SF: Move/Refactor Layer::setGeometry() to compositionengine::OutputLayer
The front-end Layer now implements only a small bit of functionality
to compute the geometry state of the layer, traversing the parent
hierarchy as needed. The geometry is written to data added to
LayerFECompositionState.
compositionengine::OutputLayer then computes the actual state for the output
the layer is on, storing the result in OutputLayerCompositionState. A
second new function then takes the output-specific layer state (and
output-independent layer state) and sends it to the HWC layer.
Implements partial tests for the new functions.
Test: atest libsurfaceflinger_unittest libcompositionengine_test
Bug: 121291683
Change-Id: Idc770e6c84d046555cc11d75d53fa22c4be4ae58
diff --git a/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp b/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
index 10da49d..13485b4 100644
--- a/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
+++ b/services/surfaceflinger/CompositionEngine/src/OutputLayer.cpp
@@ -19,7 +19,10 @@
#include <compositionengine/Layer.h>
#include <compositionengine/LayerFE.h>
#include <compositionengine/Output.h>
+#include <compositionengine/impl/LayerCompositionState.h>
+#include <compositionengine/impl/OutputCompositionState.h>
#include <compositionengine/impl/OutputLayer.h>
+#include <compositionengine/impl/OutputLayerCompositionState.h>
#include "DisplayHardware/HWComposer.h"
@@ -29,6 +32,18 @@
namespace impl {
+namespace {
+
+FloatRect reduce(const FloatRect& win, const Region& exclude) {
+ if (CC_LIKELY(exclude.isEmpty())) {
+ return win;
+ }
+ // Convert through Rect (by rounding) for lack of FloatRegion
+ return Region(Rect{win}).subtract(exclude).getBounds().toFloatRect();
+}
+
+} // namespace
+
std::unique_ptr<compositionengine::OutputLayer> createOutputLayer(
const CompositionEngine& compositionEngine, std::optional<DisplayId> displayId,
const compositionengine::Output& output, std::shared_ptr<compositionengine::Layer> layer,
@@ -77,6 +92,290 @@
return mState;
}
+Rect OutputLayer::calculateInitialCrop() const {
+ const auto& layerState = mLayer->getState().frontEnd;
+
+ // apply the projection's clipping to the window crop in
+ // layerstack space, and convert-back to layer space.
+ // if there are no window scaling involved, this operation will map to full
+ // pixels in the buffer.
+
+ FloatRect activeCropFloat =
+ reduce(layerState.geomLayerBounds, layerState.geomActiveTransparentRegion);
+
+ const Rect& viewport = mOutput.getState().viewport;
+ const ui::Transform& layerTransform = layerState.geomLayerTransform;
+ const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
+ // Transform to screen space.
+ activeCropFloat = layerTransform.transform(activeCropFloat);
+ activeCropFloat = activeCropFloat.intersect(viewport.toFloatRect());
+ // Back to layer space to work with the content crop.
+ activeCropFloat = inverseLayerTransform.transform(activeCropFloat);
+
+ // This needs to be here as transform.transform(Rect) computes the
+ // transformed rect and then takes the bounding box of the result before
+ // returning. This means
+ // transform.inverse().transform(transform.transform(Rect)) != Rect
+ // in which case we need to make sure the final rect is clipped to the
+ // display bounds.
+ Rect activeCrop{activeCropFloat};
+ if (!activeCrop.intersect(layerState.geomBufferSize, &activeCrop)) {
+ activeCrop.clear();
+ }
+ return activeCrop;
+}
+
+FloatRect OutputLayer::calculateOutputSourceCrop() const {
+ const auto& layerState = mLayer->getState().frontEnd;
+ const auto& outputState = mOutput.getState();
+
+ if (!layerState.geomUsesSourceCrop) {
+ return {};
+ }
+
+ // the content crop is the area of the content that gets scaled to the
+ // layer's size. This is in buffer space.
+ FloatRect crop = layerState.geomContentCrop.toFloatRect();
+
+ // In addition there is a WM-specified crop we pull from our drawing state.
+ Rect activeCrop = calculateInitialCrop();
+ const Rect& bufferSize = layerState.geomBufferSize;
+
+ int winWidth = bufferSize.getWidth();
+ int winHeight = bufferSize.getHeight();
+
+ // The bufferSize for buffer state layers can be unbounded ([0, 0, -1, -1])
+ // if display frame hasn't been set and the parent is an unbounded layer.
+ if (winWidth < 0 && winHeight < 0) {
+ return crop;
+ }
+
+ // Transform the window crop to match the buffer coordinate system,
+ // which means using the inverse of the current transform set on the
+ // SurfaceFlingerConsumer.
+ uint32_t invTransform = layerState.geomBufferTransform;
+ if (layerState.geomBufferUsesDisplayInverseTransform) {
+ /*
+ * the code below applies the primary display's inverse transform to the
+ * buffer
+ */
+ uint32_t invTransformOrient = outputState.orientation;
+ // calculate the inverse transform
+ if (invTransformOrient & HAL_TRANSFORM_ROT_90) {
+ invTransformOrient ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
+ }
+ // and apply to the current transform
+ invTransform =
+ (ui::Transform(invTransformOrient) * ui::Transform(invTransform)).getOrientation();
+ }
+
+ if (invTransform & HAL_TRANSFORM_ROT_90) {
+ // If the activeCrop has been rotate the ends are rotated but not
+ // the space itself so when transforming ends back we can't rely on
+ // a modification of the axes of rotation. To account for this we
+ // need to reorient the inverse rotation in terms of the current
+ // axes of rotation.
+ bool is_h_flipped = (invTransform & HAL_TRANSFORM_FLIP_H) != 0;
+ bool is_v_flipped = (invTransform & HAL_TRANSFORM_FLIP_V) != 0;
+ if (is_h_flipped == is_v_flipped) {
+ invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
+ }
+ std::swap(winWidth, winHeight);
+ }
+ const Rect winCrop =
+ activeCrop.transform(invTransform, bufferSize.getWidth(), bufferSize.getHeight());
+
+ // below, crop is intersected with winCrop expressed in crop's coordinate space
+ float xScale = crop.getWidth() / float(winWidth);
+ float yScale = crop.getHeight() / float(winHeight);
+
+ float insetL = winCrop.left * xScale;
+ float insetT = winCrop.top * yScale;
+ float insetR = (winWidth - winCrop.right) * xScale;
+ float insetB = (winHeight - winCrop.bottom) * yScale;
+
+ crop.left += insetL;
+ crop.top += insetT;
+ crop.right -= insetR;
+ crop.bottom -= insetB;
+
+ return crop;
+}
+
+Rect OutputLayer::calculateOutputDisplayFrame() const {
+ const auto& layerState = mLayer->getState().frontEnd;
+ const auto& outputState = mOutput.getState();
+
+ // apply the layer's transform, followed by the display's global transform
+ // here we're guaranteed that the layer's transform preserves rects
+ Region activeTransparentRegion = layerState.geomActiveTransparentRegion;
+ const ui::Transform& layerTransform = layerState.geomLayerTransform;
+ const ui::Transform& inverseLayerTransform = layerState.geomInverseLayerTransform;
+ const Rect& bufferSize = layerState.geomBufferSize;
+ Rect activeCrop = layerState.geomCrop;
+ if (!activeCrop.isEmpty() && bufferSize.isValid()) {
+ activeCrop = layerTransform.transform(activeCrop);
+ if (!activeCrop.intersect(outputState.viewport, &activeCrop)) {
+ activeCrop.clear();
+ }
+ activeCrop = inverseLayerTransform.transform(activeCrop, true);
+ // This needs to be here as transform.transform(Rect) computes the
+ // transformed rect and then takes the bounding box of the result before
+ // returning. This means
+ // transform.inverse().transform(transform.transform(Rect)) != Rect
+ // in which case we need to make sure the final rect is clipped to the
+ // display bounds.
+ if (!activeCrop.intersect(bufferSize, &activeCrop)) {
+ activeCrop.clear();
+ }
+ // mark regions outside the crop as transparent
+ activeTransparentRegion.orSelf(Rect(0, 0, bufferSize.getWidth(), activeCrop.top));
+ activeTransparentRegion.orSelf(
+ Rect(0, activeCrop.bottom, bufferSize.getWidth(), bufferSize.getHeight()));
+ activeTransparentRegion.orSelf(Rect(0, activeCrop.top, activeCrop.left, activeCrop.bottom));
+ activeTransparentRegion.orSelf(
+ Rect(activeCrop.right, activeCrop.top, bufferSize.getWidth(), activeCrop.bottom));
+ }
+
+ // reduce uses a FloatRect to provide more accuracy during the
+ // transformation. We then round upon constructing 'frame'.
+ Rect frame{
+ layerTransform.transform(reduce(layerState.geomLayerBounds, activeTransparentRegion))};
+ if (!frame.intersect(outputState.viewport, &frame)) {
+ frame.clear();
+ }
+ const ui::Transform displayTransform{outputState.transform};
+
+ return displayTransform.transform(frame);
+}
+
+uint32_t OutputLayer::calculateOutputRelativeBufferTransform() const {
+ const auto& layerState = mLayer->getState().frontEnd;
+ const auto& outputState = mOutput.getState();
+
+ /*
+ * Transformations are applied in this order:
+ * 1) buffer orientation/flip/mirror
+ * 2) state transformation (window manager)
+ * 3) layer orientation (screen orientation)
+ * (NOTE: the matrices are multiplied in reverse order)
+ */
+ const ui::Transform& layerTransform = layerState.geomLayerTransform;
+ const ui::Transform displayTransform{outputState.orientation};
+ const ui::Transform bufferTransform{layerState.geomBufferTransform};
+ ui::Transform transform(displayTransform * layerTransform * bufferTransform);
+
+ if (layerState.geomBufferUsesDisplayInverseTransform) {
+ /*
+ * the code below applies the primary display's inverse transform to the
+ * buffer
+ */
+ uint32_t invTransform = outputState.orientation;
+ // calculate the inverse transform
+ if (invTransform & HAL_TRANSFORM_ROT_90) {
+ invTransform ^= HAL_TRANSFORM_FLIP_V | HAL_TRANSFORM_FLIP_H;
+ }
+
+ /*
+ * Here we cancel out the orientation component of the WM transform.
+ * The scaling and translate components are already included in our bounds
+ * computation so it's enough to just omit it in the composition.
+ * See comment in BufferLayer::prepareClientLayer with ref to b/36727915 for why.
+ */
+ transform = ui::Transform(invTransform) * displayTransform * bufferTransform;
+ }
+
+ // this gives us only the "orientation" component of the transform
+ return transform.getOrientation();
+} // namespace impl
+
+void OutputLayer::updateCompositionState(bool includeGeometry) {
+ if (includeGeometry) {
+ mState.displayFrame = calculateOutputDisplayFrame();
+ mState.sourceCrop = calculateOutputSourceCrop();
+ mState.bufferTransform =
+ static_cast<Hwc2::Transform>(calculateOutputRelativeBufferTransform());
+
+ if ((mLayer->getState().frontEnd.isSecure && !mOutput.getState().isSecure) ||
+ (mState.bufferTransform & ui::Transform::ROT_INVALID)) {
+ mState.forceClientComposition = true;
+ }
+ }
+}
+
+void OutputLayer::writeStateToHWC(bool includeGeometry) const {
+ // Skip doing this if there is no HWC interface
+ if (!mState.hwc) {
+ return;
+ }
+
+ auto& hwcLayer = (*mState.hwc).hwcLayer;
+ if (!hwcLayer) {
+ ALOGE("[%s] failed to write composition state to HWC -- no hwcLayer for output %s",
+ mLayerFE->getDebugName(), mOutput.getName().c_str());
+ return;
+ }
+
+ if (includeGeometry) {
+ // Output dependent state
+
+ if (auto error = hwcLayer->setDisplayFrame(mState.displayFrame);
+ error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set display frame [%d, %d, %d, %d]: %s (%d)",
+ mLayerFE->getDebugName(), mState.displayFrame.left, mState.displayFrame.top,
+ mState.displayFrame.right, mState.displayFrame.bottom, to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+
+ if (auto error = hwcLayer->setSourceCrop(mState.sourceCrop); error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set source crop [%.3f, %.3f, %.3f, %.3f]: "
+ "%s (%d)",
+ mLayerFE->getDebugName(), mState.sourceCrop.left, mState.sourceCrop.top,
+ mState.sourceCrop.right, mState.sourceCrop.bottom, to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+
+ if (auto error = hwcLayer->setZOrder(mState.z); error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set Z %u: %s (%d)", mLayerFE->getDebugName(), mState.z,
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ }
+
+ if (auto error =
+ hwcLayer->setTransform(static_cast<HWC2::Transform>(mState.bufferTransform));
+ error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set transform %s: %s (%d)", mLayerFE->getDebugName(),
+ toString(mState.bufferTransform).c_str(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+
+ // Output independent state
+
+ const auto& outputIndependentState = mLayer->getState().frontEnd;
+
+ if (auto error = hwcLayer->setBlendMode(
+ static_cast<HWC2::BlendMode>(outputIndependentState.blendMode));
+ error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set blend mode %s: %s (%d)", mLayerFE->getDebugName(),
+ toString(outputIndependentState.blendMode).c_str(), to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+
+ if (auto error = hwcLayer->setPlaneAlpha(outputIndependentState.alpha);
+ error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set plane alpha %.3f: %s (%d)", mLayerFE->getDebugName(),
+ outputIndependentState.alpha, to_string(error).c_str(),
+ static_cast<int32_t>(error));
+ }
+
+ if (auto error =
+ hwcLayer->setInfo(outputIndependentState.type, outputIndependentState.appId);
+ error != HWC2::Error::None) {
+ ALOGE("[%s] Failed to set info %s (%d)", mLayerFE->getDebugName(),
+ to_string(error).c_str(), static_cast<int32_t>(error));
+ }
+ }
+}
+
void OutputLayer::dump(std::string& out) const {
using android::base::StringAppendF;