blob: b70f9afe774c7ffe2af3403848a951da5a4a0729 [file] [log] [blame]
Lorenzo Colittif3beefc2014-02-14 13:19:27 +09001/*
2 * Copyright 2014 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 *
16 * clatd_test.cpp - unit tests for clatd
17 */
18
19#include <iostream>
20
21#include <stdio.h>
22#include <arpa/inet.h>
23#include <sys/uio.h>
24
25#include <gtest/gtest.h>
26
27extern "C" {
28#include "checksum.h"
29#include "translate.h"
30#include "config.h"
31#include "clatd.h"
32}
33
34// For convenience.
35#define ARRAYSIZE(x) sizeof((x)) / sizeof((x)[0])
36
37// Default translation parameters.
38static const char kIPv4LocalAddr[] = "192.0.0.4";
39static const char kIPv6LocalAddr[] = "2001:db8:0:b11::464";
40static const char kIPv6PlatSubnet[] = "64:ff9b::";
41
42// Test packet portions. Defined as macros because it's easy to concatenate them to make packets.
43#define IPV4_HEADER(p, c1, c2) \
44 0x45, 0x00, 0, 41, /* Version=4, IHL=5, ToS=0x80, len=41 */ \
45 0x00, 0x00, 0x40, 0x00, /* ID=0x0000, flags=IP_DF, offset=0 */ \
46 55, (p), (c1), (c2), /* TTL=55, protocol=p, checksum=c1,c2 */ \
47 192, 0, 0, 4, /* Src=192.0.0.4 */ \
48 8, 8, 8, 8, /* Dst=8.8.8.8 */
49#define IPV4_UDP_HEADER IPV4_HEADER(IPPROTO_UDP, 0x73, 0xb0)
50#define IPV4_ICMP_HEADER IPV4_HEADER(IPPROTO_ICMP, 0x73, 0xc0)
51
52#define IPV6_HEADER(p) \
53 0x60, 0x00, 0, 0, /* Version=6, tclass=0x00, flowlabel=0 */ \
54 0, 21, (p), 55, /* plen=11, nxthdr=p, hlim=55 */ \
55 0x20, 0x01, 0x0d, 0xb8, /* Src=2001:db8:0:b11::464 */ \
56 0x00, 0x00, 0x0b, 0x11, \
57 0x00, 0x00, 0x00, 0x00, \
58 0x00, 0x00, 0x04, 0x64, \
59 0x00, 0x64, 0xff, 0x9b, /* Dst=64:ff9b::8.8.8.8 */ \
60 0x00, 0x00, 0x00, 0x00, \
61 0x00, 0x00, 0x00, 0x00, \
62 0x08, 0x08, 0x08, 0x08,
63#define IPV6_UDP_HEADER IPV6_HEADER(IPPROTO_UDP)
64#define IPV6_ICMPV6_HEADER IPV6_HEADER(IPPROTO_ICMPV6)
65
66#define UDP_LEN 21
67#define UDP_HEADER \
68 0xc8, 0x8b, 0, 53, /* Port 51339->53 */ \
69 0x00, UDP_LEN, 0, 0, /* Length 21, checksum empty for now */
70
71#define PAYLOAD 'H', 'e', 'l', 'l', 'o', ' ', 0x4e, 0xb8, 0x96, 0xe7, 0x95, 0x8c, 0x00
72
73#define IPV4_PING \
74 0x08, 0x00, 0x88, 0xd0, /* Type 8, code 0, checksum 0x88d0 */ \
75 0xd0, 0x0d, 0x00, 0x03, /* ID=0xd00d, seq=3 */
76
77#define IPV6_PING \
78 0x80, 0x00, 0xc3, 0x42, /* Type 128, code 0, checksum 0xc342 */ \
79 0xd0, 0x0d, 0x00, 0x03, /* ID=0xd00d, seq=3 */
80
81// Macros to return pseudo-headers from packets.
82#define IPV4_PSEUDOHEADER(ip, tlen) \
83 ip[12], ip[13], ip[14], ip[15], /* Source address */ \
84 ip[16], ip[17], ip[18], ip[19], /* Destination address */ \
85 0, ip[9], /* 0, protocol */ \
86 ((tlen) >> 16) & 0xff, (tlen) & 0xff, /* Transport length */
87
88#define IPV6_PSEUDOHEADER(ip6, protocol, tlen) \
89 ip6[8], ip6[9], ip6[10], ip6[11], /* Source address */ \
90 ip6[12], ip6[13], ip6[14], ip6[15], \
91 ip6[16], ip6[17], ip6[18], ip6[19], \
92 ip6[20], ip6[21], ip6[22], ip6[23], \
93 ip6[24], ip6[25], ip6[26], ip6[27], /* Destination address */ \
94 ip6[28], ip6[29], ip6[30], ip6[31], \
95 ip6[32], ip6[33], ip6[34], ip6[35], \
96 ip6[36], ip6[37], ip6[38], ip6[39], \
97 ((tlen) >> 24) & 0xff, /* Transport length */ \
98 ((tlen) >> 16) & 0xff, \
99 ((tlen) >> 8) & 0xff, \
100 (tlen) & 0xff, \
101 0, 0, 0, (protocol),
102
103// A fragmented DNS request.
104static const char kIPv4Frag1[] = {
105 0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x00, 0x40, 0x11,
106 0x8c, 0x6d, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
107 0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
108 0x01, 0x00, 0x00, 0x01, 0x00, 0x00
109};
110static const char kIPv4Frag2[] = {
111 0x45, 0x00, 0x00, 0x24, 0xfe, 0x47, 0x20, 0x02, 0x40, 0x11,
112 0x8c, 0x6b, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
113 0x00, 0x00, 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06,
114 0x67, 0x6f, 0x6f, 0x67, 0x6c, 0x65
115};
116static const char kIPv4Frag3[] = {
117 0x45, 0x00, 0x00, 0x1d, 0xfe, 0x47, 0x00, 0x04, 0x40, 0x11,
118 0xac, 0x70, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
119 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
120};
121static const char *kIPv4Fragments[] = { kIPv4Frag1, kIPv4Frag2, kIPv4Frag3 };
122static const int kIPv4FragLengths[] = { sizeof(kIPv4Frag1), sizeof(kIPv4Frag2),
123 sizeof(kIPv4Frag3) };
124
125static const char kIPv6Frag1[] = {
126 0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
127 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
128 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
129 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
130 0x11, 0x00, 0x00, 0x01, 0x00, 0x00, 0xfe, 0x47, 0x14, 0x5d,
131 0x00, 0x35, 0x00, 0x29, 0xeb, 0x91, 0x50, 0x47, 0x01, 0x00,
132 0x00, 0x01, 0x00, 0x00
133};
134
135static const char kIPv6Frag2[] = {
136 0x60, 0x00, 0x00, 0x00, 0x00, 0x18, 0x2c, 0x40, 0x20, 0x01,
137 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
138 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
139 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
140 0x11, 0x00, 0x00, 0x11, 0x00, 0x00, 0xfe, 0x47, 0x00, 0x00,
141 0x00, 0x00, 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f,
142 0x6f, 0x67, 0x6c, 0x65
143};
144
145static const char kIPv6Frag3[] = {
146 0x60, 0x00, 0x00, 0x00, 0x00, 0x11, 0x2c, 0x40, 0x20, 0x01,
147 0x0d, 0xb8, 0x00, 0x00, 0x0b, 0x11, 0x00, 0x00, 0x00, 0x00,
148 0x00, 0x00, 0x04, 0x64, 0x00, 0x64, 0xff, 0x9b, 0x00, 0x00,
149 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x08, 0x08, 0x08, 0x08,
150 0x11, 0x00, 0x00, 0x20, 0x00, 0x00, 0xfe, 0x47, 0x03, 0x63,
151 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00, 0x01
152};
153static const char *kIPv6Fragments[] = { kIPv6Frag1, kIPv6Frag2, kIPv6Frag3 };
154static const int kIPv6FragLengths[] = { sizeof(kIPv6Frag1), sizeof(kIPv6Frag2),
155 sizeof(kIPv6Frag3) };
156
157static const char kReassembledIPv4[] = {
158 0x45, 0x00, 0x00, 0x3d, 0xfe, 0x47, 0x00, 0x00, 0x40, 0x11,
159 0xac, 0x54, 0xc0, 0x00, 0x00, 0x04, 0x08, 0x08, 0x08, 0x08,
160 0x14, 0x5d, 0x00, 0x35, 0x00, 0x29, 0x68, 0xbb, 0x50, 0x47,
161 0x01, 0x00, 0x00, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
162 0x04, 0x69, 0x70, 0x76, 0x34, 0x06, 0x67, 0x6f, 0x6f, 0x67,
163 0x6c, 0x65, 0x03, 0x63, 0x6f, 0x6d, 0x00, 0x00, 0x01, 0x00,
164 0x01
165};
166
167// Expected checksums.
168static const uint32_t kUdpPartialChecksum = 0xd5c8;
169static const uint32_t kPayloadPartialChecksum = 0x31e9c;
170static const uint16_t kUdpV4Checksum = 0xd0c7;
171static const uint16_t kUdpV6Checksum = 0xa74a;
172
173int ip_version(const char *packet) {
174 int version = packet[0] >> 4;
175 return version;
176}
177
178int is_ipv4_fragment(struct iphdr *ip) {
179 // A packet is a fragment if its fragment offset is nonzero or if the MF flag is set.
180 return ntohs(ip->frag_off) & (IP_OFFMASK | IP_MF);
181}
182
183int is_ipv6_fragment(struct ip6_hdr *ip6, size_t len) {
184 if (ip6->ip6_nxt != IPPROTO_FRAGMENT) {
185 return 0;
186 }
187 struct ip6_frag *frag = (struct ip6_frag *) (ip6 + 1);
188 return len >= sizeof(*ip6) + sizeof(*frag) &&
189 (frag->ip6f_offlg & (IP6F_OFF_MASK | IP6F_MORE_FRAG));
190}
191
192int ipv4_fragment_offset(struct iphdr *ip) {
193 return ntohs(ip->frag_off) & IP_OFFMASK;
194}
195
196int ipv6_fragment_offset(struct ip6_frag *frag) {
197 return ntohs((frag->ip6f_offlg & IP6F_OFF_MASK) >> 3);
198}
199
200void check_packet(const char *packet, size_t len, const char *msg) {
201 void *payload;
202 size_t payload_length = 0;
203 uint32_t pseudo_checksum = 0;
204 uint8_t protocol = 0;
205 int version = ip_version(packet);
206 switch (version) {
207 case 4: {
208 struct iphdr *ip = (struct iphdr *) packet;
209 ASSERT_GE(len, sizeof(*ip)) << msg << ": IPv4 packet shorter than IPv4 header\n";
210 EXPECT_EQ(5, ip->ihl) << msg << ": Unsupported IP header length\n";
211 EXPECT_EQ(len, ntohs(ip->tot_len)) << msg << ": Incorrect IPv4 length\n";
212 EXPECT_EQ(0, ip_checksum(ip, sizeof(*ip))) << msg << ": Incorrect IP checksum\n";
213 protocol = ip->protocol;
214 payload = ip + 1;
215 if (!is_ipv4_fragment(ip)) {
216 payload_length = len - sizeof(*ip);
217 pseudo_checksum = ipv4_pseudo_header_checksum(ip, payload_length);
218 }
219 ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMP)
220 << msg << ": Unsupported IPv4 protocol " << protocol << "\n";
221 break;
222 }
223 case 6: {
224 struct ip6_hdr *ip6 = (struct ip6_hdr *) packet;
225 ASSERT_GE(len, sizeof(*ip6)) << msg << ": IPv6 packet shorter than IPv6 header\n";
226 EXPECT_EQ(len - sizeof(*ip6), htons(ip6->ip6_plen)) << msg << ": Incorrect IPv6 length\n";
227
228 if (ip6->ip6_nxt == IPPROTO_FRAGMENT) {
229 struct ip6_frag *frag = (struct ip6_frag *) (ip6 + 1);
230 ASSERT_GE(len, sizeof(*ip6) + sizeof(*frag))
231 << msg << ": IPv6 fragment: short fragment header\n";
232 protocol = frag->ip6f_nxt;
233 payload = frag + 1;
234 // Even though the packet has a Fragment header, it might not be a fragment.
235 if (!is_ipv6_fragment(ip6, len)) {
236 payload_length = len - sizeof(*ip6) - sizeof(*frag);
237 }
238 } else {
239 // Since there are no extension headers except Fragment, this must be the payload.
240 protocol = ip6->ip6_nxt;
241 payload = ip6 + 1;
242 payload_length = len - sizeof(*ip6);
243 }
244 ASSERT_TRUE(protocol == IPPROTO_TCP || protocol == IPPROTO_UDP || protocol == IPPROTO_ICMPV6)
245 << msg << ": Unsupported IPv6 next header " << protocol;
246 if (payload_length) {
247 pseudo_checksum = ipv6_pseudo_header_checksum(ip6, payload_length, protocol);
248 }
249 break;
250 }
251 default:
252 FAIL() << msg << ": Unsupported IP version " << version << "\n";
253 return;
254 }
255
256 // If we understand the payload, verify the checksum.
257 if (payload_length) {
258 uint16_t checksum;
259 switch(protocol) {
260 case IPPROTO_UDP:
261 case IPPROTO_TCP:
262 case IPPROTO_ICMPV6:
263 checksum = ip_checksum_finish(ip_checksum_add(pseudo_checksum, payload, payload_length));
264 break;
265 case IPPROTO_ICMP:
266 checksum = ip_checksum(payload, payload_length);
267 break;
268 default:
269 checksum = 0; // Don't check.
270 break;
271 }
272 EXPECT_EQ(0, checksum) << msg << ": Incorrect transport checksum\n";
273 }
274
275 if (protocol == IPPROTO_UDP) {
276 struct udphdr *udp = (struct udphdr *) payload;
277 EXPECT_NE(0, udp->check) << msg << ": UDP checksum 0 should be 0xffff";
278 // If this is not a fragment, check the UDP length field.
279 if (payload_length) {
280 EXPECT_EQ(payload_length, ntohs(udp->len)) << msg << ": Incorrect UDP length\n";
281 }
282 }
283}
284
285void reassemble_packet(const char **fragments, const int lengths[], int numpackets,
286 char *reassembled, size_t *reassembled_len, const char *msg) {
287 struct iphdr *ip = NULL;
288 struct ip6_hdr *ip6 = NULL;
289 int total_length, pos = 0;
290 uint8_t protocol;
291 int version = ip_version(fragments[0]);
292
293 for (int i = 0; i < numpackets; i++) {
294 const char *packet = fragments[i];
295 int len = lengths[i];
296 int headersize, payload_offset;
297
298 ASSERT_EQ(ip_version(packet), version) << msg << ": Inconsistent fragment versions\n";
299 check_packet(packet, len, "Fragment sanity check");
300
301 switch (version) {
302 case 4: {
303 struct iphdr *ip_orig = (struct iphdr *) packet;
304 headersize = sizeof(*ip_orig);
305 ASSERT_TRUE(is_ipv4_fragment(ip_orig))
306 << msg << ": IPv4 fragment #" << i + 1 << " not a fragment\n";
307 ASSERT_EQ(pos, ipv4_fragment_offset(ip_orig) * 8 + ((i != 0) ? sizeof(*ip): 0))
308 << msg << ": IPv4 fragment #" << i + 1 << ": inconsistent offset\n";
309
310 headersize = sizeof(*ip_orig);
311 payload_offset = headersize;
312 if (pos == 0) {
313 ip = (struct iphdr *) reassembled;
314 }
315 break;
316 }
317 case 6: {
318 struct ip6_hdr *ip6_orig = (struct ip6_hdr *) packet;
319 struct ip6_frag *frag = (struct ip6_frag *) (ip6_orig + 1);
320 ASSERT_TRUE(is_ipv6_fragment(ip6_orig, len))
321 << msg << ": IPv6 fragment #" << i + 1 << " not a fragment\n";
322 ASSERT_EQ(pos, ipv6_fragment_offset(frag) * 8 + ((i != 0) ? sizeof(*ip6): 0))
323 << msg << ": IPv6 fragment #" << i + 1 << ": inconsistent offset\n";
324
325 headersize = sizeof(*ip6_orig);
326 payload_offset = sizeof(*ip6_orig) + sizeof(*frag);
327 if (pos == 0) {
328 ip6 = (struct ip6_hdr *) reassembled;
329 protocol = frag->ip6f_nxt;
330 }
331 break;
332 }
333 default:
334 FAIL() << msg << ": Invalid IP version << " << version;
335 }
336
337 // If this is the first fragment, copy the header.
338 if (pos == 0) {
339 ASSERT_LT(headersize, (int) *reassembled_len) << msg << ": Reassembly buffer too small\n";
340 memcpy(reassembled, packet, headersize);
341 total_length = headersize;
342 pos += headersize;
343 }
344
345 // Copy the payload.
346 int payload_length = len - payload_offset;
347 total_length += payload_length;
348 ASSERT_LT(total_length, (int) *reassembled_len) << msg << ": Reassembly buffer too small\n";
349 memcpy(reassembled + pos, packet + payload_offset, payload_length);
350 pos += payload_length;
351 }
352
353
354 // Fix up the reassembled headers to reflect fragmentation and length (and IPv4 checksum).
355 ASSERT_EQ(total_length, pos) << msg << ": Reassembled packet length incorrect\n";
356 if (ip) {
357 ip->frag_off &= ~htons(IP_MF);
358 ip->tot_len = htons(total_length);
359 ip->check = 0;
360 ip->check = ip_checksum(ip, sizeof(*ip));
361 ASSERT_FALSE(is_ipv4_fragment(ip)) << msg << ": reassembled IPv4 packet is a fragment!\n";
362 }
363 if (ip6) {
364 ip6->ip6_nxt = protocol;
365 ip6->ip6_plen = htons(total_length - sizeof(*ip6));
366 ASSERT_FALSE(is_ipv6_fragment(ip6, ip6->ip6_plen))
367 << msg << ": reassembled IPv6 packet is a fragment!\n";
368 }
369
370 *reassembled_len = total_length;
371}
372
373void check_data_matches(const char *expected, const char *actual, size_t len, const char *msg) {
374 if (memcmp(expected, actual, len)) {
375 // Hex dump, 20 bytes per line, one space between bytes (1 byte = 3 chars), indented by 4.
376 int hexdump_len = len * 3 + (len / 20 + 1) * 5;
377 char expected_hexdump[hexdump_len], actual_hexdump[hexdump_len];
378 unsigned pos = 0;
379 for (unsigned i = 0; i < len; i++) {
380 if (i % 20 == 0) {
381 sprintf(expected_hexdump + pos, "\n ");
382 sprintf(actual_hexdump + pos, "\n ");
383 pos += 4;
384 }
385 sprintf(expected_hexdump + pos, " %02x", expected[i]);
386 sprintf(actual_hexdump + pos, " %02x", actual[i]);
387 pos += 3;
388 }
389 FAIL() << msg << ": Translated packet doesn't match"
390 << "\n Expected:" << (char *) expected_hexdump
391 << "\n Actual:" << (char *) actual_hexdump << "\n";
392 }
393}
394
395void fix_udp_checksum(char* packet) {
396 uint32_t pseudo_checksum;
397 int version = ip_version(packet);
398 struct udphdr *udp;
399 switch (version) {
400 case 4: {
401 struct iphdr *ip = (struct iphdr *) packet;
402 udp = (struct udphdr *) (ip + 1);
403 pseudo_checksum = ipv4_pseudo_header_checksum(ip, ntohs(udp->len));
404 break;
405 }
406 case 6: {
407 struct ip6_hdr *ip6 = (struct ip6_hdr *) packet;
408 udp = (struct udphdr *) (ip6 + 1);
409 pseudo_checksum = ipv6_pseudo_header_checksum(ip6, ntohs(udp->len), IPPROTO_UDP);
410 break;
411 }
412 default:
413 FAIL() << "unsupported IP version" << version << "\n";
414 return;
415 }
416
417 udp->check = 0;
418 udp->check = ip_checksum_finish(ip_checksum_add(pseudo_checksum, udp, ntohs(udp->len)));
419}
420
421void do_translate_packet(const char *original, size_t original_len, char *out, size_t *outlen,
422 const char *msg) {
423 int fds[2];
424 if (socketpair(AF_UNIX, SOCK_DGRAM | SOCK_NONBLOCK, 0, fds)) {
425 abort();
426 }
427 struct tun_data tunnel = {
428 "clat", "clat4",
429 fds[0], fds[1]
430 };
431 struct tun_pi tun_header = { 0, 0 };
432
433 char foo[512];
434 snprintf(foo, sizeof(foo), "%s: Invalid original packet", msg);
435 check_packet(original, original_len, foo);
436
437 int read_fd;
438 uint16_t expected_proto;
439 int version = ip_version(original);
440 switch (version) {
441 case 4:
442 tun_header.proto = htons(ETH_P_IP);
443 expected_proto = htons(ETH_P_IPV6);
444 read_fd = fds[1];
445 break;
446 case 6:
447 tun_header.proto = htons(ETH_P_IPV6);
448 expected_proto = htons(ETH_P_IP);
449 read_fd = fds[0];
450 break;
451 default:
452 FAIL() << msg << ": Unsupported IP version " << version << "\n";
453 break;
454 }
455
456 translate_packet(&tunnel, &tun_header, original, original_len);
457
458 struct tun_pi new_tun_header;
459 struct iovec iov[] = {
460 { &new_tun_header, sizeof(new_tun_header) },
461 { out, *outlen }
462 };
463 int len = readv(read_fd, iov, 2);
464 if (len > (int) sizeof(new_tun_header)) {
465 ASSERT_LT((size_t) len, *outlen) << msg << ": Translated packet buffer too small\n";
466 EXPECT_EQ(expected_proto, new_tun_header.proto) << msg << "Unexpected tun proto\n";
467 *outlen = len - sizeof(new_tun_header);
468 } else {
469 FAIL() << msg << ": Packet was not translated";
470 *outlen = 0;
471 }
472}
473
474void check_translated_packet(const char *original, size_t original_len,
475 const char *expected, size_t expected_len, const char *msg) {
476 char translated[MAXMTU];
477 size_t translated_len = sizeof(translated);
478 do_translate_packet(original, original_len, translated, &translated_len, msg);
479 EXPECT_EQ(expected_len, translated_len) << msg << ": Translated packet length incorrect\n";
480 check_data_matches(expected, translated, translated_len, msg);
481}
482
483void check_fragment_translation(const char *original[], const int original_lengths[],
484 const char *expected[], const int expected_lengths[],
485 int numfragments, const char *msg) {
486 for (int i = 0; i < numfragments; i++) {
487 // Check that each of the fragments translates as expected.
488 char frag_msg[512];
489 snprintf(frag_msg, sizeof(frag_msg), "%s: fragment #%d", msg, i + 1);
490 check_translated_packet(original[i], original_lengths[i],
491 expected[i], expected_lengths[i], frag_msg);
492 }
493
494 // Sanity check that reassembling the original and translated fragments produces valid packets.
495 char reassembled[MAXMTU];
496 size_t reassembled_len = sizeof(reassembled);
497 reassemble_packet(original, original_lengths, numfragments, reassembled, &reassembled_len, msg);
498 check_packet(reassembled, reassembled_len, msg);
499
500 char translated[MAXMTU];
501 size_t translated_len = sizeof(translated);
502 do_translate_packet(reassembled, reassembled_len, translated, &translated_len, msg);
503 check_packet(translated, translated_len, msg);
504}
505
506struct clat_config Global_Clatd_Config;
507
508class ClatdTest : public ::testing::Test {
509 protected:
510 virtual void SetUp() {
511 inet_pton(AF_INET, kIPv4LocalAddr, &Global_Clatd_Config.ipv4_local_subnet);
512 inet_pton(AF_INET6, kIPv6PlatSubnet, &Global_Clatd_Config.plat_subnet);
513 inet_pton(AF_INET6, kIPv6LocalAddr, &Global_Clatd_Config.ipv6_local_subnet);
514 }
515};
516
517TEST_F(ClatdTest, Sanitycheck) {
518 // Sanity checks the data.
519 char v4_header[] = { IPV4_UDP_HEADER };
520 ASSERT_EQ(sizeof(struct iphdr), sizeof(v4_header)) << "Test IPv4 header: incorrect length\n";
521
522 char v6_header[] = { IPV6_UDP_HEADER };
523 ASSERT_EQ(sizeof(struct ip6_hdr), sizeof(v6_header)) << "Test IPv6 header: incorrect length\n";
524
525 char udp_header[] = { UDP_HEADER };
526 ASSERT_EQ(sizeof(struct udphdr), sizeof(udp_header)) << "Test UDP header: incorrect length\n";
527
528 // Sanity checks check_packet.
529 struct udphdr *udp;
530 char v4_udp_packet[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
531 udp = (struct udphdr *) (v4_udp_packet + sizeof(struct iphdr));
532 fix_udp_checksum(v4_udp_packet);
533 ASSERT_EQ(kUdpV4Checksum, udp->check) << "UDP/IPv4 packet checksum sanity check\n";
534 check_packet(v4_udp_packet, sizeof(v4_udp_packet), "UDP/IPv4 packet sanity check");
535
536 char v6_udp_packet[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
537 udp = (struct udphdr *) (v6_udp_packet + sizeof(struct ip6_hdr));
538 fix_udp_checksum(v6_udp_packet);
539 ASSERT_EQ(kUdpV6Checksum, udp->check) << "UDP/IPv6 packet checksum sanity check\n";
540 check_packet(v6_udp_packet, sizeof(v6_udp_packet), "UDP/IPv6 packet sanity check");
541
542 char ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
543 check_packet(ipv4_ping, sizeof(ipv4_ping), "IPv4 ping sanity check");
544
545 char ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
546 check_packet(ipv6_ping, sizeof(ipv6_ping), "IPv6 ping sanity check");
547
548 // Sanity checks reassemble_packet.
549 char reassembled[MAXMTU];
550 size_t total_length = sizeof(reassembled);
551 reassemble_packet(kIPv4Fragments, kIPv4FragLengths, ARRAYSIZE(kIPv4Fragments),
552 reassembled, &total_length, "Reassembly sanity check");
553 check_packet(reassembled, total_length, "IPv4 Reassembled packet is valid");
554 ASSERT_EQ(sizeof(kReassembledIPv4), total_length) << "IPv4 reassembly sanity check: length\n";
555 ASSERT_TRUE(!is_ipv4_fragment((struct iphdr *) reassembled))
556 << "Sanity check: reassembled packet is a fragment!\n";
557 check_data_matches(kReassembledIPv4, reassembled, total_length, "IPv4 reassembly sanity check");
558
559 total_length = sizeof(reassembled);
560 reassemble_packet(kIPv6Fragments, kIPv6FragLengths, ARRAYSIZE(kIPv6Fragments),
561 reassembled, &total_length, "IPv6 reassembly sanity check");
562 ASSERT_TRUE(!is_ipv6_fragment((struct ip6_hdr *) reassembled, total_length))
563 << "Sanity check: reassembled packet is a fragment!\n";
564 check_packet(reassembled, total_length, "IPv6 Reassembled packet is valid");
565}
566
567TEST_F(ClatdTest, PseudoChecksum) {
568 uint32_t pseudo_checksum;
569
570 char v4_header[] = { IPV4_UDP_HEADER };
571 char v4_pseudo_header[] = { IPV4_PSEUDOHEADER(v4_header, UDP_LEN) };
572 pseudo_checksum = ipv4_pseudo_header_checksum((struct iphdr *) v4_header, UDP_LEN);
573 EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
574 ip_checksum(v4_pseudo_header, sizeof(v4_pseudo_header)))
575 << "ipv4_pseudo_header_checksum incorrect\n";
576
577 char v6_header[] = { IPV6_UDP_HEADER };
578 char v6_pseudo_header[] = { IPV6_PSEUDOHEADER(v6_header, IPPROTO_UDP, UDP_LEN) };
579 pseudo_checksum = ipv6_pseudo_header_checksum((struct ip6_hdr *) v6_header, UDP_LEN, IPPROTO_UDP);
580 EXPECT_EQ(ip_checksum_finish(pseudo_checksum),
581 ip_checksum(v6_pseudo_header, sizeof(v6_pseudo_header)))
582 << "ipv6_pseudo_header_checksum incorrect\n";
583}
584
585TEST_F(ClatdTest, TransportChecksum) {
586 char udphdr[] = { UDP_HEADER };
587 char payload[] = { PAYLOAD };
588 EXPECT_EQ(kUdpPartialChecksum, ip_checksum_add(0, udphdr, sizeof(udphdr)))
589 << "UDP partial checksum\n";
590 EXPECT_EQ(kPayloadPartialChecksum, ip_checksum_add(0, payload, sizeof(payload)))
591 << "Payload partial checksum\n";
592
593 char ip[] = { IPV4_UDP_HEADER };
594 char ip6[] = { IPV6_UDP_HEADER };
595 uint32_t ipv4_pseudo_sum = ipv4_pseudo_header_checksum((struct iphdr *) ip, UDP_LEN);
596 uint32_t ipv6_pseudo_sum = ipv6_pseudo_header_checksum((struct ip6_hdr *) ip6, UDP_LEN,
597 IPPROTO_UDP);
598
599 EXPECT_EQ(0x3ad0, ipv4_pseudo_sum) << "IPv4 pseudo-checksum sanity check\n";
600 EXPECT_EQ(0x2644b, ipv6_pseudo_sum) << "IPv6 pseudo-checksum sanity check\n";
601 EXPECT_EQ(
602 kUdpV4Checksum,
603 ip_checksum_finish(ipv4_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
604 << "Unexpected UDP/IPv4 checksum\n";
605 EXPECT_EQ(
606 kUdpV6Checksum,
607 ip_checksum_finish(ipv6_pseudo_sum + kUdpPartialChecksum + kPayloadPartialChecksum))
608 << "Unexpected UDP/IPv6 checksum\n";
609
610 EXPECT_EQ(kUdpV6Checksum,
611 ip_checksum_adjust(kUdpV4Checksum, ipv4_pseudo_sum, ipv6_pseudo_sum))
612 << "Adjust IPv4/UDP checksum to IPv6\n";
613 EXPECT_EQ(kUdpV4Checksum,
614 ip_checksum_adjust(kUdpV6Checksum, ipv6_pseudo_sum, ipv4_pseudo_sum))
615 << "Adjust IPv6/UDP checksum to IPv4\n";
616}
617
618TEST_F(ClatdTest, AdjustChecksum) {
619 struct checksum_data {
620 uint16_t checksum;
621 uint32_t old_hdr_sum;
622 uint32_t new_hdr_sum;
623 uint16_t result;
624 } DATA[] = {
625 { 0x1423, 0xb8ec, 0x2d757, 0xf5b5 },
626 { 0xf5b5, 0x2d757, 0xb8ec, 0x1423 },
627 { 0xdd2f, 0x5555, 0x3285, 0x0000 },
628 { 0x1215, 0x5560, 0x15560 + 20, 0x1200 },
629 { 0xd0c7, 0x3ad0, 0x2644b, 0xa74a },
630 };
631 unsigned i, failed = 0;
632
633 for (i = 0; i < ARRAYSIZE(DATA); i++) {
634 struct checksum_data *data = DATA + i;
635 uint16_t result = ip_checksum_adjust(data->checksum, data->old_hdr_sum, data->new_hdr_sum);
636 EXPECT_EQ(result, data->result)
637 << "Incorrect checksum" << std::showbase << std::hex
638 << "\n Expected: " << data->result
639 << "\n Actual: " << result
640 << "\n checksum=" << data->checksum
641 << " old_sum=" << data->old_hdr_sum << " new_sum=" << data->new_hdr_sum << "\n";
642 }
643}
644
645TEST_F(ClatdTest, Translate) {
646 char udp_ipv4[] = { IPV4_UDP_HEADER UDP_HEADER PAYLOAD };
647 char udp_ipv6[] = { IPV6_UDP_HEADER UDP_HEADER PAYLOAD };
648 fix_udp_checksum(udp_ipv4);
649 fix_udp_checksum(udp_ipv6);
650 check_translated_packet(udp_ipv4, sizeof(udp_ipv4), udp_ipv6, sizeof(udp_ipv6),
651 "UDP/IPv4 -> UDP/IPv6 translation");
652 check_translated_packet(udp_ipv6, sizeof(udp_ipv6), udp_ipv4, sizeof(udp_ipv4),
653 "UDP/IPv6 -> UDP/IPv4 translation");
654
655 char ipv4_ping[] = { IPV4_ICMP_HEADER IPV4_PING PAYLOAD };
656 char ipv6_ping[] = { IPV6_ICMPV6_HEADER IPV6_PING PAYLOAD };
657 check_translated_packet(ipv4_ping, sizeof(ipv4_ping), ipv6_ping, sizeof(ipv6_ping),
658 "ICMP->ICMPv6 translation");
659 check_translated_packet(ipv6_ping, sizeof(ipv6_ping), ipv4_ping, sizeof(ipv4_ping),
660 "ICMPv6->ICMP translation");
661}
662
663TEST_F(ClatdTest, Fragmentation) {
664 int len, i;
665 check_fragment_translation(kIPv4Fragments, kIPv4FragLengths,
666 kIPv6Fragments, kIPv6FragLengths,
667 ARRAYSIZE(kIPv4Fragments), "IPv4->IPv6 fragment translation");
668
669 check_fragment_translation(kIPv6Fragments, kIPv6FragLengths,
670 kIPv4Fragments, kIPv4FragLengths,
671 ARRAYSIZE(kIPv6Fragments), "IPv6->IPv4 fragment translation");
672}