field.
// Copy that over to the handle of the event. In legacy HALs this
// field was expected to be 0.
dst->sensorHandle = src.meta_data.sensor;
dst->payload.set<Event::EventPayload::Tag::meta>(meta);
break;
}
case SensorType::ACCELEROMETER:
case SensorType::MAGNETIC_FIELD:
case SensorType::ORIENTATION:
case SensorType::GYROSCOPE:
case SensorType::GRAVITY:
case SensorType::LINEAR_ACCELERATION: {
Event::EventPayload::Vec3 vec3;
vec3.x = src.acceleration.x;
vec3.y = src.acceleration.y;
vec3.z = src.acceleration.z;
vec3.status = (SensorStatus)src.acceleration.status;
dst->payload.set<Event::EventPayload::Tag::vec3>(vec3);
break;
}
case SensorType::GAME_ROTATION_VECTOR: {
Event::EventPayload::Vec4 vec4;
vec4.x = src.data[0];
vec4.y = src.data[1];
vec4.z = src.data[2];
vec4.w = src.data[3];
dst->payload.set<Event::EventPayload::Tag::vec4>(vec4);
break;
}
case SensorType::ROTATION_VECTOR:
case SensorType::GEOMAGNETIC_ROTATION_VECTOR: {
Event::EventPayload::Data data;
memcpy(data.values.data(), src.data, 5 * sizeof(float));
dst->payload.set<Event::EventPayload::Tag::data>(data);
break;
}
case SensorType::MAGNETIC_FIELD_UNCALIBRATED:
case SensorType::GYROSCOPE_UNCALIBRATED:
case SensorType::ACCELEROMETER_UNCALIBRATED: {
Event::EventPayload::Uncal uncal;
uncal.x = src.uncalibrated_gyro.x_uncalib;
uncal.y = src.uncalibrated_gyro.y_uncalib;
uncal.z = src.uncalibrated_gyro.z_uncalib;
uncal.xBias = src.uncalibrated_gyro.x_bias;
uncal.yBias = src.uncalibrated_gyro.y_bias;
uncal.zBias = src.uncalibrated_gyro.z_bias;
dst->payload.set<Event::EventPayload::Tag::uncal>(uncal);
break;
}
case SensorType::DEVICE_ORIENTATION:
case SensorType::LIGHT:
case SensorType::PRESSURE:
case SensorType::PROXIMITY:
case SensorType::RELATIVE_HUMIDITY:
case SensorType::AMBIENT_TEMPERATURE:
case SensorType::SIGNIFICANT_MOTION:
case SensorType::STEP_DETECTOR:
case SensorType::TILT_DETECTOR:
case SensorType::WAKE_GESTURE:
case SensorType::GLANCE_GESTURE:
case SensorType::PICK_UP_GESTURE:
case SensorType::WRIST_TILT_GESTURE:
case SensorType::STATIONARY_DETECT:
case SensorType::MOTION_DETECT:
case SensorType::HEART_BEAT:
case SensorType::LOW_LATENCY_OFFBODY_DETECT:
case SensorType::HINGE_ANGLE: {
dst->payload.set<Event::EventPayload::Tag::scalar>((float)src.data[0]);
break;
}
case SensorType::STEP_COUNTER: {
dst->payload.set<Event::EventPayload::Tag::stepCount>(src.u64.step_counter);
break;
}
case SensorType::HEART_RATE: {
Event::EventPayload::HeartRate heartRate;
heartRate.bpm = src.heart_rate.bpm;
heartRate.status = (SensorStatus)src.heart_rate.status;
dst->payload.set<Event::EventPayload::Tag::heartRate>(heartRate);
break;
}
case SensorType::POSE_6DOF: { // 15 floats
Event::EventPayload::Pose6Dof pose6DOF;
for (size_t i = 0; i < 15; ++i) {
pose6DOF.values[i] = src.data[i];
}
dst->payload.set<Event::EventPayload::Tag::pose6DOF>(pose6DOF);
break;
}
case SensorType::DYNAMIC_SENSOR_META: {
DynamicSensorInfo dynamic;
dynamic.connected = src.dynamic_sensor_meta.connected;
dynamic.sensorHandle = src.dynamic_sensor_meta.handle;
memcpy(dynamic.uuid.values.data(), src.dynamic_sensor_meta.uuid, 16);
dst->payload.set<Event::EventPayload::Tag::dynamic>(dynamic);
break;
}
case SensorType::ADDITIONAL_INFO: {
AdditionalInfo info;
const additional_info_event_t &srcInfo = src.additional_info;
info.type = (AdditionalInfo::AdditionalInfoType)srcInfo.type;
info.serial = srcInfo.serial;
AdditionalInfo::AdditionalInfoPayload::Int32Values data;
CHECK_EQ(data.values.size() * sizeof(int32_t), sizeof(srcInfo.data_int32));
memcpy(data.values.data(), srcInfo.data_int32, sizeof(srcInfo.data_int32));
info.payload.set<AdditionalInfo::AdditionalInfoPayload::Tag::dataInt32>(data);
dst->payload.set<Event::EventPayload::Tag::additional>(info);
break;
}
default: {
CHECK_GE((int32_t)dst->sensorType, (int32_t)SensorType::DEVICE_PRIVATE_BASE);
Event::EventPayload::Data data;
memcpy(data.values.data(), src.data, 16 * sizeof(float));
dst->payload.set<Event::EventPayload::Tag::data>(data);
break;
}
}
}
void serviceDied(void *cookie) {
ALOGW("Sensors HAL died, attempting to reconnect.");
((AidlSensorHalWrapper *)cookie)->prepareForReconnect();
}
template <typename EnumType>
constexpr typename std::underlying_type<EnumType>::type asBaseType(EnumType value) {
return static_cast<typename std::underlying_type<EnumType>::type>(value);
}
enum EventQueueFlagBitsInternal : uint32_t {
INTERNAL_WAKE = 1 << 16,
};
} // anonymous namespace
class AidlSensorsCallback : public ::aidl::android::hardware::sensors::BnSensorsCallback {
public:
AidlSensorsCallback(AidlSensorHalWrapper::SensorDeviceCallback *sensorDeviceCallback)
: mSensorDeviceCallback(sensorDeviceCallback) {}
::ndk::ScopedAStatus onDynamicSensorsConnected(
const std::vector<SensorInfo> &sensorInfos) override {
std::vector<sensor_t> sensors;
for (const SensorInfo &sensorInfo : sensorInfos) {
sensor_t sensor;
convertToSensor(sensorInfo, &sensor);
sensors.push_back(sensor);
}
mSensorDeviceCallback->onDynamicSensorsConnected(sensors);
return ::ndk::ScopedAStatus::ok();
}
::ndk::ScopedAStatus onDynamicSensorsDisconnected(
const std::vector<int32_t> &sensorHandles) override {
mSensorDeviceCallback->onDynamicSensorsDisconnected(sensorHandles);
return ::ndk::ScopedAStatus::ok();
}
private:
ISensorHalWrapper::SensorDeviceCallback *mSensorDeviceCallback;
};
AidlSensorHalWrapper::AidlSensorHalWrapper()
: mEventQueueFlag(nullptr),
mWakeLockQueueFlag(nullptr),
mDeathRecipient(AIBinder_DeathRecipient_new(serviceDied)) {}
bool AidlSensorHalWrapper::supportsPolling() {
return false;
}
bool AidlSensorHalWrapper::supportsMessageQueues() {
return true;
}
bool AidlSensorHalWrapper::connect(SensorDeviceCallback *callback) {
mSensorDeviceCallback = callback;
mSensors = nullptr;
auto aidlServiceName = std::string() + ISensors::descriptor + "/default";
if (AServiceManager_isDeclared(aidlServiceName.c_str())) {
if (mSensors != nullptr) {
AIBinder_unlinkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
}
ndk::SpAIBinder binder(AServiceManager_waitForService(aidlServiceName.c_str()));
if (binder.get() != nullptr) {
mSensors = ISensors::fromBinder(binder);
mEventQueue = std::make_unique<AidlMessageQueue<
Event, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
/*configureEventFlagWord=*/true);
mWakeLockQueue = std::make_unique<AidlMessageQueue<
int32_t, SynchronizedReadWrite>>(MAX_RECEIVE_BUFFER_EVENT_COUNT,
/*configureEventFlagWord=*/true);
if (mEventQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mEventQueueFlag);
}
EventFlag::createEventFlag(mEventQueue->getEventFlagWord(), &mEventQueueFlag);
if (mWakeLockQueueFlag != nullptr) {
EventFlag::deleteEventFlag(&mWakeLockQueueFlag);
}
EventFlag::createEventFlag(mWakeLockQueue->getEventFlagWord(), &mWakeLockQueueFlag);
CHECK(mEventQueue != nullptr && mEventQueueFlag != nullptr &&
mWakeLockQueue != nullptr && mWakeLockQueueFlag != nullptr);
mCallback = ndk::SharedRefBase::make<AidlSensorsCallback>(mSensorDeviceCallback);
mSensors->initialize(mEventQueue->dupeDesc(), mWakeLockQueue->dupeDesc(), mCallback);
AIBinder_linkToDeath(mSensors->asBinder().get(), mDeathRecipient.get(), this);
} else {
ALOGE("Could not connect to declared sensors AIDL HAL");
}
}
return mSensors != nullptr;
}
void AidlSensorHalWrapper::prepareForReconnect() {
mReconnecting = true;
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(INTERNAL_WAKE));
}
}
ssize_t AidlSensorHalWrapper::poll(sensors_event_t * /* buffer */, size_t /* count */) {
return 0;
}
ssize_t AidlSensorHalWrapper::pollFmq(sensors_event_t *buffer, size_t maxNumEventsToRead) {
ssize_t eventsRead = 0;
size_t availableEvents = mEventQueue->availableToRead();
if (availableEvents == 0) {
uint32_t eventFlagState = 0;
// Wait for events to become available. This is necessary so that the Event FMQ's read() is
// able to be called with the correct number of events to read. If the specified number of
// events is not available, then read() would return no events, possibly introducing
// additional latency in delivering events to applications.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wait(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_READ_AND_PROCESS) |
asBaseType(INTERNAL_WAKE),
&eventFlagState);
}
availableEvents = mEventQueue->availableToRead();
if ((eventFlagState & asBaseType(INTERNAL_WAKE)) && mReconnecting) {
ALOGD("Event FMQ internal wake, returning from poll with no events");
return DEAD_OBJECT;
}
}
size_t eventsToRead = std::min({availableEvents, maxNumEventsToRead, mEventBuffer.size()});
if (eventsToRead > 0) {
if (mEventQueue->read(mEventBuffer.data(), eventsToRead)) {
// Notify the Sensors HAL that sensor events have been read. This is required to support
// the use of writeBlocking by the Sensors HAL.
if (mEventQueueFlag != nullptr) {
mEventQueueFlag->wake(asBaseType(ISensors::EVENT_QUEUE_FLAG_BITS_EVENTS_READ));
}
for (size_t i = 0; i < eventsToRead; i++) {
convertToSensorEvent(mEventBuffer[i], &buffer[i]);
}
eventsRead = eventsToRead;
} else {
ALOGW("Failed to read %zu events, currently %zu events available", eventsToRead,
availableEvents);
}
}
return eventsRead;
}
std::vector<sensor_t> AidlSensorHalWrapper::getSensorsList() {
std::vector<sensor_t> sensorsFound;
if (mSensors != nullptr) {
std::vector<SensorInfo> list;
mSensors->getSensorsList(&list);
for (size_t i = 0; i < list.size(); i++) {
sensor_t sensor;
convertToSensor(list[i], &sensor);
sensorsFound.push_back(sensor);
}
}
return sensorsFound;
}
status_t AidlSensorHalWrapper::setOperationMode(SensorService::Mode mode) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->setOperationMode(static_cast<ISensors::OperationMode>(mode)));
}
status_t AidlSensorHalWrapper::activate(int32_t sensorHandle, bool enabled) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->activate(sensorHandle, enabled));
}
status_t AidlSensorHalWrapper::batch(int32_t sensorHandle, int64_t samplingPeriodNs,
int64_t maxReportLatencyNs) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->batch(sensorHandle, samplingPeriodNs, maxReportLatencyNs));
}
status_t AidlSensorHalWrapper::flush(int32_t sensorHandle) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->flush(sensorHandle));
}
status_t AidlSensorHalWrapper::injectSensorData(const sensors_event_t *event) {
if (mSensors == nullptr) return NO_INIT;
Event ev;
convertFromSensorEvent(*event, &ev);
return convertToStatus(mSensors->injectSensorData(ev));
}
status_t AidlSensorHalWrapper::registerDirectChannel(const sensors_direct_mem_t *memory,
int32_t *channelHandle) {
if (mSensors == nullptr) return NO_INIT;
ISensors::SharedMemInfo::SharedMemType type;
switch (memory->type) {
case SENSOR_DIRECT_MEM_TYPE_ASHMEM:
type = ISensors::SharedMemInfo::SharedMemType::ASHMEM;
break;
case SENSOR_DIRECT_MEM_TYPE_GRALLOC:
type = ISensors::SharedMemInfo::SharedMemType::GRALLOC;
break;
default:
return BAD_VALUE;
}
if (memory->format != SENSOR_DIRECT_FMT_SENSORS_EVENT) {
return BAD_VALUE;
}
ISensors::SharedMemInfo::SharedMemFormat format =
ISensors::SharedMemInfo::SharedMemFormat::SENSORS_EVENT;
ISensors::SharedMemInfo mem = {
.type = type,
.format = format,
.size = static_cast<int32_t>(memory->size),
.memoryHandle = makeToAidl(memory->handle),
};
return convertToStatus(mSensors->registerDirectChannel(mem, channelHandle));
}
status_t AidlSensorHalWrapper::unregisterDirectChannel(int32_t channelHandle) {
if (mSensors == nullptr) return NO_INIT;
return convertToStatus(mSensors->unregisterDirectChannel(channelHandle));
}
status_t AidlSensorHalWrapper::configureDirectChannel(int32_t sensorHandle, int32_t channelHandle,
const struct sensors_direct_cfg_t *config) {
if (mSensors == nullptr) return NO_INIT;
ISensors::RateLevel rate;
switch (config->rate_level) {
case SENSOR_DIRECT_RATE_STOP:
rate = ISensors::RateLevel::STOP;
break;
case SENSOR_DIRECT_RATE_NORMAL:
rate = ISensors::RateLevel::NORMAL;
break;
case SENSOR_DIRECT_RATE_FAST:
rate = ISensors::RateLevel::FAST;
break;
case SENSOR_DIRECT_RATE_VERY_FAST:
rate = ISensors::RateLevel::VERY_FAST;
break;
default:
return BAD_VALUE;
}
int32_t token;
mSensors->configDirectReport(sensorHandle, channelHandle, rate, &token);
return token;
}
void AidlSensorHalWrapper::writeWakeLockHandled(uint32_t count) {
int signedCount = (int)count;
if (mWakeLockQueue->write(&signedCount)) {
mWakeLockQueueFlag->wake(asBaseType(ISensors::WAKE_LOCK_QUEUE_FLAG_BITS_DATA_WRITTEN));
} else {
ALOGW("Failed to write wake lock handled");
}
}
} // namespace android