blob: b5a860771fe72f4946ee7e6430f672edf79b8a73 [file] [log] [blame]
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butlercf22a572017-09-22 13:26:12 -070017#include "Callbacks.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070018#include "TestHarness.h"
Miao Wanga2d04c82018-02-05 17:26:54 -080019#include "Utils.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070020
21#include <android-base/logging.h>
Miao Wanga2d04c82018-02-05 17:26:54 -080022#include <android/hardware/neuralnetworks/1.0/IDevice.h>
23#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
24#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
25#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
26#include <android/hardware/neuralnetworks/1.0/types.h>
Xusong Wangb5cb8f72018-10-31 08:43:12 -070027#include <android/hardware/neuralnetworks/1.1/IDevice.h>
28#include <android/hardware/neuralnetworks/1.2/IDevice.h>
29#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
30#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
31#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
Miao Wanga2d04c82018-02-05 17:26:54 -080032#include <android/hidl/allocator/1.0/IAllocator.h>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070033#include <android/hidl/memory/1.0/IMemory.h>
34#include <hidlmemory/mapping.h>
Michael Butler0897ab32017-10-04 02:38:42 -070035#include <iostream>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070036
37namespace android {
38namespace hardware {
39namespace neuralnetworks {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070040
41namespace generated_tests {
Xusong Wangb5cb8f72018-10-31 08:43:12 -070042using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
43using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaev9e3fad12018-11-30 17:55:12 +000044using ::test_helper::bool8;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010045using ::test_helper::compare;
46using ::test_helper::expectMultinomialDistributionWithinTolerance;
Mika Raentode166942018-04-17 16:49:50 +010047using ::test_helper::filter;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010048using ::test_helper::Float32Operands;
Mika Raentode166942018-04-17 16:49:50 +010049using ::test_helper::for_all;
50using ::test_helper::for_each;
Mika Raentode166942018-04-17 16:49:50 +010051using ::test_helper::Int32Operands;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010052using ::test_helper::MixedTyped;
53using ::test_helper::MixedTypedExample;
Michael K. Sandersefa4c812018-10-30 14:44:48 +000054using ::test_helper::MixedTypedIndex;
Mika Raentode166942018-04-17 16:49:50 +010055using ::test_helper::Quant8Operands;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010056using ::test_helper::resize_accordingly;
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070057
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070058template <typename T>
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070059void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
60 MixedTyped& test = *dst;
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070061 for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
62 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070063 char* begin = src + ra[index].location.offset;
64 memcpy(m.data(), begin, ra[index].location.length);
65 });
66}
67
68void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
69 copy_back_<float>(dst, ra, src);
70 copy_back_<int32_t>(dst, ra, src);
71 copy_back_<uint8_t>(dst, ra, src);
Lev Proleevca80ff02018-11-05 13:20:06 +000072 copy_back_<int16_t>(dst, ra, src);
Michael K. Sandersefa4c812018-10-30 14:44:48 +000073 copy_back_<_Float16>(dst, ra, src);
Slava Shklyaev9e3fad12018-11-30 17:55:12 +000074 copy_back_<bool8>(dst, ra, src);
Przemyslaw Szczepaniak42909612018-12-12 13:13:32 +000075 copy_back_<int8_t>(dst, ra, src);
76 static_assert(7 == std::tuple_size<MixedTyped>::value,
Lev Proleev9b490f42018-11-02 12:44:11 +000077 "Number of types in MixedTyped changed, but copy_back function wasn't updated");
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070078}
79
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070080// Top level driver for models and examples generated by test_generator.py
81// Test driver for those generated from ml/nn/runtime/test/spec
Xusong Wangb5cb8f72018-10-31 08:43:12 -070082static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
83 const Request& request,
84 sp<ExecutionCallback>& callback) {
85 return preparedModel->execute(request, callback);
86}
87static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
88 const Request& request,
89 sp<ExecutionCallback>& callback) {
90 return preparedModel->execute_1_2(request, callback);
91}
Xusong Wang187c5972018-11-07 09:33:59 -080092static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>&, const Request&,
93 hidl_vec<OutputShape>*) {
David Gross49e41672018-12-21 11:20:26 -080094 ADD_FAILURE() << "asking for synchronous execution at V1_0";
95 return ErrorStatus::GENERAL_FAILURE;
96}
97static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
Xusong Wang187c5972018-11-07 09:33:59 -080098 const Request& request,
99 hidl_vec<OutputShape>* outputShapes) {
100 ErrorStatus result;
101 Return<void> ret = preparedModel->executeSynchronously(
102 request, [&result, &outputShapes](ErrorStatus error, const hidl_vec<OutputShape>& shapes) {
103 result = error;
104 *outputShapes = shapes;
105 });
106 if (!ret.isOk()) {
107 return ErrorStatus::GENERAL_FAILURE;
108 }
109 return result;
David Gross49e41672018-12-21 11:20:26 -0800110}
111enum class Synchronously { NO, YES };
112const float kDefaultAtol = 1e-5f;
113const float kDefaultRtol = 1e-5f;
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700114template <typename T_IPreparedModel>
115void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000116 const std::vector<MixedTypedExample>& examples,
David Gross49e41672018-12-21 11:20:26 -0800117 bool hasRelaxedFloat32Model = false, float fpAtol = kDefaultAtol,
118 float fpRtol = kDefaultRtol, Synchronously sync = Synchronously::NO) {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700119 const uint32_t INPUT = 0;
120 const uint32_t OUTPUT = 1;
121
122 int example_no = 1;
123 for (auto& example : examples) {
124 SCOPED_TRACE(example_no++);
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100125 const MixedTyped& inputs = example.operands.first;
126 const MixedTyped& golden = example.operands.second;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700127
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000128 const bool hasFloat16Inputs = !std::get<MixedTypedIndex<_Float16>::index>(inputs).empty();
129 if (hasRelaxedFloat32Model || hasFloat16Inputs) {
130 // TODO: Adjust the error limit based on testing.
131 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
132 fpAtol = 5.0f * 0.0009765625f;
133 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
134 fpRtol = 5.0f * 0.0009765625f;
135 }
136
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700137 std::vector<RequestArgument> inputs_info, outputs_info;
138 uint32_t inputSize = 0, outputSize = 0;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700139 // This function only partially specifies the metadata (vector of RequestArguments).
140 // The contents are copied over below.
141 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
142 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
143 RequestArgument arg = {
144 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
145 .dimensions = {},
146 };
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700147 RequestArgument arg_empty = {
148 .hasNoValue = true,
149 };
150 inputs_info[index] = s ? arg : arg_empty;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700151 inputSize += s;
152 });
153 // Compute offset for inputs 1 and so on
154 {
155 size_t offset = 0;
156 for (auto& i : inputs_info) {
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700157 if (!i.hasNoValue) i.location.offset = offset;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700158 offset += i.location.length;
159 }
160 }
161
162 MixedTyped test; // holding test results
163
164 // Go through all outputs, initialize RequestArgument descriptors
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700165 resize_accordingly(golden, test);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700166 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
167 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
168 RequestArgument arg = {
169 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
170 .dimensions = {},
171 };
172 outputs_info[index] = arg;
173 outputSize += s;
174 });
175 // Compute offset for outputs 1 and so on
176 {
177 size_t offset = 0;
178 for (auto& i : outputs_info) {
179 i.location.offset = offset;
180 offset += i.location.length;
181 }
182 }
Miao Wanga2d04c82018-02-05 17:26:54 -0800183 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
184 nn::allocateSharedMemory(outputSize)};
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700185 ASSERT_NE(0ull, pools[INPUT].size());
186 ASSERT_NE(0ull, pools[OUTPUT].size());
187
188 // load data
189 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
190 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
191 ASSERT_NE(nullptr, inputMemory.get());
192 ASSERT_NE(nullptr, outputMemory.get());
193 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
194 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
195 ASSERT_NE(nullptr, inputPtr);
196 ASSERT_NE(nullptr, outputPtr);
197 inputMemory->update();
198 outputMemory->update();
199
200 // Go through all inputs, copy the values
201 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
202 char* begin = (char*)p;
203 char* end = begin + s;
204 // TODO: handle more than one input
205 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
206 });
207
208 inputMemory->commit();
209 outputMemory->commit();
Michael Butlercf22a572017-09-22 13:26:12 -0700210
Xusong Wang187c5972018-11-07 09:33:59 -0800211 ErrorStatus executionStatus;
212 hidl_vec<OutputShape> outputShapes;
David Gross49e41672018-12-21 11:20:26 -0800213 if (sync == Synchronously::NO) {
214 SCOPED_TRACE("asynchronous");
Michael Butlercf22a572017-09-22 13:26:12 -0700215
David Gross49e41672018-12-21 11:20:26 -0800216 // launch execution
217 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
218 ASSERT_NE(nullptr, executionCallback.get());
219 Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
220 preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
221 executionCallback);
222 ASSERT_TRUE(executionLaunchStatus.isOk());
223 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
224
225 // retrieve execution status
226 executionCallback->wait();
Xusong Wang187c5972018-11-07 09:33:59 -0800227 executionStatus = executionCallback->getStatus();
228 outputShapes = executionCallback->getOutputShapes();
David Gross49e41672018-12-21 11:20:26 -0800229 } else {
230 SCOPED_TRACE("synchronous");
231
232 // execute
Xusong Wang187c5972018-11-07 09:33:59 -0800233 Return<ErrorStatus> executionReturnStatus = ExecutePreparedModel(
234 preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
235 &outputShapes);
236 ASSERT_TRUE(executionReturnStatus.isOk());
237 executionStatus = static_cast<ErrorStatus>(executionReturnStatus);
David Gross49e41672018-12-21 11:20:26 -0800238 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700239
Xusong Wang187c5972018-11-07 09:33:59 -0800240 ASSERT_EQ(ErrorStatus::NONE, executionStatus);
241 // TODO(xusongw): Check if the returned output shapes match with expectation once the
242 // sample driver implementation of dynamic output shape is finished.
243 ASSERT_EQ(outputShapes.size(), 0);
244
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700245 // validate results
246 outputMemory->read();
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700247 copy_back(&test, outputs_info, outputPtr);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700248 outputMemory->commit();
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700249 // Filter out don't cares
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -0700250 MixedTyped filtered_golden = filter(golden, is_ignored);
251 MixedTyped filtered_test = filter(test, is_ignored);
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700252
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700253 // We want "close-enough" results for float
Xusong Wang10d77e42018-08-28 16:50:01 -0700254 compare(filtered_golden, filtered_test, fpAtol, fpRtol);
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100255
256 if (example.expectedMultinomialDistributionTolerance > 0) {
257 expectMultinomialDistributionWithinTolerance(test, example);
258 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700259 }
260}
David Gross49e41672018-12-21 11:20:26 -0800261template <typename T_IPreparedModel>
262void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
263 const std::vector<MixedTypedExample>& examples,
264 bool hasRelaxedFloat32Model, Synchronously sync) {
265 EvaluatePreparedModel(preparedModel, is_ignored, examples, hasRelaxedFloat32Model, kDefaultAtol,
266 kDefaultRtol, sync);
267}
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700268
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700269static void getPreparedModel(sp<PreparedModelCallback> callback,
270 sp<V1_0::IPreparedModel>* preparedModel) {
271 *preparedModel = callback->getPreparedModel();
272}
273static void getPreparedModel(sp<PreparedModelCallback> callback,
274 sp<V1_2::IPreparedModel>* preparedModel) {
275 sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
276 *preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
277}
278
Michael Butlerf76acd02018-03-22 16:37:57 -0700279void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100280 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800281 V1_0::Model model = create_model();
282
283 // see if service can handle model
284 bool fullySupportsModel = false;
Miao Wanga2d04c82018-02-05 17:26:54 -0800285 Return<void> supportedCall = device->getSupportedOperations(
Michael Butler4d5bb102018-02-26 15:24:46 -0800286 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
287 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wanga2d04c82018-02-05 17:26:54 -0800288 ASSERT_NE(0ul, supported.size());
289 fullySupportsModel =
290 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
291 });
292 ASSERT_TRUE(supportedCall.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800293
294 // launch prepare model
295 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
296 ASSERT_NE(nullptr, preparedModelCallback.get());
Miao Wanga2d04c82018-02-05 17:26:54 -0800297 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
298 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800299 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wanga2d04c82018-02-05 17:26:54 -0800300
301 // retrieve prepared model
302 preparedModelCallback->wait();
303 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700304 sp<V1_0::IPreparedModel> preparedModel;
305 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wanga2d04c82018-02-05 17:26:54 -0800306
307 // early termination if vendor service cannot fully prepare model
Michael Butler4d5bb102018-02-26 15:24:46 -0800308 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800309 ASSERT_EQ(nullptr, preparedModel.get());
310 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
311 "prepare model that it does not support.";
312 std::cout << "[ ] Early termination of test because vendor service cannot "
313 "prepare model that it does not support."
314 << std::endl;
315 return;
316 }
Michael Butler4d5bb102018-02-26 15:24:46 -0800317 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wanga2d04c82018-02-05 17:26:54 -0800318 ASSERT_NE(nullptr, preparedModel.get());
319
Xusong Wang10d77e42018-08-28 16:50:01 -0700320 float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000321 EvaluatePreparedModel(preparedModel, is_ignored, examples,
322 /*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol);
Miao Wanga2d04c82018-02-05 17:26:54 -0800323}
324
Michael Butlerf76acd02018-03-22 16:37:57 -0700325void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100326 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800327 V1_1::Model model = create_model();
328
329 // see if service can handle model
330 bool fullySupportsModel = false;
Miao Wanga2d04c82018-02-05 17:26:54 -0800331 Return<void> supportedCall = device->getSupportedOperations_1_1(
Michael Butler4d5bb102018-02-26 15:24:46 -0800332 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
333 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wanga2d04c82018-02-05 17:26:54 -0800334 ASSERT_NE(0ul, supported.size());
335 fullySupportsModel =
336 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
337 });
338 ASSERT_TRUE(supportedCall.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800339
340 // launch prepare model
341 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
342 ASSERT_NE(nullptr, preparedModelCallback.get());
Michael Butler2504c2f2018-04-11 16:30:09 -0700343 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
344 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
Miao Wanga2d04c82018-02-05 17:26:54 -0800345 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800346 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wanga2d04c82018-02-05 17:26:54 -0800347
348 // retrieve prepared model
349 preparedModelCallback->wait();
350 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700351 sp<V1_0::IPreparedModel> preparedModel;
352 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wanga2d04c82018-02-05 17:26:54 -0800353
354 // early termination if vendor service cannot fully prepare model
Michael Butler4d5bb102018-02-26 15:24:46 -0800355 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800356 ASSERT_EQ(nullptr, preparedModel.get());
357 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
358 "prepare model that it does not support.";
359 std::cout << "[ ] Early termination of test because vendor service cannot "
360 "prepare model that it does not support."
361 << std::endl;
362 return;
363 }
Michael Butler4d5bb102018-02-26 15:24:46 -0800364 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wanga2d04c82018-02-05 17:26:54 -0800365 ASSERT_NE(nullptr, preparedModel.get());
366
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000367 EvaluatePreparedModel(preparedModel, is_ignored, examples,
368 model.relaxComputationFloat32toFloat16);
Miao Wanga2d04c82018-02-05 17:26:54 -0800369}
370
Slava Shklyaev871be942018-09-12 14:52:02 +0100371// TODO: Reduce code duplication.
372void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100373 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100374 V1_2::Model model = create_model();
375
376 // see if service can handle model
377 bool fullySupportsModel = false;
378 Return<void> supportedCall = device->getSupportedOperations_1_2(
379 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
380 ASSERT_EQ(ErrorStatus::NONE, status);
381 ASSERT_NE(0ul, supported.size());
382 fullySupportsModel =
383 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
384 });
385 ASSERT_TRUE(supportedCall.isOk());
386
387 // launch prepare model
388 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
389 ASSERT_NE(nullptr, preparedModelCallback.get());
390 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
391 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
392 ASSERT_TRUE(prepareLaunchStatus.isOk());
393 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
394
395 // retrieve prepared model
396 preparedModelCallback->wait();
397 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700398 sp<V1_2::IPreparedModel> preparedModel;
399 getPreparedModel(preparedModelCallback, &preparedModel);
Slava Shklyaev871be942018-09-12 14:52:02 +0100400
401 // early termination if vendor service cannot fully prepare model
402 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
403 ASSERT_EQ(nullptr, preparedModel.get());
404 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
405 "prepare model that it does not support.";
406 std::cout << "[ ] Early termination of test because vendor service cannot "
407 "prepare model that it does not support."
408 << std::endl;
409 return;
410 }
411 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
412 ASSERT_NE(nullptr, preparedModel.get());
413
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000414 EvaluatePreparedModel(preparedModel, is_ignored, examples,
David Gross49e41672018-12-21 11:20:26 -0800415 model.relaxComputationFloat32toFloat16, Synchronously::NO);
416 EvaluatePreparedModel(preparedModel, is_ignored, examples,
417 model.relaxComputationFloat32toFloat16, Synchronously::YES);
Slava Shklyaev871be942018-09-12 14:52:02 +0100418}
419
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700420} // namespace generated_tests
421
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700422} // namespace neuralnetworks
423} // namespace hardware
424} // namespace android