Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2019 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
Lloyd Pique | 37c2c9b | 2018-12-04 17:25:10 -0800 | [diff] [blame] | 17 | #include <android-base/stringprintf.h> |
Lloyd Pique | 07e3321 | 2018-12-18 16:33:37 -0800 | [diff] [blame] | 18 | #include <compositionengine/CompositionEngine.h> |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 19 | #include <compositionengine/Layer.h> |
| 20 | #include <compositionengine/LayerFE.h> |
| 21 | #include <compositionengine/Output.h> |
Lloyd Pique | a83776c | 2019-01-29 18:42:32 -0800 | [diff] [blame^] | 22 | #include <compositionengine/impl/LayerCompositionState.h> |
| 23 | #include <compositionengine/impl/OutputCompositionState.h> |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 24 | #include <compositionengine/impl/OutputLayer.h> |
Lloyd Pique | a83776c | 2019-01-29 18:42:32 -0800 | [diff] [blame^] | 25 | #include <compositionengine/impl/OutputLayerCompositionState.h> |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 26 | |
Lloyd Pique | 07e3321 | 2018-12-18 16:33:37 -0800 | [diff] [blame] | 27 | #include "DisplayHardware/HWComposer.h" |
| 28 | |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 29 | namespace android::compositionengine { |
| 30 | |
| 31 | OutputLayer::~OutputLayer() = default; |
| 32 | |
| 33 | namespace impl { |
| 34 | |
Lloyd Pique | a83776c | 2019-01-29 18:42:32 -0800 | [diff] [blame^] | 35 | namespace { |
| 36 | |
| 37 | FloatRect reduce(const FloatRect& win, const Region& exclude) { |
| 38 | if (CC_LIKELY(exclude.isEmpty())) { |
| 39 | return win; |
| 40 | } |
| 41 | // Convert through Rect (by rounding) for lack of FloatRegion |
| 42 | return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect(); |
| 43 | } |
| 44 | |
| 45 | } // namespace |
| 46 | |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 47 | std::unique_ptr<compositionengine::OutputLayer> createOutputLayer( |
Lloyd Pique | 07e3321 | 2018-12-18 16:33:37 -0800 | [diff] [blame] | 48 | const CompositionEngine& compositionEngine, std::optional<DisplayId> displayId, |
| 49 | const compositionengine::Output& output, std::shared_ptr<compositionengine::Layer> layer, |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 50 | sp<compositionengine::LayerFE> layerFE) { |
Lloyd Pique | 07e3321 | 2018-12-18 16:33:37 -0800 | [diff] [blame] | 51 | auto result = std::make_unique<OutputLayer>(output, layer, layerFE); |
| 52 | result->initialize(compositionEngine, displayId); |
| 53 | return result; |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 54 | } |
| 55 | |
| 56 | OutputLayer::OutputLayer(const Output& output, std::shared_ptr<Layer> layer, sp<LayerFE> layerFE) |
| 57 | : mOutput(output), mLayer(layer), mLayerFE(layerFE) {} |
| 58 | |
| 59 | OutputLayer::~OutputLayer() = default; |
| 60 | |
Lloyd Pique | 07e3321 | 2018-12-18 16:33:37 -0800 | [diff] [blame] | 61 | void OutputLayer::initialize(const CompositionEngine& compositionEngine, |
| 62 | std::optional<DisplayId> displayId) { |
| 63 | if (!displayId) { |
| 64 | return; |
| 65 | } |
| 66 | |
| 67 | auto& hwc = compositionEngine.getHwComposer(); |
| 68 | |
| 69 | mState.hwc.emplace(std::shared_ptr<HWC2::Layer>(hwc.createLayer(*displayId), |
| 70 | [&hwc, displayId](HWC2::Layer* layer) { |
| 71 | hwc.destroyLayer(*displayId, layer); |
| 72 | })); |
| 73 | } |
| 74 | |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 75 | const compositionengine::Output& OutputLayer::getOutput() const { |
| 76 | return mOutput; |
| 77 | } |
| 78 | |
| 79 | compositionengine::Layer& OutputLayer::getLayer() const { |
| 80 | return *mLayer; |
| 81 | } |
| 82 | |
| 83 | compositionengine::LayerFE& OutputLayer::getLayerFE() const { |
| 84 | return *mLayerFE; |
| 85 | } |
| 86 | |
Lloyd Pique | 37c2c9b | 2018-12-04 17:25:10 -0800 | [diff] [blame] | 87 | const OutputLayerCompositionState& OutputLayer::getState() const { |
| 88 | return mState; |
| 89 | } |
| 90 | |
| 91 | OutputLayerCompositionState& OutputLayer::editState() { |
| 92 | return mState; |
| 93 | } |
| 94 | |
Lloyd Pique | a83776c | 2019-01-29 18:42:32 -0800 | [diff] [blame^] | 95 | Rect OutputLayer::calculateInitialCrop() const { |
| 96 | const auto& layerState = mLayer->getState().frontEnd; |
| 97 | |
| 98 | // apply the projection's clipping to the window crop in |
| 99 | // layerstack space, and convert-back to layer space. |
| 100 | // if there are no window scaling involved, this operation will map to full |
| 101 | // pixels in the buffer. |
| 102 | |
| 103 | FloatRect activeCropFloat = |
| 104 | reduce(layerState.geomLayerBounds, layerState.geomActiveTransparentRegion); |
| 105 | |
| 106 | const Rect& viewport = mOutput.getState().viewport; |
| 107 | const ui::Transform& layerTransform = layerState.geomLayerTransform; |
| 108 | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; |
| 109 | // Transform to screen space. |
| 110 | activeCropFloat = layerTransform.transform(activeCropFloat); |
| 111 | activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect()); |
| 112 | // Back to layer space to work with the content crop. |
| 113 | activeCropFloat = inverseLayerTransform.transform(activeCropFloat); |
| 114 | |
| 115 | // This needs to be here as transform.transform(Rect) computes the |
| 116 | // transformed rect and then takes the bounding box of the result before |
| 117 | // returning. This means |
| 118 | // transform.inverse().transform(transform.transform(Rect)) != Rect |
| 119 | // in which case we need to make sure the final rect is clipped to the |
| 120 | // display bounds. |
| 121 | Rect activeCrop{activeCropFloat}; |
| 122 | if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) { |
| 123 | activeCrop.clear(); |
| 124 | } |
| 125 | return activeCrop; |
| 126 | } |
| 127 | |
| 128 | FloatRect OutputLayer::calculateOutputSourceCrop() const { |
| 129 | const auto& layerState = mLayer->getState().frontEnd; |
| 130 | const auto& outputState = mOutput.getState(); |
| 131 | |
| 132 | if (!layerState.geomUsesSourceCrop) { |
| 133 | return {}; |
| 134 | } |
| 135 | |
| 136 | // the content crop is the area of the content that gets scaled to the |
| 137 | // layer's size. This is in buffer space. |
| 138 | FloatRect crop = layerState.geomContentCrop.toFloatRect(); |
| 139 | |
| 140 | // In addition there is a WM-specified crop we pull from our drawing state. |
| 141 | Rect activeCrop = calculateInitialCrop(); |
| 142 | const Rect& bufferSize = layerState.geomBufferSize; |
| 143 | |
| 144 | int winWidth = bufferSize.getWidth(); |
| 145 | int winHeight = bufferSize.getHeight(); |
| 146 | |
| 147 | // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1]) |
| 148 | // if display frame hasn't been set and the parent is an unbounded layer. |
| 149 | if (winWidth < 0 && winHeight < 0) { |
| 150 | return crop; |
| 151 | } |
| 152 | |
| 153 | // Transform the window crop to match the buffer coordinate system, |
| 154 | // which means using the inverse of the current transform set on the |
| 155 | // SurfaceFlingerConsumer. |
| 156 | uint32_t invTransform = layerState.geomBufferTransform; |
| 157 | if (layerState.geomBufferUsesDisplayInverseTransform) { |
| 158 | /* |
| 159 | * the code below applies the primary display's inverse transform to the |
| 160 | * buffer |
| 161 | */ |
| 162 | uint32_t invTransformOrient = outputState.orientation; |
| 163 | // calculate the inverse transform |
| 164 | if (invTransformOrient & HAL_TRANSFORM_ROT_90) { |
| 165 | invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; |
| 166 | } |
| 167 | // and apply to the current transform |
| 168 | invTransform = |
| 169 | (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation(); |
| 170 | } |
| 171 | |
| 172 | if (invTransform & HAL_TRANSFORM_ROT_90) { |
| 173 | // If the activeCrop has been rotate the ends are rotated but not |
| 174 | // the space itself so when transforming ends back we can't rely on |
| 175 | // a modification of the axes of rotation. To account for this we |
| 176 | // need to reorient the inverse rotation in terms of the current |
| 177 | // axes of rotation. |
| 178 | bool is_h_flipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0; |
| 179 | bool is_v_flipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0; |
| 180 | if (is_h_flipped == is_v_flipped) { |
| 181 | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; |
| 182 | } |
| 183 | std::swap(winWidth, winHeight); |
| 184 | } |
| 185 | const Rect winCrop = |
| 186 | activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight()); |
| 187 | |
| 188 | // below, crop is intersected with winCrop expressed in crop's coordinate space |
| 189 | float xScale = crop.getWidth() / float(winWidth); |
| 190 | float yScale = crop.getHeight() / float(winHeight); |
| 191 | |
| 192 | float insetL = winCrop.left * xScale; |
| 193 | float insetT = winCrop.top * yScale; |
| 194 | float insetR = (winWidth - winCrop.right) * xScale; |
| 195 | float insetB = (winHeight - winCrop.bottom) * yScale; |
| 196 | |
| 197 | crop.left += insetL; |
| 198 | crop.top += insetT; |
| 199 | crop.right -= insetR; |
| 200 | crop.bottom -= insetB; |
| 201 | |
| 202 | return crop; |
| 203 | } |
| 204 | |
| 205 | Rect OutputLayer::calculateOutputDisplayFrame() const { |
| 206 | const auto& layerState = mLayer->getState().frontEnd; |
| 207 | const auto& outputState = mOutput.getState(); |
| 208 | |
| 209 | // apply the layer's transform, followed by the display's global transform |
| 210 | // here we're guaranteed that the layer's transform preserves rects |
| 211 | Region activeTransparentRegion = layerState.geomActiveTransparentRegion; |
| 212 | const ui::Transform& layerTransform = layerState.geomLayerTransform; |
| 213 | const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform; |
| 214 | const Rect& bufferSize = layerState.geomBufferSize; |
| 215 | Rect activeCrop = layerState.geomCrop; |
| 216 | if (!activeCrop.isEmpty() && bufferSize.isValid()) { |
| 217 | activeCrop = layerTransform.transform(activeCrop); |
| 218 | if (!activeCrop.intersect(outputState.viewport, &activeCrop)) { |
| 219 | activeCrop.clear(); |
| 220 | } |
| 221 | activeCrop = inverseLayerTransform.transform(activeCrop, true); |
| 222 | // This needs to be here as transform.transform(Rect) computes the |
| 223 | // transformed rect and then takes the bounding box of the result before |
| 224 | // returning. This means |
| 225 | // transform.inverse().transform(transform.transform(Rect)) != Rect |
| 226 | // in which case we need to make sure the final rect is clipped to the |
| 227 | // display bounds. |
| 228 | if (!activeCrop.intersect(bufferSize, &activeCrop)) { |
| 229 | activeCrop.clear(); |
| 230 | } |
| 231 | // mark regions outside the crop as transparent |
| 232 | activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top)); |
| 233 | activeTransparentRegion.orSelf( |
| 234 | Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight())); |
| 235 | activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom)); |
| 236 | activeTransparentRegion.orSelf( |
| 237 | Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom)); |
| 238 | } |
| 239 | |
| 240 | // reduce uses a FloatRect to provide more accuracy during the |
| 241 | // transformation. We then round upon constructing 'frame'. |
| 242 | Rect frame{ |
| 243 | layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))}; |
| 244 | if (!frame.intersect(outputState.viewport, &frame)) { |
| 245 | frame.clear(); |
| 246 | } |
| 247 | const ui::Transform displayTransform{outputState.transform}; |
| 248 | |
| 249 | return displayTransform.transform(frame); |
| 250 | } |
| 251 | |
| 252 | uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const { |
| 253 | const auto& layerState = mLayer->getState().frontEnd; |
| 254 | const auto& outputState = mOutput.getState(); |
| 255 | |
| 256 | /* |
| 257 | * Transformations are applied in this order: |
| 258 | * 1) buffer orientation/flip/mirror |
| 259 | * 2) state transformation (window manager) |
| 260 | * 3) layer orientation (screen orientation) |
| 261 | * (NOTE: the matrices are multiplied in reverse order) |
| 262 | */ |
| 263 | const ui::Transform& layerTransform = layerState.geomLayerTransform; |
| 264 | const ui::Transform displayTransform{outputState.orientation}; |
| 265 | const ui::Transform bufferTransform{layerState.geomBufferTransform}; |
| 266 | ui::Transform transform(displayTransform * layerTransform * bufferTransform); |
| 267 | |
| 268 | if (layerState.geomBufferUsesDisplayInverseTransform) { |
| 269 | /* |
| 270 | * the code below applies the primary display's inverse transform to the |
| 271 | * buffer |
| 272 | */ |
| 273 | uint32_t invTransform = outputState.orientation; |
| 274 | // calculate the inverse transform |
| 275 | if (invTransform & HAL_TRANSFORM_ROT_90) { |
| 276 | invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H; |
| 277 | } |
| 278 | |
| 279 | /* |
| 280 | * Here we cancel out the orientation component of the WM transform. |
| 281 | * The scaling and translate components are already included in our bounds |
| 282 | * computation so it's enough to just omit it in the composition. |
| 283 | * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why. |
| 284 | */ |
| 285 | transform = ui::Transform(invTransform) * displayTransform * bufferTransform; |
| 286 | } |
| 287 | |
| 288 | // this gives us only the "orientation" component of the transform |
| 289 | return transform.getOrientation(); |
| 290 | } // namespace impl |
| 291 | |
| 292 | void OutputLayer::updateCompositionState(bool includeGeometry) { |
| 293 | if (includeGeometry) { |
| 294 | mState.displayFrame = calculateOutputDisplayFrame(); |
| 295 | mState.sourceCrop = calculateOutputSourceCrop(); |
| 296 | mState.bufferTransform = |
| 297 | static_cast<Hwc2::Transform>(calculateOutputRelativeBufferTransform()); |
| 298 | |
| 299 | if ((mLayer->getState().frontEnd.isSecure && !mOutput.getState().isSecure) || |
| 300 | (mState.bufferTransform & ui::Transform::ROT_INVALID)) { |
| 301 | mState.forceClientComposition = true; |
| 302 | } |
| 303 | } |
| 304 | } |
| 305 | |
| 306 | void OutputLayer::writeStateToHWC(bool includeGeometry) const { |
| 307 | // Skip doing this if there is no HWC interface |
| 308 | if (!mState.hwc) { |
| 309 | return; |
| 310 | } |
| 311 | |
| 312 | auto& hwcLayer = (*mState.hwc).hwcLayer; |
| 313 | if (!hwcLayer) { |
| 314 | ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s", |
| 315 | mLayerFE->getDebugName(), mOutput.getName().c_str()); |
| 316 | return; |
| 317 | } |
| 318 | |
| 319 | if (includeGeometry) { |
| 320 | // Output dependent state |
| 321 | |
| 322 | if (auto error = hwcLayer->setDisplayFrame(mState.displayFrame); |
| 323 | error != HWC2::Error::None) { |
| 324 | ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)", |
| 325 | mLayerFE->getDebugName(), mState.displayFrame.left, mState.displayFrame.top, |
| 326 | mState.displayFrame.right, mState.displayFrame.bottom, to_string(error).c_str(), |
| 327 | static_cast<int32_t>(error)); |
| 328 | } |
| 329 | |
| 330 | if (auto error = hwcLayer->setSourceCrop(mState.sourceCrop); error != HWC2::Error::None) { |
| 331 | ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: " |
| 332 | "%s (%d)", |
| 333 | mLayerFE->getDebugName(), mState.sourceCrop.left, mState.sourceCrop.top, |
| 334 | mState.sourceCrop.right, mState.sourceCrop.bottom, to_string(error).c_str(), |
| 335 | static_cast<int32_t>(error)); |
| 336 | } |
| 337 | |
| 338 | if (auto error = hwcLayer->setZOrder(mState.z); error != HWC2::Error::None) { |
| 339 | ALOGE("[%s] Failed to set Z %u: %s (%d)", mLayerFE->getDebugName(), mState.z, |
| 340 | to_string(error).c_str(), static_cast<int32_t>(error)); |
| 341 | } |
| 342 | |
| 343 | if (auto error = |
| 344 | hwcLayer->setTransform(static_cast<HWC2::Transform>(mState.bufferTransform)); |
| 345 | error != HWC2::Error::None) { |
| 346 | ALOGE("[%s] Failed to set transform %s: %s (%d)", mLayerFE->getDebugName(), |
| 347 | toString(mState.bufferTransform).c_str(), to_string(error).c_str(), |
| 348 | static_cast<int32_t>(error)); |
| 349 | } |
| 350 | |
| 351 | // Output independent state |
| 352 | |
| 353 | const auto& outputIndependentState = mLayer->getState().frontEnd; |
| 354 | |
| 355 | if (auto error = hwcLayer->setBlendMode( |
| 356 | static_cast<HWC2::BlendMode>(outputIndependentState.blendMode)); |
| 357 | error != HWC2::Error::None) { |
| 358 | ALOGE("[%s] Failed to set blend mode %s: %s (%d)", mLayerFE->getDebugName(), |
| 359 | toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(), |
| 360 | static_cast<int32_t>(error)); |
| 361 | } |
| 362 | |
| 363 | if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha); |
| 364 | error != HWC2::Error::None) { |
| 365 | ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", mLayerFE->getDebugName(), |
| 366 | outputIndependentState.alpha, to_string(error).c_str(), |
| 367 | static_cast<int32_t>(error)); |
| 368 | } |
| 369 | |
| 370 | if (auto error = |
| 371 | hwcLayer->setInfo(outputIndependentState.type, outputIndependentState.appId); |
| 372 | error != HWC2::Error::None) { |
| 373 | ALOGE("[%s] Failed to set info %s (%d)", mLayerFE->getDebugName(), |
| 374 | to_string(error).c_str(), static_cast<int32_t>(error)); |
| 375 | } |
| 376 | } |
| 377 | } |
| 378 | |
Lloyd Pique | 37c2c9b | 2018-12-04 17:25:10 -0800 | [diff] [blame] | 379 | void OutputLayer::dump(std::string& out) const { |
| 380 | using android::base::StringAppendF; |
| 381 | |
| 382 | StringAppendF(&out, " Output Layer %p\n", this); |
| 383 | mState.dump(out); |
| 384 | } |
| 385 | |
Lloyd Pique | cc01a45 | 2018-12-04 17:24:00 -0800 | [diff] [blame] | 386 | } // namespace impl |
| 387 | } // namespace android::compositionengine |