blob: 967a9f27de349b72f817a1cf44de9aef81ecbe30 [file] [log] [blame]
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -07001/*
2 * Copyright (C) 2017 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
Michael Butlercf22a572017-09-22 13:26:12 -070017#include "Callbacks.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070018#include "TestHarness.h"
Miao Wanga2d04c82018-02-05 17:26:54 -080019#include "Utils.h"
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070020
21#include <android-base/logging.h>
Miao Wanga2d04c82018-02-05 17:26:54 -080022#include <android/hardware/neuralnetworks/1.0/IDevice.h>
23#include <android/hardware/neuralnetworks/1.0/IExecutionCallback.h>
24#include <android/hardware/neuralnetworks/1.0/IPreparedModel.h>
25#include <android/hardware/neuralnetworks/1.0/IPreparedModelCallback.h>
26#include <android/hardware/neuralnetworks/1.0/types.h>
Xusong Wangb5cb8f72018-10-31 08:43:12 -070027#include <android/hardware/neuralnetworks/1.1/IDevice.h>
28#include <android/hardware/neuralnetworks/1.2/IDevice.h>
29#include <android/hardware/neuralnetworks/1.2/IExecutionCallback.h>
30#include <android/hardware/neuralnetworks/1.2/IPreparedModel.h>
31#include <android/hardware/neuralnetworks/1.2/IPreparedModelCallback.h>
Miao Wanga2d04c82018-02-05 17:26:54 -080032#include <android/hidl/allocator/1.0/IAllocator.h>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070033#include <android/hidl/memory/1.0/IMemory.h>
34#include <hidlmemory/mapping.h>
Michael Butler0897ab32017-10-04 02:38:42 -070035#include <iostream>
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070036
37namespace android {
38namespace hardware {
39namespace neuralnetworks {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070040
41namespace generated_tests {
Xusong Wangb5cb8f72018-10-31 08:43:12 -070042using ::android::hardware::neuralnetworks::V1_2::implementation::ExecutionCallback;
43using ::android::hardware::neuralnetworks::V1_2::implementation::PreparedModelCallback;
Slava Shklyaev9e3fad12018-11-30 17:55:12 +000044using ::test_helper::bool8;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010045using ::test_helper::compare;
46using ::test_helper::expectMultinomialDistributionWithinTolerance;
Mika Raentode166942018-04-17 16:49:50 +010047using ::test_helper::filter;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010048using ::test_helper::Float32Operands;
Mika Raentode166942018-04-17 16:49:50 +010049using ::test_helper::for_all;
50using ::test_helper::for_each;
Mika Raentode166942018-04-17 16:49:50 +010051using ::test_helper::Int32Operands;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010052using ::test_helper::MixedTyped;
53using ::test_helper::MixedTypedExample;
Michael K. Sandersefa4c812018-10-30 14:44:48 +000054using ::test_helper::MixedTypedIndex;
Mika Raentode166942018-04-17 16:49:50 +010055using ::test_helper::Quant8Operands;
Michael K. Sanders941d61a2018-10-19 14:39:09 +010056using ::test_helper::resize_accordingly;
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070057
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070058template <typename T>
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070059void copy_back_(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
60 MixedTyped& test = *dst;
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -070061 for_each<T>(test, [&ra, src](int index, std::vector<T>& m) {
62 ASSERT_EQ(m.size(), ra[index].location.length / sizeof(T));
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070063 char* begin = src + ra[index].location.offset;
64 memcpy(m.data(), begin, ra[index].location.length);
65 });
66}
67
68void copy_back(MixedTyped* dst, const std::vector<RequestArgument>& ra, char* src) {
69 copy_back_<float>(dst, ra, src);
70 copy_back_<int32_t>(dst, ra, src);
71 copy_back_<uint8_t>(dst, ra, src);
Lev Proleevca80ff02018-11-05 13:20:06 +000072 copy_back_<int16_t>(dst, ra, src);
Michael K. Sandersefa4c812018-10-30 14:44:48 +000073 copy_back_<_Float16>(dst, ra, src);
Slava Shklyaev9e3fad12018-11-30 17:55:12 +000074 copy_back_<bool8>(dst, ra, src);
Przemyslaw Szczepaniak42909612018-12-12 13:13:32 +000075 copy_back_<int8_t>(dst, ra, src);
76 static_assert(7 == std::tuple_size<MixedTyped>::value,
Lev Proleev9b490f42018-11-02 12:44:11 +000077 "Number of types in MixedTyped changed, but copy_back function wasn't updated");
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -070078}
79
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070080// Top level driver for models and examples generated by test_generator.py
81// Test driver for those generated from ml/nn/runtime/test/spec
Xusong Wangb5cb8f72018-10-31 08:43:12 -070082static Return<ErrorStatus> ExecutePreparedModel(sp<V1_0::IPreparedModel>& preparedModel,
83 const Request& request,
84 sp<ExecutionCallback>& callback) {
85 return preparedModel->execute(request, callback);
86}
87static Return<ErrorStatus> ExecutePreparedModel(sp<V1_2::IPreparedModel>& preparedModel,
88 const Request& request,
89 sp<ExecutionCallback>& callback) {
90 return preparedModel->execute_1_2(request, callback);
91}
92template <typename T_IPreparedModel>
93void EvaluatePreparedModel(sp<T_IPreparedModel>& preparedModel, std::function<bool(int)> is_ignored,
Michael K. Sandersefa4c812018-10-30 14:44:48 +000094 const std::vector<MixedTypedExample>& examples,
95 bool hasRelaxedFloat32Model = false, float fpAtol = 1e-5f,
Xusong Wang10d77e42018-08-28 16:50:01 -070096 float fpRtol = 1e-5f) {
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -070097 const uint32_t INPUT = 0;
98 const uint32_t OUTPUT = 1;
99
100 int example_no = 1;
101 for (auto& example : examples) {
102 SCOPED_TRACE(example_no++);
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100103 const MixedTyped& inputs = example.operands.first;
104 const MixedTyped& golden = example.operands.second;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700105
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000106 const bool hasFloat16Inputs = !std::get<MixedTypedIndex<_Float16>::index>(inputs).empty();
107 if (hasRelaxedFloat32Model || hasFloat16Inputs) {
108 // TODO: Adjust the error limit based on testing.
109 // If in relaxed mode, set the absolute tolerance to be 5ULP of FP16.
110 fpAtol = 5.0f * 0.0009765625f;
111 // Set the relative tolerance to be 5ULP of the corresponding FP precision.
112 fpRtol = 5.0f * 0.0009765625f;
113 }
114
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700115 std::vector<RequestArgument> inputs_info, outputs_info;
116 uint32_t inputSize = 0, outputSize = 0;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700117 // This function only partially specifies the metadata (vector of RequestArguments).
118 // The contents are copied over below.
119 for_all(inputs, [&inputs_info, &inputSize](int index, auto, auto s) {
120 if (inputs_info.size() <= static_cast<size_t>(index)) inputs_info.resize(index + 1);
121 RequestArgument arg = {
122 .location = {.poolIndex = INPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
123 .dimensions = {},
124 };
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700125 RequestArgument arg_empty = {
126 .hasNoValue = true,
127 };
128 inputs_info[index] = s ? arg : arg_empty;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700129 inputSize += s;
130 });
131 // Compute offset for inputs 1 and so on
132 {
133 size_t offset = 0;
134 for (auto& i : inputs_info) {
I-Jui (Ray) Sung959cd782017-10-04 20:49:57 -0700135 if (!i.hasNoValue) i.location.offset = offset;
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700136 offset += i.location.length;
137 }
138 }
139
140 MixedTyped test; // holding test results
141
142 // Go through all outputs, initialize RequestArgument descriptors
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700143 resize_accordingly(golden, test);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700144 for_all(golden, [&outputs_info, &outputSize](int index, auto, auto s) {
145 if (outputs_info.size() <= static_cast<size_t>(index)) outputs_info.resize(index + 1);
146 RequestArgument arg = {
147 .location = {.poolIndex = OUTPUT, .offset = 0, .length = static_cast<uint32_t>(s)},
148 .dimensions = {},
149 };
150 outputs_info[index] = arg;
151 outputSize += s;
152 });
153 // Compute offset for outputs 1 and so on
154 {
155 size_t offset = 0;
156 for (auto& i : outputs_info) {
157 i.location.offset = offset;
158 offset += i.location.length;
159 }
160 }
Miao Wanga2d04c82018-02-05 17:26:54 -0800161 std::vector<hidl_memory> pools = {nn::allocateSharedMemory(inputSize),
162 nn::allocateSharedMemory(outputSize)};
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700163 ASSERT_NE(0ull, pools[INPUT].size());
164 ASSERT_NE(0ull, pools[OUTPUT].size());
165
166 // load data
167 sp<IMemory> inputMemory = mapMemory(pools[INPUT]);
168 sp<IMemory> outputMemory = mapMemory(pools[OUTPUT]);
169 ASSERT_NE(nullptr, inputMemory.get());
170 ASSERT_NE(nullptr, outputMemory.get());
171 char* inputPtr = reinterpret_cast<char*>(static_cast<void*>(inputMemory->getPointer()));
172 char* outputPtr = reinterpret_cast<char*>(static_cast<void*>(outputMemory->getPointer()));
173 ASSERT_NE(nullptr, inputPtr);
174 ASSERT_NE(nullptr, outputPtr);
175 inputMemory->update();
176 outputMemory->update();
177
178 // Go through all inputs, copy the values
179 for_all(inputs, [&inputs_info, inputPtr](int index, auto p, auto s) {
180 char* begin = (char*)p;
181 char* end = begin + s;
182 // TODO: handle more than one input
183 std::copy(begin, end, inputPtr + inputs_info[index].location.offset);
184 });
185
186 inputMemory->commit();
187 outputMemory->commit();
Michael Butlercf22a572017-09-22 13:26:12 -0700188
189 // launch execution
190 sp<ExecutionCallback> executionCallback = new ExecutionCallback();
191 ASSERT_NE(nullptr, executionCallback.get());
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700192 Return<ErrorStatus> executionLaunchStatus = ExecutePreparedModel(
193 preparedModel, {.inputs = inputs_info, .outputs = outputs_info, .pools = pools},
194 executionCallback);
Michael Butlercf22a572017-09-22 13:26:12 -0700195 ASSERT_TRUE(executionLaunchStatus.isOk());
196 EXPECT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(executionLaunchStatus));
197
198 // retrieve execution status
199 executionCallback->wait();
200 ErrorStatus executionReturnStatus = executionCallback->getStatus();
201 EXPECT_EQ(ErrorStatus::NONE, executionReturnStatus);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700202
203 // validate results
204 outputMemory->read();
I-Jui (Ray) Sungf6b85502017-09-20 13:45:50 -0700205 copy_back(&test, outputs_info, outputPtr);
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700206 outputMemory->commit();
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700207 // Filter out don't cares
I-Jui (Ray) Sung5bf4edf2017-10-06 13:22:39 -0700208 MixedTyped filtered_golden = filter(golden, is_ignored);
209 MixedTyped filtered_test = filter(test, is_ignored);
I-Jui (Ray) Sung7d765bd2017-09-13 18:47:12 -0700210
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700211 // We want "close-enough" results for float
Xusong Wang10d77e42018-08-28 16:50:01 -0700212 compare(filtered_golden, filtered_test, fpAtol, fpRtol);
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100213
214 if (example.expectedMultinomialDistributionTolerance > 0) {
215 expectMultinomialDistributionWithinTolerance(test, example);
216 }
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700217 }
218}
219
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700220static void getPreparedModel(sp<PreparedModelCallback> callback,
221 sp<V1_0::IPreparedModel>* preparedModel) {
222 *preparedModel = callback->getPreparedModel();
223}
224static void getPreparedModel(sp<PreparedModelCallback> callback,
225 sp<V1_2::IPreparedModel>* preparedModel) {
226 sp<V1_0::IPreparedModel> preparedModelV1_0 = callback->getPreparedModel();
227 *preparedModel = V1_2::IPreparedModel::castFrom(preparedModelV1_0).withDefault(nullptr);
228}
229
Michael Butlerf76acd02018-03-22 16:37:57 -0700230void Execute(const sp<V1_0::IDevice>& device, std::function<V1_0::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100231 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800232 V1_0::Model model = create_model();
233
234 // see if service can handle model
235 bool fullySupportsModel = false;
Miao Wanga2d04c82018-02-05 17:26:54 -0800236 Return<void> supportedCall = device->getSupportedOperations(
Michael Butler4d5bb102018-02-26 15:24:46 -0800237 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
238 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wanga2d04c82018-02-05 17:26:54 -0800239 ASSERT_NE(0ul, supported.size());
240 fullySupportsModel =
241 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
242 });
243 ASSERT_TRUE(supportedCall.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800244
245 // launch prepare model
246 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
247 ASSERT_NE(nullptr, preparedModelCallback.get());
Miao Wanga2d04c82018-02-05 17:26:54 -0800248 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel(model, preparedModelCallback);
249 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800250 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wanga2d04c82018-02-05 17:26:54 -0800251
252 // retrieve prepared model
253 preparedModelCallback->wait();
254 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700255 sp<V1_0::IPreparedModel> preparedModel;
256 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wanga2d04c82018-02-05 17:26:54 -0800257
258 // early termination if vendor service cannot fully prepare model
Michael Butler4d5bb102018-02-26 15:24:46 -0800259 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800260 ASSERT_EQ(nullptr, preparedModel.get());
261 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
262 "prepare model that it does not support.";
263 std::cout << "[ ] Early termination of test because vendor service cannot "
264 "prepare model that it does not support."
265 << std::endl;
266 return;
267 }
Michael Butler4d5bb102018-02-26 15:24:46 -0800268 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wanga2d04c82018-02-05 17:26:54 -0800269 ASSERT_NE(nullptr, preparedModel.get());
270
Xusong Wang10d77e42018-08-28 16:50:01 -0700271 float fpAtol = 1e-5f, fpRtol = 5.0f * 1.1920928955078125e-7f;
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000272 EvaluatePreparedModel(preparedModel, is_ignored, examples,
273 /*hasRelaxedFloat32Model=*/false, fpAtol, fpRtol);
Miao Wanga2d04c82018-02-05 17:26:54 -0800274}
275
Michael Butlerf76acd02018-03-22 16:37:57 -0700276void Execute(const sp<V1_1::IDevice>& device, std::function<V1_1::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100277 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800278 V1_1::Model model = create_model();
279
280 // see if service can handle model
281 bool fullySupportsModel = false;
Miao Wanga2d04c82018-02-05 17:26:54 -0800282 Return<void> supportedCall = device->getSupportedOperations_1_1(
Michael Butler4d5bb102018-02-26 15:24:46 -0800283 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
284 ASSERT_EQ(ErrorStatus::NONE, status);
Miao Wanga2d04c82018-02-05 17:26:54 -0800285 ASSERT_NE(0ul, supported.size());
286 fullySupportsModel =
287 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
288 });
289 ASSERT_TRUE(supportedCall.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800290
291 // launch prepare model
292 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
293 ASSERT_NE(nullptr, preparedModelCallback.get());
Michael Butler2504c2f2018-04-11 16:30:09 -0700294 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_1(
295 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
Miao Wanga2d04c82018-02-05 17:26:54 -0800296 ASSERT_TRUE(prepareLaunchStatus.isOk());
Michael Butler4d5bb102018-02-26 15:24:46 -0800297 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
Miao Wanga2d04c82018-02-05 17:26:54 -0800298
299 // retrieve prepared model
300 preparedModelCallback->wait();
301 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700302 sp<V1_0::IPreparedModel> preparedModel;
303 getPreparedModel(preparedModelCallback, &preparedModel);
Miao Wanga2d04c82018-02-05 17:26:54 -0800304
305 // early termination if vendor service cannot fully prepare model
Michael Butler4d5bb102018-02-26 15:24:46 -0800306 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
Miao Wanga2d04c82018-02-05 17:26:54 -0800307 ASSERT_EQ(nullptr, preparedModel.get());
308 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
309 "prepare model that it does not support.";
310 std::cout << "[ ] Early termination of test because vendor service cannot "
311 "prepare model that it does not support."
312 << std::endl;
313 return;
314 }
Michael Butler4d5bb102018-02-26 15:24:46 -0800315 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
Miao Wanga2d04c82018-02-05 17:26:54 -0800316 ASSERT_NE(nullptr, preparedModel.get());
317
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000318 EvaluatePreparedModel(preparedModel, is_ignored, examples,
319 model.relaxComputationFloat32toFloat16);
Miao Wanga2d04c82018-02-05 17:26:54 -0800320}
321
Slava Shklyaev871be942018-09-12 14:52:02 +0100322// TODO: Reduce code duplication.
323void Execute(const sp<V1_2::IDevice>& device, std::function<V1_2::Model(void)> create_model,
Michael K. Sanders941d61a2018-10-19 14:39:09 +0100324 std::function<bool(int)> is_ignored, const std::vector<MixedTypedExample>& examples) {
Slava Shklyaev871be942018-09-12 14:52:02 +0100325 V1_2::Model model = create_model();
326
327 // see if service can handle model
328 bool fullySupportsModel = false;
329 Return<void> supportedCall = device->getSupportedOperations_1_2(
330 model, [&fullySupportsModel](ErrorStatus status, const hidl_vec<bool>& supported) {
331 ASSERT_EQ(ErrorStatus::NONE, status);
332 ASSERT_NE(0ul, supported.size());
333 fullySupportsModel =
334 std::all_of(supported.begin(), supported.end(), [](bool valid) { return valid; });
335 });
336 ASSERT_TRUE(supportedCall.isOk());
337
338 // launch prepare model
339 sp<PreparedModelCallback> preparedModelCallback = new PreparedModelCallback();
340 ASSERT_NE(nullptr, preparedModelCallback.get());
341 Return<ErrorStatus> prepareLaunchStatus = device->prepareModel_1_2(
342 model, ExecutionPreference::FAST_SINGLE_ANSWER, preparedModelCallback);
343 ASSERT_TRUE(prepareLaunchStatus.isOk());
344 ASSERT_EQ(ErrorStatus::NONE, static_cast<ErrorStatus>(prepareLaunchStatus));
345
346 // retrieve prepared model
347 preparedModelCallback->wait();
348 ErrorStatus prepareReturnStatus = preparedModelCallback->getStatus();
Xusong Wangb5cb8f72018-10-31 08:43:12 -0700349 sp<V1_2::IPreparedModel> preparedModel;
350 getPreparedModel(preparedModelCallback, &preparedModel);
Slava Shklyaev871be942018-09-12 14:52:02 +0100351
352 // early termination if vendor service cannot fully prepare model
353 if (!fullySupportsModel && prepareReturnStatus != ErrorStatus::NONE) {
354 ASSERT_EQ(nullptr, preparedModel.get());
355 LOG(INFO) << "NN VTS: Early termination of test because vendor service cannot "
356 "prepare model that it does not support.";
357 std::cout << "[ ] Early termination of test because vendor service cannot "
358 "prepare model that it does not support."
359 << std::endl;
360 return;
361 }
362 EXPECT_EQ(ErrorStatus::NONE, prepareReturnStatus);
363 ASSERT_NE(nullptr, preparedModel.get());
364
Michael K. Sandersefa4c812018-10-30 14:44:48 +0000365 EvaluatePreparedModel(preparedModel, is_ignored, examples,
366 model.relaxComputationFloat32toFloat16);
Slava Shklyaev871be942018-09-12 14:52:02 +0100367}
368
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700369} // namespace generated_tests
370
I-Jui (Ray) Sung2c4e1362017-09-06 02:15:54 -0700371} // namespace neuralnetworks
372} // namespace hardware
373} // namespace android