Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Copyright 2021 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | |
| 17 | #include <tonemap/tonemap.h> |
| 18 | |
Alec Mouri | 4049b53 | 2021-10-15 20:59:33 -0700 | [diff] [blame^] | 19 | #include <algorithm> |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 20 | #include <cstdint> |
| 21 | #include <mutex> |
| 22 | #include <type_traits> |
| 23 | |
| 24 | namespace android::tonemap { |
| 25 | |
| 26 | namespace { |
| 27 | |
| 28 | // Flag containing the variant of tone map algorithm to use. |
| 29 | enum class ToneMapAlgorithm { |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 30 | AndroidO, // Default algorithm in place since Android O, |
| 31 | Android13, // Algorithm used in Android 13. |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 32 | }; |
| 33 | |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 34 | static const constexpr auto kToneMapAlgorithm = ToneMapAlgorithm::Android13; |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 35 | |
| 36 | static const constexpr auto kTransferMask = |
| 37 | static_cast<int32_t>(aidl::android::hardware::graphics::common::Dataspace::TRANSFER_MASK); |
| 38 | static const constexpr auto kTransferST2084 = |
| 39 | static_cast<int32_t>(aidl::android::hardware::graphics::common::Dataspace::TRANSFER_ST2084); |
| 40 | static const constexpr auto kTransferHLG = |
| 41 | static_cast<int32_t>(aidl::android::hardware::graphics::common::Dataspace::TRANSFER_HLG); |
| 42 | |
| 43 | template <typename T, std::enable_if_t<std::is_trivially_copyable<T>::value, bool> = true> |
| 44 | std::vector<uint8_t> buildUniformValue(T value) { |
| 45 | std::vector<uint8_t> result; |
| 46 | result.resize(sizeof(value)); |
| 47 | std::memcpy(result.data(), &value, sizeof(value)); |
| 48 | return result; |
| 49 | } |
| 50 | |
| 51 | class ToneMapperO : public ToneMapper { |
| 52 | public: |
| 53 | std::string generateTonemapGainShaderSkSL( |
| 54 | aidl::android::hardware::graphics::common::Dataspace sourceDataspace, |
| 55 | aidl::android::hardware::graphics::common::Dataspace destinationDataspace) override { |
| 56 | const int32_t sourceDataspaceInt = static_cast<int32_t>(sourceDataspace); |
| 57 | const int32_t destinationDataspaceInt = static_cast<int32_t>(destinationDataspace); |
| 58 | |
| 59 | std::string program; |
| 60 | // Define required uniforms |
| 61 | program.append(R"( |
| 62 | uniform float in_libtonemap_displayMaxLuminance; |
| 63 | uniform float in_libtonemap_inputMaxLuminance; |
| 64 | )"); |
| 65 | switch (sourceDataspaceInt & kTransferMask) { |
| 66 | case kTransferST2084: |
| 67 | case kTransferHLG: |
| 68 | switch (destinationDataspaceInt & kTransferMask) { |
| 69 | case kTransferST2084: |
| 70 | program.append(R"( |
| 71 | float libtonemap_ToneMapTargetNits(vec3 xyz) { |
| 72 | return xyz.y; |
| 73 | } |
| 74 | )"); |
| 75 | break; |
| 76 | case kTransferHLG: |
| 77 | // PQ has a wider luminance range (10,000 nits vs. 1,000 nits) than HLG, so |
| 78 | // we'll clamp the luminance range in case we're mapping from PQ input to |
| 79 | // HLG output. |
| 80 | program.append(R"( |
| 81 | float libtonemap_ToneMapTargetNits(vec3 xyz) { |
| 82 | return clamp(xyz.y, 0.0, 1000.0); |
| 83 | } |
| 84 | )"); |
| 85 | break; |
| 86 | default: |
| 87 | // Here we're mapping from HDR to SDR content, so interpolate using a |
| 88 | // Hermitian polynomial onto the smaller luminance range. |
| 89 | program.append(R"( |
| 90 | float libtonemap_ToneMapTargetNits(vec3 xyz) { |
| 91 | float maxInLumi = in_libtonemap_inputMaxLuminance; |
| 92 | float maxOutLumi = in_libtonemap_displayMaxLuminance; |
| 93 | |
| 94 | float nits = xyz.y; |
| 95 | |
| 96 | // if the max input luminance is less than what we can |
| 97 | // output then no tone mapping is needed as all color |
| 98 | // values will be in range. |
| 99 | if (maxInLumi <= maxOutLumi) { |
| 100 | return xyz.y; |
| 101 | } else { |
| 102 | |
| 103 | // three control points |
| 104 | const float x0 = 10.0; |
| 105 | const float y0 = 17.0; |
| 106 | float x1 = maxOutLumi * 0.75; |
| 107 | float y1 = x1; |
| 108 | float x2 = x1 + (maxInLumi - x1) / 2.0; |
| 109 | float y2 = y1 + (maxOutLumi - y1) * 0.75; |
| 110 | |
| 111 | // horizontal distances between the last three |
| 112 | // control points |
| 113 | float h12 = x2 - x1; |
| 114 | float h23 = maxInLumi - x2; |
| 115 | // tangents at the last three control points |
| 116 | float m1 = (y2 - y1) / h12; |
| 117 | float m3 = (maxOutLumi - y2) / h23; |
| 118 | float m2 = (m1 + m3) / 2.0; |
| 119 | |
| 120 | if (nits < x0) { |
| 121 | // scale [0.0, x0] to [0.0, y0] linearly |
| 122 | float slope = y0 / x0; |
| 123 | return nits * slope; |
| 124 | } else if (nits < x1) { |
| 125 | // scale [x0, x1] to [y0, y1] linearly |
| 126 | float slope = (y1 - y0) / (x1 - x0); |
| 127 | nits = y0 + (nits - x0) * slope; |
| 128 | } else if (nits < x2) { |
| 129 | // scale [x1, x2] to [y1, y2] using Hermite interp |
| 130 | float t = (nits - x1) / h12; |
| 131 | nits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * |
| 132 | (1.0 - t) * (1.0 - t) + |
| 133 | (y2 * (3.0 - 2.0 * t) + |
| 134 | h12 * m2 * (t - 1.0)) * t * t; |
| 135 | } else { |
| 136 | // scale [x2, maxInLumi] to [y2, maxOutLumi] using |
| 137 | // Hermite interp |
| 138 | float t = (nits - x2) / h23; |
| 139 | nits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * |
| 140 | (1.0 - t) * (1.0 - t) + (maxOutLumi * |
| 141 | (3.0 - 2.0 * t) + h23 * m3 * |
| 142 | (t - 1.0)) * t * t; |
| 143 | } |
| 144 | } |
| 145 | |
| 146 | return nits; |
| 147 | } |
| 148 | )"); |
| 149 | break; |
| 150 | } |
| 151 | break; |
| 152 | default: |
| 153 | switch (destinationDataspaceInt & kTransferMask) { |
| 154 | case kTransferST2084: |
| 155 | case kTransferHLG: |
| 156 | // Map from SDR onto an HDR output buffer |
| 157 | // Here we use a polynomial curve to map from [0, displayMaxLuminance] onto |
| 158 | // [0, maxOutLumi] which is hard-coded to be 3000 nits. |
| 159 | program.append(R"( |
| 160 | float libtonemap_ToneMapTargetNits(vec3 xyz) { |
| 161 | const float maxOutLumi = 3000.0; |
| 162 | |
| 163 | const float x0 = 5.0; |
| 164 | const float y0 = 2.5; |
| 165 | float x1 = in_libtonemap_displayMaxLuminance * 0.7; |
| 166 | float y1 = maxOutLumi * 0.15; |
| 167 | float x2 = in_libtonemap_displayMaxLuminance * 0.9; |
| 168 | float y2 = maxOutLumi * 0.45; |
| 169 | float x3 = in_libtonemap_displayMaxLuminance; |
| 170 | float y3 = maxOutLumi; |
| 171 | |
| 172 | float c1 = y1 / 3.0; |
| 173 | float c2 = y2 / 2.0; |
| 174 | float c3 = y3 / 1.5; |
| 175 | |
| 176 | float nits = xyz.y; |
| 177 | |
| 178 | if (nits <= x0) { |
| 179 | // scale [0.0, x0] to [0.0, y0] linearly |
| 180 | float slope = y0 / x0; |
| 181 | return nits * slope; |
| 182 | } else if (nits <= x1) { |
| 183 | // scale [x0, x1] to [y0, y1] using a curve |
| 184 | float t = (nits - x0) / (x1 - x0); |
| 185 | nits = (1.0 - t) * (1.0 - t) * y0 + |
| 186 | 2.0 * (1.0 - t) * t * c1 + t * t * y1; |
| 187 | } else if (nits <= x2) { |
| 188 | // scale [x1, x2] to [y1, y2] using a curve |
| 189 | float t = (nits - x1) / (x2 - x1); |
| 190 | nits = (1.0 - t) * (1.0 - t) * y1 + |
| 191 | 2.0 * (1.0 - t) * t * c2 + t * t * y2; |
| 192 | } else { |
| 193 | // scale [x2, x3] to [y2, y3] using a curve |
| 194 | float t = (nits - x2) / (x3 - x2); |
| 195 | nits = (1.0 - t) * (1.0 - t) * y2 + |
| 196 | 2.0 * (1.0 - t) * t * c3 + t * t * y3; |
| 197 | } |
| 198 | |
| 199 | return nits; |
| 200 | } |
| 201 | )"); |
| 202 | break; |
| 203 | default: |
| 204 | // For completeness, this is tone-mapping from SDR to SDR, where this is |
| 205 | // just a no-op. |
| 206 | program.append(R"( |
| 207 | float libtonemap_ToneMapTargetNits(vec3 xyz) { |
| 208 | return xyz.y; |
| 209 | } |
| 210 | )"); |
| 211 | break; |
| 212 | } |
| 213 | break; |
| 214 | } |
| 215 | |
| 216 | program.append(R"( |
| 217 | float libtonemap_LookupTonemapGain(vec3 linearRGB, vec3 xyz) { |
| 218 | if (xyz.y <= 0.0) { |
| 219 | return 1.0; |
| 220 | } |
| 221 | return libtonemap_ToneMapTargetNits(xyz) / xyz.y; |
| 222 | } |
| 223 | )"); |
| 224 | return program; |
| 225 | } |
| 226 | |
| 227 | std::vector<ShaderUniform> generateShaderSkSLUniforms(const Metadata& metadata) override { |
| 228 | std::vector<ShaderUniform> uniforms; |
| 229 | |
| 230 | uniforms.reserve(2); |
| 231 | |
| 232 | uniforms.push_back({.name = "in_libtonemap_displayMaxLuminance", |
| 233 | .value = buildUniformValue<float>(metadata.displayMaxLuminance)}); |
| 234 | uniforms.push_back({.name = "in_libtonemap_inputMaxLuminance", |
| 235 | .value = buildUniformValue<float>(metadata.contentMaxLuminance)}); |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 236 | return uniforms; |
| 237 | } |
Alec Mouri | 4049b53 | 2021-10-15 20:59:33 -0700 | [diff] [blame^] | 238 | |
| 239 | double lookupTonemapGain( |
| 240 | aidl::android::hardware::graphics::common::Dataspace sourceDataspace, |
| 241 | aidl::android::hardware::graphics::common::Dataspace destinationDataspace, |
| 242 | vec3 /* linearRGB */, vec3 xyz, const Metadata& metadata) override { |
| 243 | if (xyz.y <= 0.0) { |
| 244 | return 1.0; |
| 245 | } |
| 246 | const int32_t sourceDataspaceInt = static_cast<int32_t>(sourceDataspace); |
| 247 | const int32_t destinationDataspaceInt = static_cast<int32_t>(destinationDataspace); |
| 248 | |
| 249 | double targetNits = 0.0; |
| 250 | switch (sourceDataspaceInt & kTransferMask) { |
| 251 | case kTransferST2084: |
| 252 | case kTransferHLG: |
| 253 | switch (destinationDataspaceInt & kTransferMask) { |
| 254 | case kTransferST2084: |
| 255 | targetNits = xyz.y; |
| 256 | break; |
| 257 | case kTransferHLG: |
| 258 | // PQ has a wider luminance range (10,000 nits vs. 1,000 nits) than HLG, so |
| 259 | // we'll clamp the luminance range in case we're mapping from PQ input to |
| 260 | // HLG output. |
| 261 | targetNits = std::clamp(xyz.y, 0.0f, 1000.0f); |
| 262 | break; |
| 263 | default: |
| 264 | // Here we're mapping from HDR to SDR content, so interpolate using a |
| 265 | // Hermitian polynomial onto the smaller luminance range. |
| 266 | |
| 267 | targetNits = xyz.y; |
| 268 | // if the max input luminance is less than what we can output then |
| 269 | // no tone mapping is needed as all color values will be in range. |
| 270 | if (metadata.contentMaxLuminance > metadata.displayMaxLuminance) { |
| 271 | // three control points |
| 272 | const double x0 = 10.0; |
| 273 | const double y0 = 17.0; |
| 274 | double x1 = metadata.displayMaxLuminance * 0.75; |
| 275 | double y1 = x1; |
| 276 | double x2 = x1 + (metadata.contentMaxLuminance - x1) / 2.0; |
| 277 | double y2 = y1 + (metadata.displayMaxLuminance - y1) * 0.75; |
| 278 | |
| 279 | // horizontal distances between the last three control points |
| 280 | double h12 = x2 - x1; |
| 281 | double h23 = metadata.contentMaxLuminance - x2; |
| 282 | // tangents at the last three control points |
| 283 | double m1 = (y2 - y1) / h12; |
| 284 | double m3 = (metadata.displayMaxLuminance - y2) / h23; |
| 285 | double m2 = (m1 + m3) / 2.0; |
| 286 | |
| 287 | if (targetNits < x0) { |
| 288 | // scale [0.0, x0] to [0.0, y0] linearly |
| 289 | double slope = y0 / x0; |
| 290 | targetNits *= slope; |
| 291 | } else if (targetNits < x1) { |
| 292 | // scale [x0, x1] to [y0, y1] linearly |
| 293 | double slope = (y1 - y0) / (x1 - x0); |
| 294 | targetNits = y0 + (targetNits - x0) * slope; |
| 295 | } else if (targetNits < x2) { |
| 296 | // scale [x1, x2] to [y1, y2] using Hermite interp |
| 297 | double t = (targetNits - x1) / h12; |
| 298 | targetNits = (y1 * (1.0 + 2.0 * t) + h12 * m1 * t) * (1.0 - t) * |
| 299 | (1.0 - t) + |
| 300 | (y2 * (3.0 - 2.0 * t) + h12 * m2 * (t - 1.0)) * t * t; |
| 301 | } else { |
| 302 | // scale [x2, maxInLumi] to [y2, maxOutLumi] using Hermite interp |
| 303 | double t = (targetNits - x2) / h23; |
| 304 | targetNits = (y2 * (1.0 + 2.0 * t) + h23 * m2 * t) * (1.0 - t) * |
| 305 | (1.0 - t) + |
| 306 | (metadata.displayMaxLuminance * (3.0 - 2.0 * t) + |
| 307 | h23 * m3 * (t - 1.0)) * |
| 308 | t * t; |
| 309 | } |
| 310 | } |
| 311 | break; |
| 312 | } |
| 313 | break; |
| 314 | default: |
| 315 | // source is SDR |
| 316 | switch (destinationDataspaceInt & kTransferMask) { |
| 317 | case kTransferST2084: |
| 318 | case kTransferHLG: { |
| 319 | // Map from SDR onto an HDR output buffer |
| 320 | // Here we use a polynomial curve to map from [0, displayMaxLuminance] onto |
| 321 | // [0, maxOutLumi] which is hard-coded to be 3000 nits. |
| 322 | const double maxOutLumi = 3000.0; |
| 323 | |
| 324 | double x0 = 5.0; |
| 325 | double y0 = 2.5; |
| 326 | double x1 = metadata.displayMaxLuminance * 0.7; |
| 327 | double y1 = maxOutLumi * 0.15; |
| 328 | double x2 = metadata.displayMaxLuminance * 0.9; |
| 329 | double y2 = maxOutLumi * 0.45; |
| 330 | double x3 = metadata.displayMaxLuminance; |
| 331 | double y3 = maxOutLumi; |
| 332 | |
| 333 | double c1 = y1 / 3.0; |
| 334 | double c2 = y2 / 2.0; |
| 335 | double c3 = y3 / 1.5; |
| 336 | |
| 337 | targetNits = xyz.y; |
| 338 | |
| 339 | if (targetNits <= x0) { |
| 340 | // scale [0.0, x0] to [0.0, y0] linearly |
| 341 | double slope = y0 / x0; |
| 342 | targetNits *= slope; |
| 343 | } else if (targetNits <= x1) { |
| 344 | // scale [x0, x1] to [y0, y1] using a curve |
| 345 | double t = (targetNits - x0) / (x1 - x0); |
| 346 | targetNits = (1.0 - t) * (1.0 - t) * y0 + 2.0 * (1.0 - t) * t * c1 + |
| 347 | t * t * y1; |
| 348 | } else if (targetNits <= x2) { |
| 349 | // scale [x1, x2] to [y1, y2] using a curve |
| 350 | double t = (targetNits - x1) / (x2 - x1); |
| 351 | targetNits = (1.0 - t) * (1.0 - t) * y1 + 2.0 * (1.0 - t) * t * c2 + |
| 352 | t * t * y2; |
| 353 | } else { |
| 354 | // scale [x2, x3] to [y2, y3] using a curve |
| 355 | double t = (targetNits - x2) / (x3 - x2); |
| 356 | targetNits = (1.0 - t) * (1.0 - t) * y2 + 2.0 * (1.0 - t) * t * c3 + |
| 357 | t * t * y3; |
| 358 | } |
| 359 | } break; |
| 360 | default: |
| 361 | // For completeness, this is tone-mapping from SDR to SDR, where this is |
| 362 | // just a no-op. |
| 363 | targetNits = xyz.y; |
| 364 | break; |
| 365 | } |
| 366 | } |
| 367 | |
| 368 | return targetNits / xyz.y; |
| 369 | } |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 370 | }; |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 371 | |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 372 | class ToneMapper13 : public ToneMapper { |
Alec Mouri | 4049b53 | 2021-10-15 20:59:33 -0700 | [diff] [blame^] | 373 | private: |
| 374 | double OETF_ST2084(double nits) { |
| 375 | nits = nits / 10000.0; |
| 376 | double m1 = (2610.0 / 4096.0) / 4.0; |
| 377 | double m2 = (2523.0 / 4096.0) * 128.0; |
| 378 | double c1 = (3424.0 / 4096.0); |
| 379 | double c2 = (2413.0 / 4096.0) * 32.0; |
| 380 | double c3 = (2392.0 / 4096.0) * 32.0; |
| 381 | |
| 382 | double tmp = std::pow(nits, m1); |
| 383 | tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp); |
| 384 | return std::pow(tmp, m2); |
| 385 | } |
| 386 | |
| 387 | double OETF_HLG(double nits) { |
| 388 | nits = nits / 1000.0; |
| 389 | const double a = 0.17883277; |
| 390 | const double b = 0.28466892; |
| 391 | const double c = 0.55991073; |
| 392 | return nits <= 1.0 / 12.0 ? std::sqrt(3.0 * nits) : a * std::log(12.0 * nits - b) + c; |
| 393 | } |
| 394 | |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 395 | public: |
| 396 | std::string generateTonemapGainShaderSkSL( |
| 397 | aidl::android::hardware::graphics::common::Dataspace sourceDataspace, |
| 398 | aidl::android::hardware::graphics::common::Dataspace destinationDataspace) override { |
| 399 | const int32_t sourceDataspaceInt = static_cast<int32_t>(sourceDataspace); |
| 400 | const int32_t destinationDataspaceInt = static_cast<int32_t>(destinationDataspace); |
| 401 | |
| 402 | std::string program; |
| 403 | // Input uniforms |
| 404 | program.append(R"( |
| 405 | uniform float in_libtonemap_displayMaxLuminance; |
| 406 | uniform float in_libtonemap_inputMaxLuminance; |
| 407 | )"); |
| 408 | switch (sourceDataspaceInt & kTransferMask) { |
| 409 | case kTransferST2084: |
| 410 | case kTransferHLG: |
| 411 | switch (destinationDataspaceInt & kTransferMask) { |
| 412 | case kTransferST2084: |
| 413 | program.append(R"( |
| 414 | float libtonemap_ToneMapTargetNits(float maxRGB) { |
| 415 | return maxRGB; |
| 416 | } |
| 417 | )"); |
| 418 | break; |
| 419 | case kTransferHLG: |
| 420 | // PQ has a wider luminance range (10,000 nits vs. 1,000 nits) than HLG, so |
| 421 | // we'll clamp the luminance range in case we're mapping from PQ input to |
| 422 | // HLG output. |
| 423 | program.append(R"( |
| 424 | float libtonemap_ToneMapTargetNits(float maxRGB) { |
| 425 | return clamp(maxRGB, 0.0, 1000.0); |
| 426 | } |
| 427 | )"); |
| 428 | break; |
| 429 | |
| 430 | default: |
| 431 | switch (sourceDataspaceInt & kTransferMask) { |
| 432 | case kTransferST2084: |
| 433 | program.append(R"( |
| 434 | float libtonemap_OETFTone(float channel) { |
| 435 | channel = channel / 10000.0; |
| 436 | float m1 = (2610.0 / 4096.0) / 4.0; |
| 437 | float m2 = (2523.0 / 4096.0) * 128.0; |
| 438 | float c1 = (3424.0 / 4096.0); |
| 439 | float c2 = (2413.0 / 4096.0) * 32.0; |
| 440 | float c3 = (2392.0 / 4096.0) * 32.0; |
| 441 | |
| 442 | float tmp = pow(channel, float(m1)); |
| 443 | tmp = (c1 + c2 * tmp) / (1.0 + c3 * tmp); |
| 444 | return pow(tmp, float(m2)); |
| 445 | } |
| 446 | )"); |
| 447 | break; |
| 448 | case kTransferHLG: |
| 449 | program.append(R"( |
| 450 | float libtonemap_OETFTone(float channel) { |
| 451 | channel = channel / 1000.0; |
| 452 | const float a = 0.17883277; |
| 453 | const float b = 0.28466892; |
| 454 | const float c = 0.55991073; |
| 455 | return channel <= 1.0 / 12.0 ? sqrt(3.0 * channel) : |
| 456 | a * log(12.0 * channel - b) + c; |
| 457 | } |
| 458 | )"); |
| 459 | break; |
| 460 | } |
| 461 | // Here we're mapping from HDR to SDR content, so interpolate using a |
| 462 | // Hermitian polynomial onto the smaller luminance range. |
| 463 | program.append(R"( |
| 464 | float libtonemap_ToneMapTargetNits(float maxRGB) { |
| 465 | float maxInLumi = in_libtonemap_inputMaxLuminance; |
| 466 | float maxOutLumi = in_libtonemap_displayMaxLuminance; |
| 467 | |
| 468 | float nits = maxRGB; |
| 469 | |
| 470 | float x1 = maxOutLumi * 0.65; |
| 471 | float y1 = x1; |
| 472 | |
| 473 | float x3 = maxInLumi; |
| 474 | float y3 = maxOutLumi; |
| 475 | |
| 476 | float x2 = x1 + (x3 - x1) * 4.0 / 17.0; |
| 477 | float y2 = maxOutLumi * 0.9; |
| 478 | |
| 479 | float greyNorm1 = libtonemap_OETFTone(x1); |
| 480 | float greyNorm2 = libtonemap_OETFTone(x2); |
| 481 | float greyNorm3 = libtonemap_OETFTone(x3); |
| 482 | |
| 483 | float slope1 = 0; |
| 484 | float slope2 = (y2 - y1) / (greyNorm2 - greyNorm1); |
| 485 | float slope3 = (y3 - y2 ) / (greyNorm3 - greyNorm2); |
| 486 | |
| 487 | if (nits < x1) { |
| 488 | return nits; |
| 489 | } |
| 490 | |
| 491 | if (nits > maxInLumi) { |
| 492 | return maxOutLumi; |
| 493 | } |
| 494 | |
| 495 | float greyNits = libtonemap_OETFTone(nits); |
| 496 | |
| 497 | if (greyNits <= greyNorm2) { |
| 498 | nits = (greyNits - greyNorm2) * slope2 + y2; |
| 499 | } else if (greyNits <= greyNorm3) { |
| 500 | nits = (greyNits - greyNorm3) * slope3 + y3; |
| 501 | } else { |
| 502 | nits = maxOutLumi; |
| 503 | } |
| 504 | |
| 505 | return nits; |
| 506 | } |
| 507 | )"); |
| 508 | break; |
| 509 | } |
| 510 | break; |
| 511 | default: |
| 512 | // Inverse tone-mapping and SDR-SDR mapping is not supported. |
| 513 | program.append(R"( |
| 514 | float libtonemap_ToneMapTargetNits(float maxRGB) { |
| 515 | return maxRGB; |
| 516 | } |
| 517 | )"); |
| 518 | break; |
| 519 | } |
| 520 | |
| 521 | program.append(R"( |
| 522 | float libtonemap_LookupTonemapGain(vec3 linearRGB, vec3 xyz) { |
| 523 | float maxRGB = max(linearRGB.r, max(linearRGB.g, linearRGB.b)); |
| 524 | if (maxRGB <= 0.0) { |
| 525 | return 1.0; |
| 526 | } |
| 527 | return libtonemap_ToneMapTargetNits(maxRGB) / maxRGB; |
| 528 | } |
| 529 | )"); |
| 530 | return program; |
| 531 | } |
| 532 | |
| 533 | std::vector<ShaderUniform> generateShaderSkSLUniforms(const Metadata& metadata) override { |
| 534 | // Hardcode the max content luminance to a "reasonable" level |
| 535 | static const constexpr float kContentMaxLuminance = 4000.f; |
| 536 | std::vector<ShaderUniform> uniforms; |
| 537 | uniforms.reserve(2); |
| 538 | uniforms.push_back({.name = "in_libtonemap_displayMaxLuminance", |
| 539 | .value = buildUniformValue<float>(metadata.displayMaxLuminance)}); |
| 540 | uniforms.push_back({.name = "in_libtonemap_inputMaxLuminance", |
| 541 | .value = buildUniformValue<float>(kContentMaxLuminance)}); |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 542 | return uniforms; |
| 543 | } |
Alec Mouri | 4049b53 | 2021-10-15 20:59:33 -0700 | [diff] [blame^] | 544 | |
| 545 | double lookupTonemapGain( |
| 546 | aidl::android::hardware::graphics::common::Dataspace sourceDataspace, |
| 547 | aidl::android::hardware::graphics::common::Dataspace destinationDataspace, |
| 548 | vec3 linearRGB, vec3 /* xyz */, const Metadata& metadata) override { |
| 549 | double maxRGB = std::max({linearRGB.r, linearRGB.g, linearRGB.b}); |
| 550 | |
| 551 | if (maxRGB <= 0.0) { |
| 552 | return 1.0; |
| 553 | } |
| 554 | |
| 555 | const int32_t sourceDataspaceInt = static_cast<int32_t>(sourceDataspace); |
| 556 | const int32_t destinationDataspaceInt = static_cast<int32_t>(destinationDataspace); |
| 557 | |
| 558 | double targetNits = 0.0; |
| 559 | switch (sourceDataspaceInt & kTransferMask) { |
| 560 | case kTransferST2084: |
| 561 | case kTransferHLG: |
| 562 | switch (destinationDataspaceInt & kTransferMask) { |
| 563 | case kTransferST2084: |
| 564 | targetNits = maxRGB; |
| 565 | break; |
| 566 | case kTransferHLG: |
| 567 | // PQ has a wider luminance range (10,000 nits vs. 1,000 nits) than HLG, so |
| 568 | // we'll clamp the luminance range in case we're mapping from PQ input to |
| 569 | // HLG output. |
| 570 | targetNits = std::clamp(maxRGB, 0.0, 1000.0); |
| 571 | break; |
| 572 | default: |
| 573 | // Here we're mapping from HDR to SDR content, so interpolate using a |
| 574 | // Hermitian polynomial onto the smaller luminance range. |
| 575 | |
| 576 | double maxInLumi = 4000; |
| 577 | double maxOutLumi = metadata.displayMaxLuminance; |
| 578 | |
| 579 | targetNits = maxRGB; |
| 580 | |
| 581 | double x1 = maxOutLumi * 0.65; |
| 582 | double y1 = x1; |
| 583 | |
| 584 | double x3 = maxInLumi; |
| 585 | double y3 = maxOutLumi; |
| 586 | |
| 587 | double x2 = x1 + (x3 - x1) * 4.0 / 17.0; |
| 588 | double y2 = maxOutLumi * 0.9; |
| 589 | |
| 590 | double greyNorm1 = 0.0; |
| 591 | double greyNorm2 = 0.0; |
| 592 | double greyNorm3 = 0.0; |
| 593 | |
| 594 | if ((sourceDataspaceInt & kTransferMask) == kTransferST2084) { |
| 595 | greyNorm1 = OETF_ST2084(x1); |
| 596 | greyNorm2 = OETF_ST2084(x2); |
| 597 | greyNorm3 = OETF_ST2084(x3); |
| 598 | } else if ((sourceDataspaceInt & kTransferMask) == kTransferHLG) { |
| 599 | greyNorm1 = OETF_HLG(x1); |
| 600 | greyNorm2 = OETF_HLG(x2); |
| 601 | greyNorm3 = OETF_HLG(x3); |
| 602 | } |
| 603 | |
| 604 | double slope2 = (y2 - y1) / (greyNorm2 - greyNorm1); |
| 605 | double slope3 = (y3 - y2) / (greyNorm3 - greyNorm2); |
| 606 | |
| 607 | if (targetNits < x1) { |
| 608 | break; |
| 609 | } |
| 610 | |
| 611 | if (targetNits > maxInLumi) { |
| 612 | targetNits = maxOutLumi; |
| 613 | break; |
| 614 | } |
| 615 | |
| 616 | double greyNits = 0.0; |
| 617 | if ((sourceDataspaceInt & kTransferMask) == kTransferST2084) { |
| 618 | greyNits = OETF_ST2084(targetNits); |
| 619 | } else if ((sourceDataspaceInt & kTransferMask) == kTransferHLG) { |
| 620 | greyNits = OETF_HLG(targetNits); |
| 621 | } |
| 622 | |
| 623 | if (greyNits <= greyNorm2) { |
| 624 | targetNits = (greyNits - greyNorm2) * slope2 + y2; |
| 625 | } else if (greyNits <= greyNorm3) { |
| 626 | targetNits = (greyNits - greyNorm3) * slope3 + y3; |
| 627 | } else { |
| 628 | targetNits = maxOutLumi; |
| 629 | } |
| 630 | break; |
| 631 | } |
| 632 | break; |
| 633 | default: |
| 634 | switch (destinationDataspaceInt & kTransferMask) { |
| 635 | case kTransferST2084: |
| 636 | case kTransferHLG: |
| 637 | default: |
| 638 | targetNits = maxRGB; |
| 639 | break; |
| 640 | } |
| 641 | break; |
| 642 | } |
| 643 | |
| 644 | return targetNits / maxRGB; |
| 645 | } |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 646 | }; |
| 647 | |
| 648 | } // namespace |
| 649 | |
| 650 | ToneMapper* getToneMapper() { |
| 651 | static std::once_flag sOnce; |
| 652 | static std::unique_ptr<ToneMapper> sToneMapper; |
| 653 | |
| 654 | std::call_once(sOnce, [&] { |
| 655 | switch (kToneMapAlgorithm) { |
| 656 | case ToneMapAlgorithm::AndroidO: |
| 657 | sToneMapper = std::unique_ptr<ToneMapper>(new ToneMapperO()); |
| 658 | break; |
Alec Mouri | 5184f41 | 2021-10-14 18:13:49 -0700 | [diff] [blame] | 659 | case ToneMapAlgorithm::Android13: |
| 660 | sToneMapper = std::unique_ptr<ToneMapper>(new ToneMapper13()); |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 661 | } |
| 662 | }); |
| 663 | |
| 664 | return sToneMapper.get(); |
| 665 | } |
Alec Mouri | 465b296 | 2021-10-08 16:22:21 -0700 | [diff] [blame] | 666 | } // namespace android::tonemap |