blob: 2ab897b35d5a5916e25978108cfe665eee25345b [file] [log] [blame]
Vishnu Nair04f89692022-11-16 23:21:05 +00001/*
2 * Copyright 2022 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17#pragma once
18
19#include "FrontEnd/LayerCreationArgs.h"
20#include "RequestedLayerState.h"
21#include "ftl/small_vector.h"
22
23namespace android::surfaceflinger::frontend {
24class LayerHierarchyBuilder;
25
26// LayerHierarchy allows us to navigate the layer hierarchy in z-order, or depth first traversal.
27// The hierarchy is created from a set of RequestedLayerStates. The hierarchy itself does not
28// contain additional states. Instead, it is a representation of RequestedLayerStates as a graph.
29//
30// Each node in the hierarchy can be visited by multiple parents (making this a graph). While
31// traversing the hierarchy, a new concept called Variant can be used to understand the
32// relationship of the layer to its parent. The following variants are possible:
33// Attached - child of the parent
34// Detached - child of the parent but currently relative parented to another layer
35// Relative - relative child of the parent
36// Mirror - mirrored from another layer
37//
38// By representing the hierarchy as a graph, we can represent mirrored layer hierarchies without
39// cloning the layer requested state. The mirrored hierarchy and its corresponding
40// RequestedLayerStates are kept in sync because the mirrored hierarchy does not clone any
41// states.
42class LayerHierarchy {
43public:
Vishnu Naircfb2d252023-01-19 04:44:02 +000044 enum Variant : uint32_t {
Vishnu Nair04f89692022-11-16 23:21:05 +000045 Attached,
46 Detached,
47 Relative,
48 Mirror,
Vishnu Naircfb2d252023-01-19 04:44:02 +000049 ftl_first = Attached,
50 ftl_last = Mirror,
Vishnu Nair04f89692022-11-16 23:21:05 +000051 };
52 // Represents a unique path to a node.
Vishnu Nair80a5a702023-02-11 01:21:51 +000053 // The layer hierarchy is represented as a graph. Each node can be visited by multiple parents.
54 // This allows us to represent mirroring in an efficient way. See the example below:
55 // root
56 // ├─ A {Traversal path id = 1}
57 // ├─ B {Traversal path id = 2}
58 // │ ├─ C {Traversal path id = 3}
59 // │ ├─ D {Traversal path id = 4}
60 // │ └─ E {Traversal path id = 5}
61 // ├─ F (Mirrors B) {Traversal path id = 6}
62 // └─ G (Mirrors F) {Traversal path id = 7}
63 //
64 // C, D and E can be traversed via B or via F then B or via G then F then B.
65 // Depending on how the node is reached, its properties such as geometry or visibility might be
66 // different. And we can uniquely identify the node by keeping track of the nodes leading up to
67 // it. But to be more efficient we only need to track the nodes id and the top mirror root path.
68 // So C for example, would have the following unique traversal paths:
69 // - {Traversal path id = 3}
70 // - {Traversal path id = 3, mirrorRootId = 6}
71 // - {Traversal path id = 3, mirrorRootId = 7}
72
Vishnu Nair04f89692022-11-16 23:21:05 +000073 struct TraversalPath {
74 uint32_t id;
75 LayerHierarchy::Variant variant;
76 // Mirrored layers can have a different geometry than their parents so we need to track
77 // the mirror roots in the traversal.
Vishnu Nair80a5a702023-02-11 01:21:51 +000078 uint32_t mirrorRootId = UNASSIGNED_LAYER_ID;
Vishnu Nair04f89692022-11-16 23:21:05 +000079 // Relative layers can be visited twice, once by their parent and then once again by
80 // their relative parent. We keep track of the roots here to detect any loops in the
81 // hierarchy. If a relative root already exists in the list while building the
82 // TraversalPath, it means that somewhere in the hierarchy two layers are relatively
83 // parented to each other.
84 ftl::SmallVector<uint32_t, 5> relativeRootIds;
85 // First duplicate relative root id found. If this is a valid layer id that means we are
86 // in a loop.
87 uint32_t invalidRelativeRootId = UNASSIGNED_LAYER_ID;
Vishnu Nair8fc721b2022-12-22 20:06:32 +000088 // See isAttached()
89 bool detached = false;
Vishnu Nair04f89692022-11-16 23:21:05 +000090 bool hasRelZLoop() const { return invalidRelativeRootId != UNASSIGNED_LAYER_ID; }
Vishnu Nair8fc721b2022-12-22 20:06:32 +000091 // Returns true if this node is reached via one or more relative parents.
92 bool isRelative() const { return !relativeRootIds.empty(); }
93 // Returns true if the node or its parents are not Detached.
94 bool isAttached() const { return !detached; }
95 // Returns true if the node is a clone.
Vishnu Nair80a5a702023-02-11 01:21:51 +000096 bool isClone() const { return mirrorRootId != UNASSIGNED_LAYER_ID; }
97 TraversalPath getMirrorRoot() const;
Vishnu Nair04f89692022-11-16 23:21:05 +000098
99 bool operator==(const TraversalPath& other) const {
Vishnu Nair80a5a702023-02-11 01:21:51 +0000100 return id == other.id && mirrorRootId == other.mirrorRootId;
Vishnu Nair04f89692022-11-16 23:21:05 +0000101 }
102 std::string toString() const;
103
Vishnu Nair8fc721b2022-12-22 20:06:32 +0000104 static const TraversalPath ROOT;
Vishnu Nair04f89692022-11-16 23:21:05 +0000105 };
106
107 // Helper class to add nodes to an existing traversal id and removes the
108 // node when it goes out of scope.
109 class ScopedAddToTraversalPath {
110 public:
111 ScopedAddToTraversalPath(TraversalPath& traversalPath, uint32_t layerId,
112 LayerHierarchy::Variant variantArg);
113 ~ScopedAddToTraversalPath();
114
115 private:
116 TraversalPath& mTraversalPath;
Vishnu Nair80a5a702023-02-11 01:21:51 +0000117 TraversalPath mParentPath;
Vishnu Nair04f89692022-11-16 23:21:05 +0000118 };
119 LayerHierarchy(RequestedLayerState* layer);
120
121 // Visitor function that provides the hierarchy node and a traversal id which uniquely
122 // identifies how was visited. The hierarchy contains a pointer to the RequestedLayerState.
123 // Return false to stop traversing down the hierarchy.
124 typedef std::function<bool(const LayerHierarchy& hierarchy,
125 const LayerHierarchy::TraversalPath& traversalPath)>
126 Visitor;
127
128 // Traverse the hierarchy and visit all child variants.
129 void traverse(const Visitor& visitor) const {
Vishnu Nair8fc721b2022-12-22 20:06:32 +0000130 TraversalPath root = TraversalPath::ROOT;
131 traverse(visitor, root);
Vishnu Nair04f89692022-11-16 23:21:05 +0000132 }
133
134 // Traverse the hierarchy in z-order, skipping children that have relative parents.
135 void traverseInZOrder(const Visitor& visitor) const {
Vishnu Nair8fc721b2022-12-22 20:06:32 +0000136 TraversalPath root = TraversalPath::ROOT;
137 traverseInZOrder(visitor, root);
Vishnu Nair04f89692022-11-16 23:21:05 +0000138 }
139
140 const RequestedLayerState* getLayer() const;
141 std::string getDebugString(const char* prefix = "") const;
142 std::string getDebugStringShort() const;
143 // Traverse the hierarchy and return true if loops are found. The outInvalidRelativeRoot
144 // will contain the first relative root that was visited twice in a traversal.
145 bool hasRelZLoop(uint32_t& outInvalidRelativeRoot) const;
146 std::vector<std::pair<LayerHierarchy*, Variant>> mChildren;
147
148private:
149 friend LayerHierarchyBuilder;
150 LayerHierarchy(const LayerHierarchy& hierarchy, bool childrenOnly);
151 void addChild(LayerHierarchy*, LayerHierarchy::Variant);
152 void removeChild(LayerHierarchy*);
153 void sortChildrenByZOrder();
154 void updateChild(LayerHierarchy*, LayerHierarchy::Variant);
155 void traverseInZOrder(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const;
156 void traverse(const Visitor& visitor, LayerHierarchy::TraversalPath& parent) const;
157
158 const RequestedLayerState* mLayer;
159 LayerHierarchy* mParent = nullptr;
160 LayerHierarchy* mRelativeParent = nullptr;
161};
162
163// Given a list of RequestedLayerState, this class will build a root hierarchy and an
164// offscreen hierarchy. The builder also has an update method which can update an existing
165// hierarchy from a list of RequestedLayerState and associated change flags.
166class LayerHierarchyBuilder {
167public:
168 LayerHierarchyBuilder(const std::vector<std::unique_ptr<RequestedLayerState>>&);
169 void update(const std::vector<std::unique_ptr<RequestedLayerState>>& layers,
170 const std::vector<std::unique_ptr<RequestedLayerState>>& destroyedLayers);
171 LayerHierarchy getPartialHierarchy(uint32_t, bool childrenOnly) const;
172 const LayerHierarchy& getHierarchy() const;
173 const LayerHierarchy& getOffscreenHierarchy() const;
174 std::string getDebugString(uint32_t layerId, uint32_t depth = 0) const;
175
176private:
177 void onLayerAdded(RequestedLayerState* layer);
178 void attachToParent(LayerHierarchy*);
179 void detachFromParent(LayerHierarchy*);
180 void attachToRelativeParent(LayerHierarchy*);
181 void detachFromRelativeParent(LayerHierarchy*);
182 void attachHierarchyToRelativeParent(LayerHierarchy*);
183 void detachHierarchyFromRelativeParent(LayerHierarchy*);
184
185 void onLayerDestroyed(RequestedLayerState* layer);
186 void updateMirrorLayer(RequestedLayerState* layer);
187 LayerHierarchy* getHierarchyFromId(uint32_t layerId, bool crashOnFailure = true);
188 std::unordered_map<uint32_t, LayerHierarchy*> mLayerIdToHierarchy;
189 std::vector<std::unique_ptr<LayerHierarchy>> mHierarchies;
190 LayerHierarchy mRoot{nullptr};
191 LayerHierarchy mOffscreenRoot{nullptr};
192};
193
194} // namespace android::surfaceflinger::frontend