satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 1 | /* |
| 2 | ** |
| 3 | ** Copyright 2010, The Android Open Source Project |
| 4 | ** |
| 5 | ** Licensed under the Apache License, Version 2.0 (the "License"); |
| 6 | ** you may not use this file except in compliance with the License. |
| 7 | ** You may obtain a copy of the License at |
| 8 | ** |
| 9 | ** http://www.apache.org/licenses/LICENSE-2.0 |
| 10 | ** |
| 11 | ** Unless required by applicable law or agreed to in writing, software |
| 12 | ** distributed under the License is distributed on an "AS IS" BASIS, |
| 13 | ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 14 | ** See the License for the specific language governing permissions and |
| 15 | ** limitations under the License. |
| 16 | */ |
| 17 | |
satok | 48e432c | 2010-12-06 17:38:58 +0900 | [diff] [blame] | 18 | #include <assert.h> |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 19 | #include <string.h> |
| 20 | |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 21 | #define LOG_TAG "LatinIME: unigram_dictionary.cpp" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 22 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 23 | #include "char_utils.h" |
satok | e808e43 | 2010-12-02 14:53:24 +0900 | [diff] [blame] | 24 | #include "dictionary.h" |
| 25 | #include "unigram_dictionary.h" |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 26 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 27 | #include "binary_format.h" |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 28 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 29 | namespace latinime { |
| 30 | |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 31 | const UnigramDictionary::digraph_t UnigramDictionary::GERMAN_UMLAUT_DIGRAPHS[] = |
| 32 | { { 'a', 'e' }, |
| 33 | { 'o', 'e' }, |
| 34 | { 'u', 'e' } }; |
| 35 | |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 36 | // TODO: check the header |
| 37 | UnigramDictionary::UnigramDictionary(const uint8_t* const streamStart, int typedLetterMultiplier, |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 38 | int fullWordMultiplier, int maxWordLength, int maxWords, int maxProximityChars, |
satok | 18c28f4 | 2010-12-02 18:11:54 +0900 | [diff] [blame] | 39 | const bool isLatestDictVersion) |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 40 | : DICT_ROOT(streamStart + NEW_DICTIONARY_HEADER_SIZE), |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 41 | MAX_WORD_LENGTH(maxWordLength), MAX_WORDS(maxWords), |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 42 | MAX_PROXIMITY_CHARS(maxProximityChars), IS_LATEST_DICT_VERSION(isLatestDictVersion), |
| 43 | TYPED_LETTER_MULTIPLIER(typedLetterMultiplier), FULL_WORD_MULTIPLIER(fullWordMultiplier), |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 44 | // TODO : remove this variable. |
| 45 | ROOT_POS(0), |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 46 | BYTES_IN_ONE_CHAR(MAX_PROXIMITY_CHARS * sizeof(int)), |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 47 | MAX_UMLAUT_SEARCH_DEPTH(DEFAULT_MAX_UMLAUT_SEARCH_DEPTH) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 48 | if (DEBUG_DICT) { |
| 49 | LOGI("UnigramDictionary - constructor"); |
| 50 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 51 | } |
| 52 | |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 53 | UnigramDictionary::~UnigramDictionary() { |
satok | 2df3060 | 2011-07-15 13:49:00 +0900 | [diff] [blame] | 54 | } |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 55 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 56 | static inline unsigned int getCodesBufferSize(const int *codes, const int codesSize, |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 57 | const int MAX_PROXIMITY_CHARS) { |
| 58 | return sizeof(*codes) * MAX_PROXIMITY_CHARS * codesSize; |
| 59 | } |
| 60 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 61 | // TODO: This needs to take an const unsigned short* and not tinker with its contents |
| 62 | static inline void addWord( |
| 63 | unsigned short *word, int length, int frequency, WordsPriorityQueue *queue) { |
| 64 | queue->push(frequency, word, length); |
| 65 | } |
| 66 | |
| 67 | bool UnigramDictionary::isDigraph(const int *codes, const int i, const int codesSize) const { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 68 | |
| 69 | // There can't be a digraph if we don't have at least 2 characters to examine |
| 70 | if (i + 2 > codesSize) return false; |
| 71 | |
| 72 | // Search for the first char of some digraph |
| 73 | int lastDigraphIndex = -1; |
| 74 | const int thisChar = codes[i * MAX_PROXIMITY_CHARS]; |
| 75 | for (lastDigraphIndex = sizeof(GERMAN_UMLAUT_DIGRAPHS) / sizeof(GERMAN_UMLAUT_DIGRAPHS[0]) - 1; |
| 76 | lastDigraphIndex >= 0; --lastDigraphIndex) { |
| 77 | if (thisChar == GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].first) break; |
| 78 | } |
| 79 | // No match: return early |
| 80 | if (lastDigraphIndex < 0) return false; |
| 81 | |
| 82 | // It's an interesting digraph if the second char matches too. |
| 83 | return GERMAN_UMLAUT_DIGRAPHS[lastDigraphIndex].second == codes[(i + 1) * MAX_PROXIMITY_CHARS]; |
| 84 | } |
| 85 | |
| 86 | // Mostly the same arguments as the non-recursive version, except: |
| 87 | // codes is the original value. It points to the start of the work buffer, and gets passed as is. |
| 88 | // codesSize is the size of the user input (thus, it is the size of codesSrc). |
| 89 | // codesDest is the current point in the work buffer. |
| 90 | // codesSrc is the current point in the user-input, original, content-unmodified buffer. |
| 91 | // codesRemain is the remaining size in codesSrc. |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 92 | void UnigramDictionary::getWordWithDigraphSuggestionsRec(ProximityInfo *proximityInfo, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 93 | const int *xcoordinates, const int *ycoordinates, const int *codesBuffer, |
| 94 | const int codesBufferSize, const int flags, const int *codesSrc, |
| 95 | const int codesRemain, const int currentDepth, int *codesDest, Correction *correction, |
| 96 | WordsPriorityQueue *queue) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 97 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 98 | if (currentDepth < MAX_UMLAUT_SEARCH_DEPTH) { |
| 99 | for (int i = 0; i < codesRemain; ++i) { |
| 100 | if (isDigraph(codesSrc, i, codesRemain)) { |
| 101 | // Found a digraph. We will try both spellings. eg. the word is "pruefen" |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 102 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 103 | // Copy the word up to the first char of the digraph, then continue processing |
| 104 | // on the remaining part of the word, skipping the second char of the digraph. |
| 105 | // In our example, copy "pru" and continue running on "fen" |
| 106 | // Make i the index of the second char of the digraph for simplicity. Forgetting |
| 107 | // to do that results in an infinite recursion so take care! |
| 108 | ++i; |
| 109 | memcpy(codesDest, codesSrc, i * BYTES_IN_ONE_CHAR); |
| 110 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
| 111 | codesBuffer, codesBufferSize, flags, |
| 112 | codesSrc + (i + 1) * MAX_PROXIMITY_CHARS, codesRemain - i - 1, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 113 | currentDepth + 1, codesDest + i * MAX_PROXIMITY_CHARS, correction, queue); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 114 | |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 115 | // Copy the second char of the digraph in place, then continue processing on |
| 116 | // the remaining part of the word. |
| 117 | // In our example, after "pru" in the buffer copy the "e", and continue on "fen" |
| 118 | memcpy(codesDest + i * MAX_PROXIMITY_CHARS, codesSrc + i * MAX_PROXIMITY_CHARS, |
| 119 | BYTES_IN_ONE_CHAR); |
| 120 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 121 | codesBuffer, codesBufferSize, flags, |
| 122 | codesSrc + i * MAX_PROXIMITY_CHARS, codesRemain - i, currentDepth + 1, |
| 123 | codesDest + i * MAX_PROXIMITY_CHARS, correction, queue); |
Jean Chalard | a787dba | 2011-03-04 12:17:48 +0900 | [diff] [blame] | 124 | return; |
| 125 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 126 | } |
| 127 | } |
| 128 | |
| 129 | // If we come here, we hit the end of the word: let's check it against the dictionary. |
| 130 | // In our example, we'll come here once for "prufen" and then once for "pruefen". |
| 131 | // If the word contains several digraphs, we'll come it for the product of them. |
| 132 | // eg. if the word is "ueberpruefen" we'll test, in order, against |
| 133 | // "uberprufen", "uberpruefen", "ueberprufen", "ueberpruefen". |
| 134 | const unsigned int remainingBytes = BYTES_IN_ONE_CHAR * codesRemain; |
| 135 | if (0 != remainingBytes) |
| 136 | memcpy(codesDest, codesSrc, remainingBytes); |
| 137 | |
| 138 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 139 | (codesDest - codesBuffer) / MAX_PROXIMITY_CHARS + codesRemain, flags, correction, |
| 140 | queue); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 141 | } |
| 142 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 143 | int UnigramDictionary::getSuggestions(ProximityInfo *proximityInfo, WordsPriorityQueue *queue, |
| 144 | Correction *correction, const int *xcoordinates, const int *ycoordinates, const int *codes, |
| 145 | const int codesSize, const int flags, unsigned short *outWords, int *frequencies) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 146 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 147 | WordsPriorityQueue* masterQueue = queue; |
| 148 | Correction* masterCorrection = correction; |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 149 | if (REQUIRES_GERMAN_UMLAUT_PROCESSING & flags) |
| 150 | { // Incrementally tune the word and try all possibilities |
| 151 | int codesBuffer[getCodesBufferSize(codes, codesSize, MAX_PROXIMITY_CHARS)]; |
| 152 | getWordWithDigraphSuggestionsRec(proximityInfo, xcoordinates, ycoordinates, codesBuffer, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 153 | codesSize, flags, codes, codesSize, 0, codesBuffer, masterCorrection, masterQueue); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 154 | } else { // Normal processing |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 155 | getWordSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, codesSize, flags, |
| 156 | masterCorrection, masterQueue); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 157 | } |
| 158 | |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 159 | PROF_START(20); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 160 | const int suggestedWordsCount = masterQueue->outputSuggestions(frequencies, outWords); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 161 | |
| 162 | if (DEBUG_DICT) { |
| 163 | LOGI("Returning %d words", suggestedWordsCount); |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 164 | /// Print the returned words |
| 165 | for (int j = 0; j < suggestedWordsCount; ++j) { |
Doug Kwan | ce9efbf | 2011-07-07 22:53:50 -0700 | [diff] [blame] | 166 | #ifdef FLAG_DBG |
satok | 16379df | 2011-12-12 20:53:22 +0900 | [diff] [blame] | 167 | short unsigned int* w = outWords + j * MAX_WORD_LENGTH; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 168 | char s[MAX_WORD_LENGTH]; |
| 169 | for (int i = 0; i <= MAX_WORD_LENGTH; i++) s[i] = w[i]; |
satok | 16379df | 2011-12-12 20:53:22 +0900 | [diff] [blame] | 170 | LOGI("%s %i", s, frequencies[j]); |
satok | 787945b | 2011-07-14 08:32:57 +0900 | [diff] [blame] | 171 | #endif |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 172 | } |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 173 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 174 | PROF_END(20); |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 175 | PROF_CLOSE; |
| 176 | return suggestedWordsCount; |
| 177 | } |
| 178 | |
satok | 1d7eaf8 | 2011-07-13 10:32:02 +0900 | [diff] [blame] | 179 | void UnigramDictionary::getWordSuggestions(ProximityInfo *proximityInfo, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 180 | const int *xcoordinates, const int *ycoordinates, const int *codes, |
| 181 | const int inputLength, const int flags, Correction *correction, WordsPriorityQueue *queue) { |
Jean Chalard | c2bbc6a | 2011-02-25 17:56:53 +0900 | [diff] [blame] | 182 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 183 | PROF_OPEN; |
| 184 | PROF_START(0); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 185 | initSuggestions(proximityInfo, xcoordinates, ycoordinates, codes, inputLength, queue); |
| 186 | if (DEBUG_DICT) assert(codesSize == inputLength); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 187 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 188 | const int maxDepth = min(inputLength * MAX_DEPTH_MULTIPLIER, MAX_WORD_LENGTH); |
| 189 | correction->initCorrection(proximityInfo, inputLength, maxDepth); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 190 | PROF_END(0); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 191 | |
satok | 40a5f6f | 2011-09-29 18:36:56 +0900 | [diff] [blame] | 192 | const bool useFullEditDistance = USE_FULL_EDIT_DISTANCE & flags; |
satok | 0cedd2b | 2011-08-12 01:05:27 +0900 | [diff] [blame] | 193 | // TODO: remove |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 194 | PROF_START(1); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 195 | getSuggestionCandidates(useFullEditDistance, inputLength, correction, queue); |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 196 | PROF_END(1); |
| 197 | |
| 198 | PROF_START(2); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 199 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 200 | PROF_END(2); |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 201 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 202 | PROF_START(3); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 203 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 204 | PROF_END(3); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 205 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 206 | PROF_START(4); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 207 | // Note: This line is intentionally left blank |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 208 | PROF_END(4); |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 209 | |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 210 | PROF_START(5); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 211 | // Suggestions with missing space |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 212 | if (SUGGEST_WORDS_WITH_MISSING_SPACE_CHARACTER |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 213 | && inputLength >= MIN_USER_TYPED_LENGTH_FOR_MISSING_SPACE_SUGGESTION) { |
| 214 | for (int i = 1; i < inputLength; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 215 | if (DEBUG_DICT) { |
| 216 | LOGI("--- Suggest missing space characters %d", i); |
| 217 | } |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 218 | getMissingSpaceWords( |
| 219 | inputLength, i, proximityInfo, correction, useFullEditDistance, queue); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 220 | } |
| 221 | } |
satok | 61e2f85 | 2011-01-05 14:13:07 +0900 | [diff] [blame] | 222 | PROF_END(5); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 223 | |
| 224 | PROF_START(6); |
Jean Chalard | e93b1f22 | 2011-06-01 17:12:25 +0900 | [diff] [blame] | 225 | if (SUGGEST_WORDS_WITH_SPACE_PROXIMITY && proximityInfo) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 226 | // The first and last "mistyped spaces" are taken care of by excessive character handling |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 227 | for (int i = 1; i < inputLength - 1; ++i) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 228 | if (DEBUG_DICT) { |
| 229 | LOGI("--- Suggest words with proximity space %d", i); |
| 230 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 231 | const int x = xcoordinates[i]; |
| 232 | const int y = ycoordinates[i]; |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 233 | if (DEBUG_PROXIMITY_INFO) { |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 234 | LOGI("Input[%d] x = %d, y = %d, has space proximity = %d", |
| 235 | i, x, y, proximityInfo->hasSpaceProximity(x, y)); |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 236 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 237 | if (proximityInfo->hasSpaceProximity(x, y)) { |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 238 | getMistypedSpaceWords( |
| 239 | inputLength, i, proximityInfo, correction, useFullEditDistance, queue); |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 240 | } |
satok | 817e517 | 2011-03-04 06:06:45 -0800 | [diff] [blame] | 241 | } |
| 242 | } |
| 243 | PROF_END(6); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 244 | } |
| 245 | |
Yusuke Nojima | 258bfe6 | 2011-09-28 12:59:43 +0900 | [diff] [blame] | 246 | void UnigramDictionary::initSuggestions(ProximityInfo *proximityInfo, const int *xCoordinates, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 247 | const int *yCoordinates, const int *codes, const int codesSize, |
| 248 | WordsPriorityQueue *queue) { |
Ken Wakasa | de3070a | 2011-03-19 09:16:42 +0900 | [diff] [blame] | 249 | if (DEBUG_DICT) { |
| 250 | LOGI("initSuggest"); |
| 251 | } |
Yusuke Nojima | 258bfe6 | 2011-09-28 12:59:43 +0900 | [diff] [blame] | 252 | proximityInfo->setInputParams(codes, codesSize, xCoordinates, yCoordinates); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 253 | queue->clear(); |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 254 | } |
| 255 | |
satok | 715514d | 2010-12-02 20:19:59 +0900 | [diff] [blame] | 256 | static const char QUOTE = '\''; |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 257 | static const char SPACE = ' '; |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 258 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 259 | void UnigramDictionary::getSuggestionCandidates(const bool useFullEditDistance, |
| 260 | const int inputLength, Correction *correction, WordsPriorityQueue *queue) { |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 261 | // TODO: Remove setCorrectionParams |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 262 | correction->setCorrectionParams(0, 0, 0, |
satok | 40a5f6f | 2011-09-29 18:36:56 +0900 | [diff] [blame] | 263 | -1 /* spaceProximityPos */, -1 /* missingSpacePos */, useFullEditDistance); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 264 | int rootPosition = ROOT_POS; |
Jean Chalard | 980d6b6 | 2011-06-30 17:02:23 +0900 | [diff] [blame] | 265 | // Get the number of children of root, then increment the position |
Jean Chalard | 293ece0 | 2011-06-16 20:55:16 +0900 | [diff] [blame] | 266 | int childCount = Dictionary::getCount(DICT_ROOT, &rootPosition); |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 267 | int outputIndex = 0; |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 268 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 269 | correction->initCorrectionState(rootPosition, childCount, (inputLength <= 0)); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 270 | |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 271 | // Depth first search |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 272 | while (outputIndex >= 0) { |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 273 | if (correction->initProcessState(outputIndex)) { |
| 274 | int siblingPos = correction->getTreeSiblingPos(outputIndex); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 275 | int firstChildPos; |
satok | 0f6c8e8 | 2011-08-03 02:19:44 +0900 | [diff] [blame] | 276 | |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame] | 277 | const bool needsToTraverseChildrenNodes = processCurrentNode(siblingPos, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 278 | correction, &childCount, &firstChildPos, &siblingPos, queue); |
satok | 662fe69 | 2010-12-08 17:05:39 +0900 | [diff] [blame] | 279 | // Update next sibling pos |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 280 | correction->setTreeSiblingPos(outputIndex, siblingPos); |
satok | 208268d | 2011-08-10 15:44:08 +0900 | [diff] [blame] | 281 | |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 282 | if (needsToTraverseChildrenNodes) { |
| 283 | // Goes to child node |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 284 | outputIndex = correction->goDownTree(outputIndex, childCount, firstChildPos); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 285 | } |
| 286 | } else { |
satok | cdbbea7 | 2010-12-08 16:04:16 +0900 | [diff] [blame] | 287 | // Goes to parent sibling node |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 288 | outputIndex = correction->getTreeParentIndex(outputIndex); |
satok | d299792 | 2010-12-07 13:08:39 +0900 | [diff] [blame] | 289 | } |
| 290 | } |
| 291 | } |
| 292 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 293 | void UnigramDictionary::getMissingSpaceWords( |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 294 | const int inputLength, const int missingSpacePos, ProximityInfo *proximityInfo, |
| 295 | Correction *correction, const bool useFullEditDistance, WordsPriorityQueue *queue) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 296 | correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
satok | 40a5f6f | 2011-09-29 18:36:56 +0900 | [diff] [blame] | 297 | -1 /* transposedPos */, -1 /* spaceProximityPos */, missingSpacePos, |
| 298 | useFullEditDistance); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 299 | getSplitTwoWordsSuggestion(inputLength, proximityInfo, correction, queue); |
satok | b2e5e59 | 2011-04-26 14:50:54 +0900 | [diff] [blame] | 300 | } |
| 301 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 302 | void UnigramDictionary::getMistypedSpaceWords( |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 303 | const int inputLength, const int spaceProximityPos, ProximityInfo *proximityInfo, |
| 304 | Correction *correction, const bool useFullEditDistance, WordsPriorityQueue *queue) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 305 | correction->setCorrectionParams(-1 /* skipPos */, -1 /* excessivePos */, |
satok | 40a5f6f | 2011-09-29 18:36:56 +0900 | [diff] [blame] | 306 | -1 /* transposedPos */, spaceProximityPos, -1 /* missingSpacePos */, |
| 307 | useFullEditDistance); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 308 | getSplitTwoWordsSuggestion(inputLength, proximityInfo, correction, queue); |
satok | 54fe9e0 | 2010-12-13 14:42:35 +0900 | [diff] [blame] | 309 | } |
satok | a3d78f6 | 2010-12-09 22:08:33 +0900 | [diff] [blame] | 310 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 311 | inline void UnigramDictionary::onTerminal( |
| 312 | const int freq, Correction *correction, WordsPriorityQueue *queue) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 313 | int wordLength; |
| 314 | unsigned short* wordPointer; |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 315 | const int finalFreq = correction->getFinalFreq(freq, &wordPointer, &wordLength); |
satok | 4e4e74e | 2011-08-03 23:27:32 +0900 | [diff] [blame] | 316 | if (finalFreq >= 0) { |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 317 | addWord(wordPointer, wordLength, finalFreq, queue); |
Jean Chalard | ca5ef28 | 2011-06-17 15:36:26 +0900 | [diff] [blame] | 318 | } |
| 319 | } |
| 320 | |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 321 | void UnigramDictionary::getSplitTwoWordsSuggestion( |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 322 | const int inputLength, ProximityInfo *proximityInfo, Correction *correction, |
| 323 | WordsPriorityQueue *queue) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 324 | const int spaceProximityPos = correction->getSpaceProximityPos(); |
| 325 | const int missingSpacePos = correction->getMissingSpacePos(); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 326 | if (DEBUG_DICT) { |
| 327 | int inputCount = 0; |
| 328 | if (spaceProximityPos >= 0) ++inputCount; |
| 329 | if (missingSpacePos >= 0) ++inputCount; |
| 330 | assert(inputCount <= 1); |
| 331 | } |
| 332 | const bool isSpaceProximity = spaceProximityPos >= 0; |
| 333 | const int firstWordStartPos = 0; |
| 334 | const int secondWordStartPos = isSpaceProximity ? (spaceProximityPos + 1) : missingSpacePos; |
| 335 | const int firstWordLength = isSpaceProximity ? spaceProximityPos : missingSpacePos; |
| 336 | const int secondWordLength = isSpaceProximity |
| 337 | ? (inputLength - spaceProximityPos - 1) |
| 338 | : (inputLength - missingSpacePos); |
| 339 | |
| 340 | if (inputLength >= MAX_WORD_LENGTH) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 341 | if (0 >= firstWordLength || 0 >= secondWordLength || firstWordStartPos >= secondWordStartPos |
| 342 | || firstWordStartPos < 0 || secondWordStartPos + secondWordLength > inputLength) |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 343 | return; |
| 344 | |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 345 | const int newWordLength = firstWordLength + secondWordLength + 1; |
| 346 | // Allocating variable length array on stack |
| 347 | unsigned short word[newWordLength]; |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 348 | const int firstFreq = getMostFrequentWordLike( |
| 349 | firstWordStartPos, firstWordLength, proximityInfo, mWord); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 350 | if (DEBUG_DICT) { |
| 351 | LOGI("First freq: %d", firstFreq); |
| 352 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 353 | if (firstFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 354 | |
| 355 | for (int i = 0; i < firstWordLength; ++i) { |
| 356 | word[i] = mWord[i]; |
| 357 | } |
| 358 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 359 | const int secondFreq = getMostFrequentWordLike( |
| 360 | secondWordStartPos, secondWordLength, proximityInfo, mWord); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 361 | if (DEBUG_DICT) { |
| 362 | LOGI("Second freq: %d", secondFreq); |
| 363 | } |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 364 | if (secondFreq <= 0) return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 365 | |
| 366 | word[firstWordLength] = SPACE; |
| 367 | for (int i = (firstWordLength + 1); i < newWordLength; ++i) { |
| 368 | word[i] = mWord[i - firstWordLength - 1]; |
| 369 | } |
| 370 | |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 371 | const int pairFreq = correction->getFreqForSplitTwoWords(firstFreq, secondFreq, word); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 372 | if (DEBUG_DICT) { |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 373 | LOGI("Split two words: %d, %d, %d, %d", firstFreq, secondFreq, pairFreq, inputLength); |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 374 | } |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 375 | addWord(word, newWordLength, pairFreq, queue); |
satok | 612c6e4 | 2011-08-01 19:35:27 +0900 | [diff] [blame] | 376 | return; |
Jean Chalard | e6715e3 | 2011-06-30 19:47:25 +0900 | [diff] [blame] | 377 | } |
| 378 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 379 | // Wrapper for getMostFrequentWordLikeInner, which matches it to the previous |
| 380 | // interface. |
| 381 | inline int UnigramDictionary::getMostFrequentWordLike(const int startInputIndex, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 382 | const int inputLength, ProximityInfo *proximityInfo, unsigned short *word) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 383 | uint16_t inWord[inputLength]; |
| 384 | |
| 385 | for (int i = 0; i < inputLength; ++i) { |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 386 | inWord[i] = (uint16_t)proximityInfo->getPrimaryCharAt(startInputIndex + i); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 387 | } |
| 388 | return getMostFrequentWordLikeInner(inWord, inputLength, word); |
| 389 | } |
| 390 | |
| 391 | // This function will take the position of a character array within a CharGroup, |
| 392 | // and check it actually like-matches the word in inWord starting at startInputIndex, |
| 393 | // that is, it matches it with case and accents squashed. |
| 394 | // The function returns true if there was a full match, false otherwise. |
| 395 | // The function will copy on-the-fly the characters in the CharGroup to outNewWord. |
| 396 | // It will also place the end position of the array in outPos; in outInputIndex, |
| 397 | // it will place the index of the first char AFTER the match if there was a match, |
| 398 | // and the initial position if there was not. It makes sense because if there was |
| 399 | // a match we want to continue searching, but if there was not, we want to go to |
| 400 | // the next CharGroup. |
| 401 | // In and out parameters may point to the same location. This function takes care |
| 402 | // not to use any input parameters after it wrote into its outputs. |
| 403 | static inline bool testCharGroupForContinuedLikeness(const uint8_t flags, |
| 404 | const uint8_t* const root, const int startPos, |
| 405 | const uint16_t* const inWord, const int startInputIndex, |
| 406 | int32_t* outNewWord, int* outInputIndex, int* outPos) { |
| 407 | const bool hasMultipleChars = (0 != (UnigramDictionary::FLAG_HAS_MULTIPLE_CHARS & flags)); |
| 408 | int pos = startPos; |
| 409 | int32_t character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
Tadashi G. Takaoka | 6e3cb27 | 2011-11-11 14:26:13 +0900 | [diff] [blame] | 410 | int32_t baseChar = toBaseLowerCase(character); |
| 411 | const uint16_t wChar = toBaseLowerCase(inWord[startInputIndex]); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 412 | |
| 413 | if (baseChar != wChar) { |
| 414 | *outPos = hasMultipleChars ? BinaryFormat::skipOtherCharacters(root, pos) : pos; |
| 415 | *outInputIndex = startInputIndex; |
| 416 | return false; |
| 417 | } |
| 418 | int inputIndex = startInputIndex; |
| 419 | outNewWord[inputIndex] = character; |
| 420 | if (hasMultipleChars) { |
| 421 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 422 | while (NOT_A_CHARACTER != character) { |
Tadashi G. Takaoka | 6e3cb27 | 2011-11-11 14:26:13 +0900 | [diff] [blame] | 423 | baseChar = toBaseLowerCase(character); |
| 424 | if (toBaseLowerCase(inWord[++inputIndex]) != baseChar) { |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 425 | *outPos = BinaryFormat::skipOtherCharacters(root, pos); |
| 426 | *outInputIndex = startInputIndex; |
| 427 | return false; |
| 428 | } |
| 429 | outNewWord[inputIndex] = character; |
| 430 | character = BinaryFormat::getCharCodeAndForwardPointer(root, &pos); |
| 431 | } |
| 432 | } |
| 433 | *outInputIndex = inputIndex + 1; |
| 434 | *outPos = pos; |
| 435 | return true; |
| 436 | } |
| 437 | |
| 438 | // This function is invoked when a word like the word searched for is found. |
| 439 | // It will compare the frequency to the max frequency, and if greater, will |
| 440 | // copy the word into the output buffer. In output value maxFreq, it will |
| 441 | // write the new maximum frequency if it changed. |
| 442 | static inline void onTerminalWordLike(const int freq, int32_t* newWord, const int length, |
| 443 | short unsigned int* outWord, int* maxFreq) { |
| 444 | if (freq > *maxFreq) { |
| 445 | for (int q = 0; q < length; ++q) |
| 446 | outWord[q] = newWord[q]; |
| 447 | outWord[length] = 0; |
| 448 | *maxFreq = freq; |
| 449 | } |
| 450 | } |
| 451 | |
| 452 | // Will find the highest frequency of the words like the one passed as an argument, |
| 453 | // that is, everything that only differs by case/accents. |
| 454 | int UnigramDictionary::getMostFrequentWordLikeInner(const uint16_t * const inWord, |
| 455 | const int length, short unsigned int* outWord) { |
| 456 | int32_t newWord[MAX_WORD_LENGTH_INTERNAL]; |
| 457 | int depth = 0; |
| 458 | int maxFreq = -1; |
| 459 | const uint8_t* const root = DICT_ROOT; |
| 460 | |
| 461 | mStackChildCount[0] = root[0]; |
| 462 | mStackInputIndex[0] = 0; |
| 463 | mStackSiblingPos[0] = 1; |
| 464 | while (depth >= 0) { |
| 465 | const int charGroupCount = mStackChildCount[depth]; |
| 466 | int pos = mStackSiblingPos[depth]; |
| 467 | for (int charGroupIndex = charGroupCount - 1; charGroupIndex >= 0; --charGroupIndex) { |
| 468 | int inputIndex = mStackInputIndex[depth]; |
| 469 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(root, &pos); |
| 470 | // Test whether all chars in this group match with the word we are searching for. If so, |
| 471 | // we want to traverse its children (or if the length match, evaluate its frequency). |
| 472 | // Note that this function will output the position regardless, but will only write |
| 473 | // into inputIndex if there is a match. |
| 474 | const bool isAlike = testCharGroupForContinuedLikeness(flags, root, pos, inWord, |
| 475 | inputIndex, newWord, &inputIndex, &pos); |
| 476 | if (isAlike && (FLAG_IS_TERMINAL & flags) && (inputIndex == length)) { |
| 477 | const int frequency = BinaryFormat::readFrequencyWithoutMovingPointer(root, pos); |
| 478 | onTerminalWordLike(frequency, newWord, inputIndex, outWord, &maxFreq); |
| 479 | } |
| 480 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 481 | const int siblingPos = BinaryFormat::skipChildrenPosAndAttributes(root, flags, pos); |
| 482 | const int childrenNodePos = BinaryFormat::readChildrenPosition(root, flags, pos); |
| 483 | // If we had a match and the word has children, we want to traverse them. We don't have |
| 484 | // to traverse words longer than the one we are searching for, since they will not match |
| 485 | // anyway, so don't traverse unless inputIndex < length. |
| 486 | if (isAlike && (-1 != childrenNodePos) && (inputIndex < length)) { |
| 487 | // Save position for this depth, to get back to this once children are done |
| 488 | mStackChildCount[depth] = charGroupIndex; |
| 489 | mStackSiblingPos[depth] = siblingPos; |
| 490 | // Prepare stack values for next depth |
| 491 | ++depth; |
| 492 | int childrenPos = childrenNodePos; |
| 493 | mStackChildCount[depth] = |
| 494 | BinaryFormat::getGroupCountAndForwardPointer(root, &childrenPos); |
| 495 | mStackSiblingPos[depth] = childrenPos; |
| 496 | mStackInputIndex[depth] = inputIndex; |
| 497 | pos = childrenPos; |
| 498 | // Go to the next depth level. |
| 499 | ++depth; |
| 500 | break; |
| 501 | } else { |
| 502 | // No match, or no children, or word too long to ever match: go the next sibling. |
| 503 | pos = siblingPos; |
| 504 | } |
| 505 | } |
| 506 | --depth; |
| 507 | } |
| 508 | return maxFreq; |
| 509 | } |
| 510 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 511 | bool UnigramDictionary::isValidWord(const uint16_t* const inWord, const int length) const { |
Jean Chalard | 6a0e964 | 2011-07-25 18:17:11 +0900 | [diff] [blame] | 512 | return NOT_VALID_WORD != BinaryFormat::getTerminalPosition(DICT_ROOT, inWord, length); |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 513 | } |
| 514 | |
| 515 | // TODO: remove this function. |
| 516 | int UnigramDictionary::getBigramPosition(int pos, unsigned short *word, int offset, |
| 517 | int length) const { |
| 518 | return -1; |
| 519 | } |
| 520 | |
| 521 | // ProcessCurrentNode returns a boolean telling whether to traverse children nodes or not. |
| 522 | // If the return value is false, then the caller should read in the output "nextSiblingPosition" |
| 523 | // to find out the address of the next sibling node and pass it to a new call of processCurrentNode. |
| 524 | // It is worthy to note that when false is returned, the output values other than |
| 525 | // nextSiblingPosition are undefined. |
| 526 | // If the return value is true, then the caller must proceed to traverse the children of this |
| 527 | // node. processCurrentNode will output the information about the children: their count in |
| 528 | // newCount, their position in newChildrenPosition, the traverseAllNodes flag in |
| 529 | // newTraverseAllNodes, the match weight into newMatchRate, the input index into newInputIndex, the |
| 530 | // diffs into newDiffs, the sibling position in nextSiblingPosition, and the output index into |
| 531 | // newOutputIndex. Please also note the following caveat: processCurrentNode does not know when |
| 532 | // there aren't any more nodes at this level, it merely returns the address of the first byte after |
| 533 | // the current node in nextSiblingPosition. Thus, the caller must keep count of the nodes at any |
| 534 | // given level, as output into newCount when traversing this level's parent. |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 535 | inline bool UnigramDictionary::processCurrentNode(const int initialPos, |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 536 | Correction *correction, int *newCount, |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 537 | int *newChildrenPosition, int *nextSiblingPosition, WordsPriorityQueue *queue) { |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 538 | if (DEBUG_DICT) { |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 539 | correction->checkState(); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 540 | } |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 541 | int pos = initialPos; |
Jean Chalard | 0584f02 | 2011-06-30 19:23:16 +0900 | [diff] [blame] | 542 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 543 | // Flags contain the following information: |
| 544 | // - Address type (MASK_GROUP_ADDRESS_TYPE) on two bits: |
| 545 | // - FLAG_GROUP_ADDRESS_TYPE_{ONE,TWO,THREE}_BYTES means there are children and their address |
| 546 | // is on the specified number of bytes. |
| 547 | // - FLAG_GROUP_ADDRESS_TYPE_NOADDRESS means there are no children, and therefore no address. |
| 548 | // - FLAG_HAS_MULTIPLE_CHARS: whether this node has multiple char or not. |
| 549 | // - FLAG_IS_TERMINAL: whether this node is a terminal or not (it may still have children) |
| 550 | // - FLAG_HAS_BIGRAMS: whether this node has bigrams or not |
| 551 | const uint8_t flags = BinaryFormat::getFlagsAndForwardPointer(DICT_ROOT, &pos); |
| 552 | const bool hasMultipleChars = (0 != (FLAG_HAS_MULTIPLE_CHARS & flags)); |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 553 | const bool isTerminalNode = (0 != (FLAG_IS_TERMINAL & flags)); |
| 554 | |
| 555 | bool needsToInvokeOnTerminal = false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 556 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 557 | // This gets only ONE character from the stream. Next there will be: |
| 558 | // if FLAG_HAS_MULTIPLE CHARS: the other characters of the same node |
| 559 | // else if FLAG_IS_TERMINAL: the frequency |
| 560 | // else if MASK_GROUP_ADDRESS_TYPE is not NONE: the children address |
| 561 | // Note that you can't have a node that both is not a terminal and has no children. |
| 562 | int32_t c = BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos); |
| 563 | assert(NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 564 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 565 | // We are going to loop through each character and make it look like it's a different |
| 566 | // node each time. To do that, we will process characters in this node in order until |
| 567 | // we find the character terminator. This is signalled by getCharCode* returning |
| 568 | // NOT_A_CHARACTER. |
| 569 | // As a special case, if there is only one character in this node, we must not read the |
| 570 | // next bytes so we will simulate the NOT_A_CHARACTER return by testing the flags. |
| 571 | // This way, each loop run will look like a "virtual node". |
| 572 | do { |
| 573 | // We prefetch the next char. If 'c' is the last char of this node, we will have |
| 574 | // NOT_A_CHARACTER in the next char. From this we can decide whether this virtual node |
| 575 | // should behave as a terminal or not and whether we have children. |
| 576 | const int32_t nextc = hasMultipleChars |
| 577 | ? BinaryFormat::getCharCodeAndForwardPointer(DICT_ROOT, &pos) : NOT_A_CHARACTER; |
| 578 | const bool isLastChar = (NOT_A_CHARACTER == nextc); |
| 579 | // If there are more chars in this nodes, then this virtual node is not a terminal. |
| 580 | // If we are on the last char, this virtual node is a terminal if this node is. |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 581 | const bool isTerminal = isLastChar && isTerminalNode; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 582 | |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 583 | Correction::CorrectionType stateType = correction->processCharAndCalcState( |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 584 | c, isTerminal); |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 585 | if (stateType == Correction::TRAVERSE_ALL_ON_TERMINAL |
| 586 | || stateType == Correction::ON_TERMINAL) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 587 | needsToInvokeOnTerminal = true; |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 588 | } else if (stateType == Correction::UNRELATED) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 589 | // We found that this is an unrelated character, so we should give up traversing |
| 590 | // this node and its children entirely. |
| 591 | // However we may not be on the last virtual node yet so we skip the remaining |
| 592 | // characters in this node, the frequency if it's there, read the next sibling |
| 593 | // position to output it, then return false. |
| 594 | // We don't have to output other values because we return false, as in |
| 595 | // "don't traverse children". |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 596 | if (!isLastChar) { |
| 597 | pos = BinaryFormat::skipOtherCharacters(DICT_ROOT, pos); |
| 598 | } |
| 599 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 600 | *nextSiblingPosition = |
| 601 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 602 | return false; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 603 | } |
| 604 | |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 605 | // Prepare for the next character. Promote the prefetched char to current char - the loop |
| 606 | // will take care of prefetching the next. If we finally found our last char, nextc will |
| 607 | // contain NOT_A_CHARACTER. |
| 608 | c = nextc; |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 609 | } while (NOT_A_CHARACTER != c); |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 610 | |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 611 | if (isTerminalNode) { |
| 612 | if (needsToInvokeOnTerminal) { |
| 613 | // The frequency should be here, because we come here only if this is actually |
| 614 | // a terminal node, and we are on its last char. |
| 615 | const int freq = BinaryFormat::readFrequencyWithoutMovingPointer(DICT_ROOT, pos); |
satok | 1147c7b | 2011-12-14 15:04:58 +0900 | [diff] [blame^] | 616 | onTerminal(freq, correction, queue); |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 617 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 618 | |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 619 | // If there are more chars in this node, then this virtual node has children. |
| 620 | // If we are on the last char, this virtual node has children if this node has. |
| 621 | const bool hasChildren = BinaryFormat::hasChildrenInFlags(flags); |
| 622 | |
| 623 | // This character matched the typed character (enough to traverse the node at least) |
| 624 | // so we just evaluated it. Now we should evaluate this virtual node's children - that |
| 625 | // is, if it has any. If it has no children, we're done here - so we skip the end of |
| 626 | // the node, output the siblings position, and return false "don't traverse children". |
| 627 | // Note that !hasChildren implies isLastChar, so we know we don't have to skip any |
| 628 | // remaining char in this group for there can't be any. |
| 629 | if (!hasChildren) { |
| 630 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 631 | *nextSiblingPosition = |
| 632 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 633 | return false; |
| 634 | } |
| 635 | |
| 636 | // Optimization: Prune out words that are too long compared to how much was typed. |
satok | cfca3c6 | 2011-08-10 14:30:10 +0900 | [diff] [blame] | 637 | if (correction->needsToPrune()) { |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 638 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 639 | *nextSiblingPosition = |
| 640 | BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
satok | 10266c0 | 2011-08-19 22:05:59 +0900 | [diff] [blame] | 641 | if (DEBUG_DICT_FULL) { |
| 642 | LOGI("Traversing was pruned."); |
| 643 | } |
satok | 8876b75 | 2011-08-04 18:31:57 +0900 | [diff] [blame] | 644 | return false; |
| 645 | } |
| 646 | } |
Jean Chalard | 1059f27 | 2011-06-28 20:45:05 +0900 | [diff] [blame] | 647 | |
| 648 | // Now we finished processing this node, and we want to traverse children. If there are no |
| 649 | // children, we can't come here. |
| 650 | assert(BinaryFormat::hasChildrenInFlags(flags)); |
| 651 | |
| 652 | // If this node was a terminal it still has the frequency under the pointer (it may have been |
| 653 | // read, but not skipped - see readFrequencyWithoutMovingPointer). |
| 654 | // Next come the children position, then possibly attributes (attributes are bigrams only for |
| 655 | // now, maybe something related to shortcuts in the future). |
| 656 | // Once this is read, we still need to output the number of nodes in the immediate children of |
| 657 | // this node, so we read and output it before returning true, as in "please traverse children". |
| 658 | pos = BinaryFormat::skipFrequency(flags, pos); |
| 659 | int childrenPos = BinaryFormat::readChildrenPosition(DICT_ROOT, flags, pos); |
| 660 | *nextSiblingPosition = BinaryFormat::skipChildrenPosAndAttributes(DICT_ROOT, flags, pos); |
| 661 | *newCount = BinaryFormat::getGroupCountAndForwardPointer(DICT_ROOT, &childrenPos); |
| 662 | *newChildrenPosition = childrenPos; |
| 663 | return true; |
Jean Chalard | 85a1d1e | 2011-06-21 22:23:21 +0900 | [diff] [blame] | 664 | } |
| 665 | |
satok | 3008825 | 2010-12-01 21:22:15 +0900 | [diff] [blame] | 666 | } // namespace latinime |