blob: 741b442ca912de71c50a6e9fa5fa30f70f9bd91b [file] [log] [blame]
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07001/*
2 * Minimal code for RSA support from LibTomMath 0.41
3 * http://libtom.org/
4 * http://libtom.org/files/ltm-0.41.tar.bz2
5 * This library was released in public domain by Tom St Denis.
6 *
7 * The combination in this file may not use all of the optimized algorithms
8 * from LibTomMath and may be considerable slower than the LibTomMath with its
9 * default settings. The main purpose of having this version here is to make it
10 * easier to build bignum.c wrapper without having to install and build an
11 * external library.
12 *
13 * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this
14 * libtommath.c file instead of using the external LibTomMath library.
15 */
16
17#ifndef CHAR_BIT
18#define CHAR_BIT 8
19#endif
20
21#define BN_MP_INVMOD_C
22#define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would
23 * require BN_MP_EXPTMOD_FAST_C instead */
24#define BN_S_MP_MUL_DIGS_C
25#define BN_MP_INVMOD_SLOW_C
26#define BN_S_MP_SQR_C
27#define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this
28 * would require other than mp_reduce */
29
30#ifdef LTM_FAST
31
32/* Use faster div at the cost of about 1 kB */
33#define BN_MP_MUL_D_C
34
35/* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */
36#define BN_MP_EXPTMOD_FAST_C
37#define BN_MP_MONTGOMERY_SETUP_C
38#define BN_FAST_MP_MONTGOMERY_REDUCE_C
39#define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
40#define BN_MP_MUL_2_C
41
42/* Include faster sqr at the cost of about 0.5 kB in code */
43#define BN_FAST_S_MP_SQR_C
44
45#else /* LTM_FAST */
46
47#define BN_MP_DIV_SMALL
48#define BN_MP_INIT_MULTI_C
49#define BN_MP_CLEAR_MULTI_C
50#define BN_MP_ABS_C
51#endif /* LTM_FAST */
52
53/* Current uses do not require support for negative exponent in exptmod, so we
54 * can save about 1.5 kB in leaving out invmod. */
55#define LTM_NO_NEG_EXP
56
57/* from tommath.h */
58
59#ifndef MIN
60 #define MIN(x,y) ((x)<(y)?(x):(y))
61#endif
62
63#ifndef MAX
64 #define MAX(x,y) ((x)>(y)?(x):(y))
65#endif
66
67#define OPT_CAST(x)
68
Dmitry Shmidt04949592012-07-19 12:16:46 -070069#ifdef __x86_64__
70typedef unsigned long mp_digit;
71typedef unsigned long mp_word __attribute__((mode(TI)));
72
73#define DIGIT_BIT 60
74#define MP_64BIT
75#else
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -070076typedef unsigned long mp_digit;
77typedef u64 mp_word;
78
79#define DIGIT_BIT 28
80#define MP_28BIT
Dmitry Shmidt04949592012-07-19 12:16:46 -070081#endif
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -070082
83
84#define XMALLOC os_malloc
85#define XFREE os_free
86#define XREALLOC os_realloc
87
88
89#define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1))
90
91#define MP_LT -1 /* less than */
92#define MP_EQ 0 /* equal to */
93#define MP_GT 1 /* greater than */
94
95#define MP_ZPOS 0 /* positive integer */
96#define MP_NEG 1 /* negative */
97
98#define MP_OKAY 0 /* ok result */
99#define MP_MEM -2 /* out of mem */
100#define MP_VAL -3 /* invalid input */
101
102#define MP_YES 1 /* yes response */
103#define MP_NO 0 /* no response */
104
105typedef int mp_err;
106
107/* define this to use lower memory usage routines (exptmods mostly) */
108#define MP_LOW_MEM
109
110/* default precision */
111#ifndef MP_PREC
112 #ifndef MP_LOW_MEM
113 #define MP_PREC 32 /* default digits of precision */
114 #else
115 #define MP_PREC 8 /* default digits of precision */
116 #endif
117#endif
118
119/* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */
120#define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1))
121
122/* the infamous mp_int structure */
123typedef struct {
124 int used, alloc, sign;
125 mp_digit *dp;
126} mp_int;
127
128
129/* ---> Basic Manipulations <--- */
130#define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO)
131#define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO)
132#define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO)
133
134
135/* prototypes for copied functions */
136#define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1)
137static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
138static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
139static int s_mp_sqr(mp_int * a, mp_int * b);
140static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs);
141
142static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs);
143
144#ifdef BN_MP_INIT_MULTI_C
145static int mp_init_multi(mp_int *mp, ...);
146#endif
147#ifdef BN_MP_CLEAR_MULTI_C
148static void mp_clear_multi(mp_int *mp, ...);
149#endif
150static int mp_lshd(mp_int * a, int b);
151static void mp_set(mp_int * a, mp_digit b);
152static void mp_clamp(mp_int * a);
153static void mp_exch(mp_int * a, mp_int * b);
154static void mp_rshd(mp_int * a, int b);
155static void mp_zero(mp_int * a);
156static int mp_mod_2d(mp_int * a, int b, mp_int * c);
157static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d);
158static int mp_init_copy(mp_int * a, mp_int * b);
159static int mp_mul_2d(mp_int * a, int b, mp_int * c);
160#ifndef LTM_NO_NEG_EXP
161static int mp_div_2(mp_int * a, mp_int * b);
162static int mp_invmod(mp_int * a, mp_int * b, mp_int * c);
163static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c);
164#endif /* LTM_NO_NEG_EXP */
165static int mp_copy(mp_int * a, mp_int * b);
166static int mp_count_bits(mp_int * a);
167static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d);
168static int mp_mod(mp_int * a, mp_int * b, mp_int * c);
169static int mp_grow(mp_int * a, int size);
170static int mp_cmp_mag(mp_int * a, mp_int * b);
171#ifdef BN_MP_ABS_C
172static int mp_abs(mp_int * a, mp_int * b);
173#endif
174static int mp_sqr(mp_int * a, mp_int * b);
175static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d);
176static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d);
177static int mp_2expt(mp_int * a, int b);
178static int mp_reduce_setup(mp_int * a, mp_int * b);
179static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu);
180static int mp_init_size(mp_int * a, int size);
181#ifdef BN_MP_EXPTMOD_FAST_C
182static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode);
183#endif /* BN_MP_EXPTMOD_FAST_C */
184#ifdef BN_FAST_S_MP_SQR_C
185static int fast_s_mp_sqr (mp_int * a, mp_int * b);
186#endif /* BN_FAST_S_MP_SQR_C */
187#ifdef BN_MP_MUL_D_C
188static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c);
189#endif /* BN_MP_MUL_D_C */
190
191
192
193/* functions from bn_<func name>.c */
194
195
196/* reverse an array, used for radix code */
197static void bn_reverse (unsigned char *s, int len)
198{
199 int ix, iy;
200 unsigned char t;
201
202 ix = 0;
203 iy = len - 1;
204 while (ix < iy) {
205 t = s[ix];
206 s[ix] = s[iy];
207 s[iy] = t;
208 ++ix;
209 --iy;
210 }
211}
212
213
214/* low level addition, based on HAC pp.594, Algorithm 14.7 */
215static int s_mp_add (mp_int * a, mp_int * b, mp_int * c)
216{
217 mp_int *x;
218 int olduse, res, min, max;
219
220 /* find sizes, we let |a| <= |b| which means we have to sort
221 * them. "x" will point to the input with the most digits
222 */
223 if (a->used > b->used) {
224 min = b->used;
225 max = a->used;
226 x = a;
227 } else {
228 min = a->used;
229 max = b->used;
230 x = b;
231 }
232
233 /* init result */
234 if (c->alloc < max + 1) {
235 if ((res = mp_grow (c, max + 1)) != MP_OKAY) {
236 return res;
237 }
238 }
239
240 /* get old used digit count and set new one */
241 olduse = c->used;
242 c->used = max + 1;
243
244 {
245 register mp_digit u, *tmpa, *tmpb, *tmpc;
246 register int i;
247
248 /* alias for digit pointers */
249
250 /* first input */
251 tmpa = a->dp;
252
253 /* second input */
254 tmpb = b->dp;
255
256 /* destination */
257 tmpc = c->dp;
258
259 /* zero the carry */
260 u = 0;
261 for (i = 0; i < min; i++) {
262 /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */
263 *tmpc = *tmpa++ + *tmpb++ + u;
264
265 /* U = carry bit of T[i] */
266 u = *tmpc >> ((mp_digit)DIGIT_BIT);
267
268 /* take away carry bit from T[i] */
269 *tmpc++ &= MP_MASK;
270 }
271
272 /* now copy higher words if any, that is in A+B
273 * if A or B has more digits add those in
274 */
275 if (min != max) {
276 for (; i < max; i++) {
277 /* T[i] = X[i] + U */
278 *tmpc = x->dp[i] + u;
279
280 /* U = carry bit of T[i] */
281 u = *tmpc >> ((mp_digit)DIGIT_BIT);
282
283 /* take away carry bit from T[i] */
284 *tmpc++ &= MP_MASK;
285 }
286 }
287
288 /* add carry */
289 *tmpc++ = u;
290
291 /* clear digits above oldused */
292 for (i = c->used; i < olduse; i++) {
293 *tmpc++ = 0;
294 }
295 }
296
297 mp_clamp (c);
298 return MP_OKAY;
299}
300
301
302/* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */
303static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c)
304{
305 int olduse, res, min, max;
306
307 /* find sizes */
308 min = b->used;
309 max = a->used;
310
311 /* init result */
312 if (c->alloc < max) {
313 if ((res = mp_grow (c, max)) != MP_OKAY) {
314 return res;
315 }
316 }
317 olduse = c->used;
318 c->used = max;
319
320 {
321 register mp_digit u, *tmpa, *tmpb, *tmpc;
322 register int i;
323
324 /* alias for digit pointers */
325 tmpa = a->dp;
326 tmpb = b->dp;
327 tmpc = c->dp;
328
329 /* set carry to zero */
330 u = 0;
331 for (i = 0; i < min; i++) {
332 /* T[i] = A[i] - B[i] - U */
333 *tmpc = *tmpa++ - *tmpb++ - u;
334
335 /* U = carry bit of T[i]
336 * Note this saves performing an AND operation since
337 * if a carry does occur it will propagate all the way to the
338 * MSB. As a result a single shift is enough to get the carry
339 */
340 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
341
342 /* Clear carry from T[i] */
343 *tmpc++ &= MP_MASK;
344 }
345
346 /* now copy higher words if any, e.g. if A has more digits than B */
347 for (; i < max; i++) {
348 /* T[i] = A[i] - U */
349 *tmpc = *tmpa++ - u;
350
351 /* U = carry bit of T[i] */
352 u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1));
353
354 /* Clear carry from T[i] */
355 *tmpc++ &= MP_MASK;
356 }
357
358 /* clear digits above used (since we may not have grown result above) */
359 for (i = c->used; i < olduse; i++) {
360 *tmpc++ = 0;
361 }
362 }
363
364 mp_clamp (c);
365 return MP_OKAY;
366}
367
368
369/* init a new mp_int */
370static int mp_init (mp_int * a)
371{
372 int i;
373
374 /* allocate memory required and clear it */
375 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC);
376 if (a->dp == NULL) {
377 return MP_MEM;
378 }
379
380 /* set the digits to zero */
381 for (i = 0; i < MP_PREC; i++) {
382 a->dp[i] = 0;
383 }
384
385 /* set the used to zero, allocated digits to the default precision
386 * and sign to positive */
387 a->used = 0;
388 a->alloc = MP_PREC;
389 a->sign = MP_ZPOS;
390
391 return MP_OKAY;
392}
393
394
395/* clear one (frees) */
396static void mp_clear (mp_int * a)
397{
398 int i;
399
400 /* only do anything if a hasn't been freed previously */
401 if (a->dp != NULL) {
402 /* first zero the digits */
403 for (i = 0; i < a->used; i++) {
404 a->dp[i] = 0;
405 }
406
407 /* free ram */
408 XFREE(a->dp);
409
410 /* reset members to make debugging easier */
411 a->dp = NULL;
412 a->alloc = a->used = 0;
413 a->sign = MP_ZPOS;
414 }
415}
416
417
418/* high level addition (handles signs) */
419static int mp_add (mp_int * a, mp_int * b, mp_int * c)
420{
421 int sa, sb, res;
422
423 /* get sign of both inputs */
424 sa = a->sign;
425 sb = b->sign;
426
427 /* handle two cases, not four */
428 if (sa == sb) {
429 /* both positive or both negative */
430 /* add their magnitudes, copy the sign */
431 c->sign = sa;
432 res = s_mp_add (a, b, c);
433 } else {
434 /* one positive, the other negative */
435 /* subtract the one with the greater magnitude from */
436 /* the one of the lesser magnitude. The result gets */
437 /* the sign of the one with the greater magnitude. */
438 if (mp_cmp_mag (a, b) == MP_LT) {
439 c->sign = sb;
440 res = s_mp_sub (b, a, c);
441 } else {
442 c->sign = sa;
443 res = s_mp_sub (a, b, c);
444 }
445 }
446 return res;
447}
448
449
450/* high level subtraction (handles signs) */
451static int mp_sub (mp_int * a, mp_int * b, mp_int * c)
452{
453 int sa, sb, res;
454
455 sa = a->sign;
456 sb = b->sign;
457
458 if (sa != sb) {
459 /* subtract a negative from a positive, OR */
460 /* subtract a positive from a negative. */
461 /* In either case, ADD their magnitudes, */
462 /* and use the sign of the first number. */
463 c->sign = sa;
464 res = s_mp_add (a, b, c);
465 } else {
466 /* subtract a positive from a positive, OR */
467 /* subtract a negative from a negative. */
468 /* First, take the difference between their */
469 /* magnitudes, then... */
470 if (mp_cmp_mag (a, b) != MP_LT) {
471 /* Copy the sign from the first */
472 c->sign = sa;
473 /* The first has a larger or equal magnitude */
474 res = s_mp_sub (a, b, c);
475 } else {
476 /* The result has the *opposite* sign from */
477 /* the first number. */
478 c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS;
479 /* The second has a larger magnitude */
480 res = s_mp_sub (b, a, c);
481 }
482 }
483 return res;
484}
485
486
487/* high level multiplication (handles sign) */
488static int mp_mul (mp_int * a, mp_int * b, mp_int * c)
489{
490 int res, neg;
491 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
492
493 /* use Toom-Cook? */
494#ifdef BN_MP_TOOM_MUL_C
495 if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) {
496 res = mp_toom_mul(a, b, c);
497 } else
498#endif
499#ifdef BN_MP_KARATSUBA_MUL_C
500 /* use Karatsuba? */
501 if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) {
502 res = mp_karatsuba_mul (a, b, c);
503 } else
504#endif
505 {
506 /* can we use the fast multiplier?
507 *
508 * The fast multiplier can be used if the output will
509 * have less than MP_WARRAY digits and the number of
510 * digits won't affect carry propagation
511 */
512#ifdef BN_FAST_S_MP_MUL_DIGS_C
513 int digs = a->used + b->used + 1;
514
515 if ((digs < MP_WARRAY) &&
516 MIN(a->used, b->used) <=
517 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
518 res = fast_s_mp_mul_digs (a, b, c, digs);
519 } else
520#endif
521#ifdef BN_S_MP_MUL_DIGS_C
522 res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */
523#else
524#error mp_mul could fail
525 res = MP_VAL;
526#endif
527
528 }
529 c->sign = (c->used > 0) ? neg : MP_ZPOS;
530 return res;
531}
532
533
534/* d = a * b (mod c) */
535static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
536{
537 int res;
538 mp_int t;
539
540 if ((res = mp_init (&t)) != MP_OKAY) {
541 return res;
542 }
543
544 if ((res = mp_mul (a, b, &t)) != MP_OKAY) {
545 mp_clear (&t);
546 return res;
547 }
548 res = mp_mod (&t, c, d);
549 mp_clear (&t);
550 return res;
551}
552
553
554/* c = a mod b, 0 <= c < b */
555static int mp_mod (mp_int * a, mp_int * b, mp_int * c)
556{
557 mp_int t;
558 int res;
559
560 if ((res = mp_init (&t)) != MP_OKAY) {
561 return res;
562 }
563
564 if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) {
565 mp_clear (&t);
566 return res;
567 }
568
569 if (t.sign != b->sign) {
570 res = mp_add (b, &t, c);
571 } else {
572 res = MP_OKAY;
573 mp_exch (&t, c);
574 }
575
576 mp_clear (&t);
577 return res;
578}
579
580
581/* this is a shell function that calls either the normal or Montgomery
582 * exptmod functions. Originally the call to the montgomery code was
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -0800583 * embedded in the normal function but that wasted a lot of stack space
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -0700584 * for nothing (since 99% of the time the Montgomery code would be called)
585 */
586static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y)
587{
588 int dr;
589
590 /* modulus P must be positive */
591 if (P->sign == MP_NEG) {
592 return MP_VAL;
593 }
594
595 /* if exponent X is negative we have to recurse */
596 if (X->sign == MP_NEG) {
597#ifdef LTM_NO_NEG_EXP
598 return MP_VAL;
599#else /* LTM_NO_NEG_EXP */
600#ifdef BN_MP_INVMOD_C
601 mp_int tmpG, tmpX;
602 int err;
603
604 /* first compute 1/G mod P */
605 if ((err = mp_init(&tmpG)) != MP_OKAY) {
606 return err;
607 }
608 if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) {
609 mp_clear(&tmpG);
610 return err;
611 }
612
613 /* now get |X| */
614 if ((err = mp_init(&tmpX)) != MP_OKAY) {
615 mp_clear(&tmpG);
616 return err;
617 }
618 if ((err = mp_abs(X, &tmpX)) != MP_OKAY) {
619 mp_clear_multi(&tmpG, &tmpX, NULL);
620 return err;
621 }
622
623 /* and now compute (1/G)**|X| instead of G**X [X < 0] */
624 err = mp_exptmod(&tmpG, &tmpX, P, Y);
625 mp_clear_multi(&tmpG, &tmpX, NULL);
626 return err;
627#else
628#error mp_exptmod would always fail
629 /* no invmod */
630 return MP_VAL;
631#endif
632#endif /* LTM_NO_NEG_EXP */
633 }
634
635/* modified diminished radix reduction */
636#if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C)
637 if (mp_reduce_is_2k_l(P) == MP_YES) {
638 return s_mp_exptmod(G, X, P, Y, 1);
639 }
640#endif
641
642#ifdef BN_MP_DR_IS_MODULUS_C
643 /* is it a DR modulus? */
644 dr = mp_dr_is_modulus(P);
645#else
646 /* default to no */
647 dr = 0;
648#endif
649
650#ifdef BN_MP_REDUCE_IS_2K_C
651 /* if not, is it a unrestricted DR modulus? */
652 if (dr == 0) {
653 dr = mp_reduce_is_2k(P) << 1;
654 }
655#endif
656
657 /* if the modulus is odd or dr != 0 use the montgomery method */
658#ifdef BN_MP_EXPTMOD_FAST_C
659 if (mp_isodd (P) == 1 || dr != 0) {
660 return mp_exptmod_fast (G, X, P, Y, dr);
661 } else {
662#endif
663#ifdef BN_S_MP_EXPTMOD_C
664 /* otherwise use the generic Barrett reduction technique */
665 return s_mp_exptmod (G, X, P, Y, 0);
666#else
667#error mp_exptmod could fail
668 /* no exptmod for evens */
669 return MP_VAL;
670#endif
671#ifdef BN_MP_EXPTMOD_FAST_C
672 }
673#endif
674}
675
676
677/* compare two ints (signed)*/
678static int mp_cmp (mp_int * a, mp_int * b)
679{
680 /* compare based on sign */
681 if (a->sign != b->sign) {
682 if (a->sign == MP_NEG) {
683 return MP_LT;
684 } else {
685 return MP_GT;
686 }
687 }
688
689 /* compare digits */
690 if (a->sign == MP_NEG) {
691 /* if negative compare opposite direction */
692 return mp_cmp_mag(b, a);
693 } else {
694 return mp_cmp_mag(a, b);
695 }
696}
697
698
699/* compare a digit */
700static int mp_cmp_d(mp_int * a, mp_digit b)
701{
702 /* compare based on sign */
703 if (a->sign == MP_NEG) {
704 return MP_LT;
705 }
706
707 /* compare based on magnitude */
708 if (a->used > 1) {
709 return MP_GT;
710 }
711
712 /* compare the only digit of a to b */
713 if (a->dp[0] > b) {
714 return MP_GT;
715 } else if (a->dp[0] < b) {
716 return MP_LT;
717 } else {
718 return MP_EQ;
719 }
720}
721
722
723#ifndef LTM_NO_NEG_EXP
724/* hac 14.61, pp608 */
725static int mp_invmod (mp_int * a, mp_int * b, mp_int * c)
726{
727 /* b cannot be negative */
728 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
729 return MP_VAL;
730 }
731
732#ifdef BN_FAST_MP_INVMOD_C
733 /* if the modulus is odd we can use a faster routine instead */
734 if (mp_isodd (b) == 1) {
735 return fast_mp_invmod (a, b, c);
736 }
737#endif
738
739#ifdef BN_MP_INVMOD_SLOW_C
740 return mp_invmod_slow(a, b, c);
741#endif
742
743#ifndef BN_FAST_MP_INVMOD_C
744#ifndef BN_MP_INVMOD_SLOW_C
745#error mp_invmod would always fail
746#endif
747#endif
748 return MP_VAL;
749}
750#endif /* LTM_NO_NEG_EXP */
751
752
753/* get the size for an unsigned equivalent */
754static int mp_unsigned_bin_size (mp_int * a)
755{
756 int size = mp_count_bits (a);
757 return (size / 8 + ((size & 7) != 0 ? 1 : 0));
758}
759
760
761#ifndef LTM_NO_NEG_EXP
762/* hac 14.61, pp608 */
763static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c)
764{
765 mp_int x, y, u, v, A, B, C, D;
766 int res;
767
768 /* b cannot be negative */
769 if (b->sign == MP_NEG || mp_iszero(b) == 1) {
770 return MP_VAL;
771 }
772
773 /* init temps */
774 if ((res = mp_init_multi(&x, &y, &u, &v,
775 &A, &B, &C, &D, NULL)) != MP_OKAY) {
776 return res;
777 }
778
779 /* x = a, y = b */
780 if ((res = mp_mod(a, b, &x)) != MP_OKAY) {
781 goto LBL_ERR;
782 }
783 if ((res = mp_copy (b, &y)) != MP_OKAY) {
784 goto LBL_ERR;
785 }
786
787 /* 2. [modified] if x,y are both even then return an error! */
788 if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) {
789 res = MP_VAL;
790 goto LBL_ERR;
791 }
792
793 /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */
794 if ((res = mp_copy (&x, &u)) != MP_OKAY) {
795 goto LBL_ERR;
796 }
797 if ((res = mp_copy (&y, &v)) != MP_OKAY) {
798 goto LBL_ERR;
799 }
800 mp_set (&A, 1);
801 mp_set (&D, 1);
802
803top:
804 /* 4. while u is even do */
805 while (mp_iseven (&u) == 1) {
806 /* 4.1 u = u/2 */
807 if ((res = mp_div_2 (&u, &u)) != MP_OKAY) {
808 goto LBL_ERR;
809 }
810 /* 4.2 if A or B is odd then */
811 if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) {
812 /* A = (A+y)/2, B = (B-x)/2 */
813 if ((res = mp_add (&A, &y, &A)) != MP_OKAY) {
814 goto LBL_ERR;
815 }
816 if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) {
817 goto LBL_ERR;
818 }
819 }
820 /* A = A/2, B = B/2 */
821 if ((res = mp_div_2 (&A, &A)) != MP_OKAY) {
822 goto LBL_ERR;
823 }
824 if ((res = mp_div_2 (&B, &B)) != MP_OKAY) {
825 goto LBL_ERR;
826 }
827 }
828
829 /* 5. while v is even do */
830 while (mp_iseven (&v) == 1) {
831 /* 5.1 v = v/2 */
832 if ((res = mp_div_2 (&v, &v)) != MP_OKAY) {
833 goto LBL_ERR;
834 }
835 /* 5.2 if C or D is odd then */
836 if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) {
837 /* C = (C+y)/2, D = (D-x)/2 */
838 if ((res = mp_add (&C, &y, &C)) != MP_OKAY) {
839 goto LBL_ERR;
840 }
841 if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) {
842 goto LBL_ERR;
843 }
844 }
845 /* C = C/2, D = D/2 */
846 if ((res = mp_div_2 (&C, &C)) != MP_OKAY) {
847 goto LBL_ERR;
848 }
849 if ((res = mp_div_2 (&D, &D)) != MP_OKAY) {
850 goto LBL_ERR;
851 }
852 }
853
854 /* 6. if u >= v then */
855 if (mp_cmp (&u, &v) != MP_LT) {
856 /* u = u - v, A = A - C, B = B - D */
857 if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) {
858 goto LBL_ERR;
859 }
860
861 if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) {
862 goto LBL_ERR;
863 }
864
865 if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) {
866 goto LBL_ERR;
867 }
868 } else {
869 /* v - v - u, C = C - A, D = D - B */
870 if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) {
871 goto LBL_ERR;
872 }
873
874 if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) {
875 goto LBL_ERR;
876 }
877
878 if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) {
879 goto LBL_ERR;
880 }
881 }
882
883 /* if not zero goto step 4 */
884 if (mp_iszero (&u) == 0)
885 goto top;
886
887 /* now a = C, b = D, gcd == g*v */
888
889 /* if v != 1 then there is no inverse */
890 if (mp_cmp_d (&v, 1) != MP_EQ) {
891 res = MP_VAL;
892 goto LBL_ERR;
893 }
894
895 /* if its too low */
896 while (mp_cmp_d(&C, 0) == MP_LT) {
897 if ((res = mp_add(&C, b, &C)) != MP_OKAY) {
898 goto LBL_ERR;
899 }
900 }
901
902 /* too big */
903 while (mp_cmp_mag(&C, b) != MP_LT) {
904 if ((res = mp_sub(&C, b, &C)) != MP_OKAY) {
905 goto LBL_ERR;
906 }
907 }
908
909 /* C is now the inverse */
910 mp_exch (&C, c);
911 res = MP_OKAY;
912LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL);
913 return res;
914}
915#endif /* LTM_NO_NEG_EXP */
916
917
918/* compare maginitude of two ints (unsigned) */
919static int mp_cmp_mag (mp_int * a, mp_int * b)
920{
921 int n;
922 mp_digit *tmpa, *tmpb;
923
924 /* compare based on # of non-zero digits */
925 if (a->used > b->used) {
926 return MP_GT;
927 }
928
929 if (a->used < b->used) {
930 return MP_LT;
931 }
932
933 /* alias for a */
934 tmpa = a->dp + (a->used - 1);
935
936 /* alias for b */
937 tmpb = b->dp + (a->used - 1);
938
939 /* compare based on digits */
940 for (n = 0; n < a->used; ++n, --tmpa, --tmpb) {
941 if (*tmpa > *tmpb) {
942 return MP_GT;
943 }
944
945 if (*tmpa < *tmpb) {
946 return MP_LT;
947 }
948 }
949 return MP_EQ;
950}
951
952
953/* reads a unsigned char array, assumes the msb is stored first [big endian] */
954static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c)
955{
956 int res;
957
958 /* make sure there are at least two digits */
959 if (a->alloc < 2) {
960 if ((res = mp_grow(a, 2)) != MP_OKAY) {
961 return res;
962 }
963 }
964
965 /* zero the int */
966 mp_zero (a);
967
968 /* read the bytes in */
969 while (c-- > 0) {
970 if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) {
971 return res;
972 }
973
974#ifndef MP_8BIT
975 a->dp[0] |= *b++;
976 a->used += 1;
977#else
978 a->dp[0] = (*b & MP_MASK);
979 a->dp[1] |= ((*b++ >> 7U) & 1);
980 a->used += 2;
981#endif
982 }
983 mp_clamp (a);
984 return MP_OKAY;
985}
986
987
988/* store in unsigned [big endian] format */
989static int mp_to_unsigned_bin (mp_int * a, unsigned char *b)
990{
991 int x, res;
992 mp_int t;
993
994 if ((res = mp_init_copy (&t, a)) != MP_OKAY) {
995 return res;
996 }
997
998 x = 0;
999 while (mp_iszero (&t) == 0) {
1000#ifndef MP_8BIT
1001 b[x++] = (unsigned char) (t.dp[0] & 255);
1002#else
1003 b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7));
1004#endif
1005 if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) {
1006 mp_clear (&t);
1007 return res;
1008 }
1009 }
1010 bn_reverse (b, x);
1011 mp_clear (&t);
1012 return MP_OKAY;
1013}
1014
1015
1016/* shift right by a certain bit count (store quotient in c, optional remainder in d) */
1017static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d)
1018{
1019 mp_digit D, r, rr;
1020 int x, res;
1021 mp_int t;
1022
1023
1024 /* if the shift count is <= 0 then we do no work */
1025 if (b <= 0) {
1026 res = mp_copy (a, c);
1027 if (d != NULL) {
1028 mp_zero (d);
1029 }
1030 return res;
1031 }
1032
1033 if ((res = mp_init (&t)) != MP_OKAY) {
1034 return res;
1035 }
1036
1037 /* get the remainder */
1038 if (d != NULL) {
1039 if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) {
1040 mp_clear (&t);
1041 return res;
1042 }
1043 }
1044
1045 /* copy */
1046 if ((res = mp_copy (a, c)) != MP_OKAY) {
1047 mp_clear (&t);
1048 return res;
1049 }
1050
1051 /* shift by as many digits in the bit count */
1052 if (b >= (int)DIGIT_BIT) {
1053 mp_rshd (c, b / DIGIT_BIT);
1054 }
1055
1056 /* shift any bit count < DIGIT_BIT */
1057 D = (mp_digit) (b % DIGIT_BIT);
1058 if (D != 0) {
1059 register mp_digit *tmpc, mask, shift;
1060
1061 /* mask */
1062 mask = (((mp_digit)1) << D) - 1;
1063
1064 /* shift for lsb */
1065 shift = DIGIT_BIT - D;
1066
1067 /* alias */
1068 tmpc = c->dp + (c->used - 1);
1069
1070 /* carry */
1071 r = 0;
1072 for (x = c->used - 1; x >= 0; x--) {
1073 /* get the lower bits of this word in a temp */
1074 rr = *tmpc & mask;
1075
1076 /* shift the current word and mix in the carry bits from the previous word */
1077 *tmpc = (*tmpc >> D) | (r << shift);
1078 --tmpc;
1079
1080 /* set the carry to the carry bits of the current word found above */
1081 r = rr;
1082 }
1083 }
1084 mp_clamp (c);
1085 if (d != NULL) {
1086 mp_exch (&t, d);
1087 }
1088 mp_clear (&t);
1089 return MP_OKAY;
1090}
1091
1092
1093static int mp_init_copy (mp_int * a, mp_int * b)
1094{
1095 int res;
1096
1097 if ((res = mp_init (a)) != MP_OKAY) {
1098 return res;
1099 }
1100 return mp_copy (b, a);
1101}
1102
1103
1104/* set to zero */
1105static void mp_zero (mp_int * a)
1106{
1107 int n;
1108 mp_digit *tmp;
1109
1110 a->sign = MP_ZPOS;
1111 a->used = 0;
1112
1113 tmp = a->dp;
1114 for (n = 0; n < a->alloc; n++) {
1115 *tmp++ = 0;
1116 }
1117}
1118
1119
1120/* copy, b = a */
1121static int mp_copy (mp_int * a, mp_int * b)
1122{
1123 int res, n;
1124
1125 /* if dst == src do nothing */
1126 if (a == b) {
1127 return MP_OKAY;
1128 }
1129
1130 /* grow dest */
1131 if (b->alloc < a->used) {
1132 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1133 return res;
1134 }
1135 }
1136
1137 /* zero b and copy the parameters over */
1138 {
1139 register mp_digit *tmpa, *tmpb;
1140
1141 /* pointer aliases */
1142
1143 /* source */
1144 tmpa = a->dp;
1145
1146 /* destination */
1147 tmpb = b->dp;
1148
1149 /* copy all the digits */
1150 for (n = 0; n < a->used; n++) {
1151 *tmpb++ = *tmpa++;
1152 }
1153
1154 /* clear high digits */
1155 for (; n < b->used; n++) {
1156 *tmpb++ = 0;
1157 }
1158 }
1159
1160 /* copy used count and sign */
1161 b->used = a->used;
1162 b->sign = a->sign;
1163 return MP_OKAY;
1164}
1165
1166
1167/* shift right a certain amount of digits */
1168static void mp_rshd (mp_int * a, int b)
1169{
1170 int x;
1171
1172 /* if b <= 0 then ignore it */
1173 if (b <= 0) {
1174 return;
1175 }
1176
1177 /* if b > used then simply zero it and return */
1178 if (a->used <= b) {
1179 mp_zero (a);
1180 return;
1181 }
1182
1183 {
1184 register mp_digit *bottom, *top;
1185
1186 /* shift the digits down */
1187
1188 /* bottom */
1189 bottom = a->dp;
1190
1191 /* top [offset into digits] */
1192 top = a->dp + b;
1193
1194 /* this is implemented as a sliding window where
1195 * the window is b-digits long and digits from
1196 * the top of the window are copied to the bottom
1197 *
1198 * e.g.
1199
1200 b-2 | b-1 | b0 | b1 | b2 | ... | bb | ---->
1201 /\ | ---->
1202 \-------------------/ ---->
1203 */
1204 for (x = 0; x < (a->used - b); x++) {
1205 *bottom++ = *top++;
1206 }
1207
1208 /* zero the top digits */
1209 for (; x < a->used; x++) {
1210 *bottom++ = 0;
1211 }
1212 }
1213
1214 /* remove excess digits */
1215 a->used -= b;
1216}
1217
1218
1219/* swap the elements of two integers, for cases where you can't simply swap the
1220 * mp_int pointers around
1221 */
1222static void mp_exch (mp_int * a, mp_int * b)
1223{
1224 mp_int t;
1225
1226 t = *a;
1227 *a = *b;
1228 *b = t;
1229}
1230
1231
1232/* trim unused digits
1233 *
1234 * This is used to ensure that leading zero digits are
1235 * trimed and the leading "used" digit will be non-zero
1236 * Typically very fast. Also fixes the sign if there
1237 * are no more leading digits
1238 */
1239static void mp_clamp (mp_int * a)
1240{
1241 /* decrease used while the most significant digit is
1242 * zero.
1243 */
1244 while (a->used > 0 && a->dp[a->used - 1] == 0) {
1245 --(a->used);
1246 }
1247
1248 /* reset the sign flag if used == 0 */
1249 if (a->used == 0) {
1250 a->sign = MP_ZPOS;
1251 }
1252}
1253
1254
1255/* grow as required */
1256static int mp_grow (mp_int * a, int size)
1257{
1258 int i;
1259 mp_digit *tmp;
1260
1261 /* if the alloc size is smaller alloc more ram */
1262 if (a->alloc < size) {
1263 /* ensure there are always at least MP_PREC digits extra on top */
1264 size += (MP_PREC * 2) - (size % MP_PREC);
1265
1266 /* reallocate the array a->dp
1267 *
1268 * We store the return in a temporary variable
1269 * in case the operation failed we don't want
1270 * to overwrite the dp member of a.
1271 */
1272 tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size);
1273 if (tmp == NULL) {
1274 /* reallocation failed but "a" is still valid [can be freed] */
1275 return MP_MEM;
1276 }
1277
1278 /* reallocation succeeded so set a->dp */
1279 a->dp = tmp;
1280
1281 /* zero excess digits */
1282 i = a->alloc;
1283 a->alloc = size;
1284 for (; i < a->alloc; i++) {
1285 a->dp[i] = 0;
1286 }
1287 }
1288 return MP_OKAY;
1289}
1290
1291
1292#ifdef BN_MP_ABS_C
1293/* b = |a|
1294 *
1295 * Simple function copies the input and fixes the sign to positive
1296 */
1297static int mp_abs (mp_int * a, mp_int * b)
1298{
1299 int res;
1300
1301 /* copy a to b */
1302 if (a != b) {
1303 if ((res = mp_copy (a, b)) != MP_OKAY) {
1304 return res;
1305 }
1306 }
1307
1308 /* force the sign of b to positive */
1309 b->sign = MP_ZPOS;
1310
1311 return MP_OKAY;
1312}
1313#endif
1314
1315
1316/* set to a digit */
1317static void mp_set (mp_int * a, mp_digit b)
1318{
1319 mp_zero (a);
1320 a->dp[0] = b & MP_MASK;
1321 a->used = (a->dp[0] != 0) ? 1 : 0;
1322}
1323
1324
1325#ifndef LTM_NO_NEG_EXP
1326/* b = a/2 */
1327static int mp_div_2(mp_int * a, mp_int * b)
1328{
1329 int x, res, oldused;
1330
1331 /* copy */
1332 if (b->alloc < a->used) {
1333 if ((res = mp_grow (b, a->used)) != MP_OKAY) {
1334 return res;
1335 }
1336 }
1337
1338 oldused = b->used;
1339 b->used = a->used;
1340 {
1341 register mp_digit r, rr, *tmpa, *tmpb;
1342
1343 /* source alias */
1344 tmpa = a->dp + b->used - 1;
1345
1346 /* dest alias */
1347 tmpb = b->dp + b->used - 1;
1348
1349 /* carry */
1350 r = 0;
1351 for (x = b->used - 1; x >= 0; x--) {
1352 /* get the carry for the next iteration */
1353 rr = *tmpa & 1;
1354
1355 /* shift the current digit, add in carry and store */
1356 *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1));
1357
1358 /* forward carry to next iteration */
1359 r = rr;
1360 }
1361
1362 /* zero excess digits */
1363 tmpb = b->dp + b->used;
1364 for (x = b->used; x < oldused; x++) {
1365 *tmpb++ = 0;
1366 }
1367 }
1368 b->sign = a->sign;
1369 mp_clamp (b);
1370 return MP_OKAY;
1371}
1372#endif /* LTM_NO_NEG_EXP */
1373
1374
1375/* shift left by a certain bit count */
1376static int mp_mul_2d (mp_int * a, int b, mp_int * c)
1377{
1378 mp_digit d;
1379 int res;
1380
1381 /* copy */
1382 if (a != c) {
1383 if ((res = mp_copy (a, c)) != MP_OKAY) {
1384 return res;
1385 }
1386 }
1387
1388 if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) {
1389 if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) {
1390 return res;
1391 }
1392 }
1393
1394 /* shift by as many digits in the bit count */
1395 if (b >= (int)DIGIT_BIT) {
1396 if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) {
1397 return res;
1398 }
1399 }
1400
1401 /* shift any bit count < DIGIT_BIT */
1402 d = (mp_digit) (b % DIGIT_BIT);
1403 if (d != 0) {
1404 register mp_digit *tmpc, shift, mask, r, rr;
1405 register int x;
1406
1407 /* bitmask for carries */
1408 mask = (((mp_digit)1) << d) - 1;
1409
1410 /* shift for msbs */
1411 shift = DIGIT_BIT - d;
1412
1413 /* alias */
1414 tmpc = c->dp;
1415
1416 /* carry */
1417 r = 0;
1418 for (x = 0; x < c->used; x++) {
1419 /* get the higher bits of the current word */
1420 rr = (*tmpc >> shift) & mask;
1421
1422 /* shift the current word and OR in the carry */
1423 *tmpc = ((*tmpc << d) | r) & MP_MASK;
1424 ++tmpc;
1425
1426 /* set the carry to the carry bits of the current word */
1427 r = rr;
1428 }
1429
1430 /* set final carry */
1431 if (r != 0) {
1432 c->dp[(c->used)++] = r;
1433 }
1434 }
1435 mp_clamp (c);
1436 return MP_OKAY;
1437}
1438
1439
1440#ifdef BN_MP_INIT_MULTI_C
1441static int mp_init_multi(mp_int *mp, ...)
1442{
1443 mp_err res = MP_OKAY; /* Assume ok until proven otherwise */
1444 int n = 0; /* Number of ok inits */
1445 mp_int* cur_arg = mp;
1446 va_list args;
1447
1448 va_start(args, mp); /* init args to next argument from caller */
1449 while (cur_arg != NULL) {
1450 if (mp_init(cur_arg) != MP_OKAY) {
1451 /* Oops - error! Back-track and mp_clear what we already
1452 succeeded in init-ing, then return error.
1453 */
1454 va_list clean_args;
1455
1456 /* end the current list */
1457 va_end(args);
1458
1459 /* now start cleaning up */
1460 cur_arg = mp;
1461 va_start(clean_args, mp);
1462 while (n--) {
1463 mp_clear(cur_arg);
1464 cur_arg = va_arg(clean_args, mp_int*);
1465 }
1466 va_end(clean_args);
1467 res = MP_MEM;
1468 break;
1469 }
1470 n++;
1471 cur_arg = va_arg(args, mp_int*);
1472 }
1473 va_end(args);
1474 return res; /* Assumed ok, if error flagged above. */
1475}
1476#endif
1477
1478
1479#ifdef BN_MP_CLEAR_MULTI_C
1480static void mp_clear_multi(mp_int *mp, ...)
1481{
1482 mp_int* next_mp = mp;
1483 va_list args;
1484 va_start(args, mp);
1485 while (next_mp != NULL) {
1486 mp_clear(next_mp);
1487 next_mp = va_arg(args, mp_int*);
1488 }
1489 va_end(args);
1490}
1491#endif
1492
1493
1494/* shift left a certain amount of digits */
1495static int mp_lshd (mp_int * a, int b)
1496{
1497 int x, res;
1498
1499 /* if its less than zero return */
1500 if (b <= 0) {
1501 return MP_OKAY;
1502 }
1503
1504 /* grow to fit the new digits */
1505 if (a->alloc < a->used + b) {
1506 if ((res = mp_grow (a, a->used + b)) != MP_OKAY) {
1507 return res;
1508 }
1509 }
1510
1511 {
1512 register mp_digit *top, *bottom;
1513
1514 /* increment the used by the shift amount then copy upwards */
1515 a->used += b;
1516
1517 /* top */
1518 top = a->dp + a->used - 1;
1519
1520 /* base */
1521 bottom = a->dp + a->used - 1 - b;
1522
1523 /* much like mp_rshd this is implemented using a sliding window
1524 * except the window goes the otherway around. Copying from
1525 * the bottom to the top. see bn_mp_rshd.c for more info.
1526 */
1527 for (x = a->used - 1; x >= b; x--) {
1528 *top-- = *bottom--;
1529 }
1530
1531 /* zero the lower digits */
1532 top = a->dp;
1533 for (x = 0; x < b; x++) {
1534 *top++ = 0;
1535 }
1536 }
1537 return MP_OKAY;
1538}
1539
1540
1541/* returns the number of bits in an int */
1542static int mp_count_bits (mp_int * a)
1543{
1544 int r;
1545 mp_digit q;
1546
1547 /* shortcut */
1548 if (a->used == 0) {
1549 return 0;
1550 }
1551
1552 /* get number of digits and add that */
1553 r = (a->used - 1) * DIGIT_BIT;
1554
1555 /* take the last digit and count the bits in it */
1556 q = a->dp[a->used - 1];
1557 while (q > ((mp_digit) 0)) {
1558 ++r;
1559 q >>= ((mp_digit) 1);
1560 }
1561 return r;
1562}
1563
1564
1565/* calc a value mod 2**b */
1566static int mp_mod_2d (mp_int * a, int b, mp_int * c)
1567{
1568 int x, res;
1569
1570 /* if b is <= 0 then zero the int */
1571 if (b <= 0) {
1572 mp_zero (c);
1573 return MP_OKAY;
1574 }
1575
1576 /* if the modulus is larger than the value than return */
1577 if (b >= (int) (a->used * DIGIT_BIT)) {
1578 res = mp_copy (a, c);
1579 return res;
1580 }
1581
1582 /* copy */
1583 if ((res = mp_copy (a, c)) != MP_OKAY) {
1584 return res;
1585 }
1586
1587 /* zero digits above the last digit of the modulus */
1588 for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) {
1589 c->dp[x] = 0;
1590 }
1591 /* clear the digit that is not completely outside/inside the modulus */
1592 c->dp[b / DIGIT_BIT] &=
1593 (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1));
1594 mp_clamp (c);
1595 return MP_OKAY;
1596}
1597
1598
1599#ifdef BN_MP_DIV_SMALL
1600
1601/* slower bit-bang division... also smaller */
1602static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1603{
1604 mp_int ta, tb, tq, q;
1605 int res, n, n2;
1606
1607 /* is divisor zero ? */
1608 if (mp_iszero (b) == 1) {
1609 return MP_VAL;
1610 }
1611
1612 /* if a < b then q=0, r = a */
1613 if (mp_cmp_mag (a, b) == MP_LT) {
1614 if (d != NULL) {
1615 res = mp_copy (a, d);
1616 } else {
1617 res = MP_OKAY;
1618 }
1619 if (c != NULL) {
1620 mp_zero (c);
1621 }
1622 return res;
1623 }
1624
1625 /* init our temps */
1626 if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) {
1627 return res;
1628 }
1629
1630
1631 mp_set(&tq, 1);
1632 n = mp_count_bits(a) - mp_count_bits(b);
1633 if (((res = mp_abs(a, &ta)) != MP_OKAY) ||
1634 ((res = mp_abs(b, &tb)) != MP_OKAY) ||
1635 ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) ||
1636 ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) {
1637 goto LBL_ERR;
1638 }
1639
1640 while (n-- >= 0) {
1641 if (mp_cmp(&tb, &ta) != MP_GT) {
1642 if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) ||
1643 ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) {
1644 goto LBL_ERR;
1645 }
1646 }
1647 if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) ||
1648 ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) {
1649 goto LBL_ERR;
1650 }
1651 }
1652
1653 /* now q == quotient and ta == remainder */
1654 n = a->sign;
1655 n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG);
1656 if (c != NULL) {
1657 mp_exch(c, &q);
1658 c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2;
1659 }
1660 if (d != NULL) {
1661 mp_exch(d, &ta);
1662 d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n;
1663 }
1664LBL_ERR:
1665 mp_clear_multi(&ta, &tb, &tq, &q, NULL);
1666 return res;
1667}
1668
1669#else
1670
1671/* integer signed division.
1672 * c*b + d == a [e.g. a/b, c=quotient, d=remainder]
1673 * HAC pp.598 Algorithm 14.20
1674 *
1675 * Note that the description in HAC is horribly
1676 * incomplete. For example, it doesn't consider
1677 * the case where digits are removed from 'x' in
1678 * the inner loop. It also doesn't consider the
1679 * case that y has fewer than three digits, etc..
1680 *
1681 * The overall algorithm is as described as
1682 * 14.20 from HAC but fixed to treat these cases.
1683*/
1684static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d)
1685{
1686 mp_int q, x, y, t1, t2;
1687 int res, n, t, i, norm, neg;
1688
1689 /* is divisor zero ? */
1690 if (mp_iszero (b) == 1) {
1691 return MP_VAL;
1692 }
1693
1694 /* if a < b then q=0, r = a */
1695 if (mp_cmp_mag (a, b) == MP_LT) {
1696 if (d != NULL) {
1697 res = mp_copy (a, d);
1698 } else {
1699 res = MP_OKAY;
1700 }
1701 if (c != NULL) {
1702 mp_zero (c);
1703 }
1704 return res;
1705 }
1706
1707 if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) {
1708 return res;
1709 }
1710 q.used = a->used + 2;
1711
1712 if ((res = mp_init (&t1)) != MP_OKAY) {
1713 goto LBL_Q;
1714 }
1715
1716 if ((res = mp_init (&t2)) != MP_OKAY) {
1717 goto LBL_T1;
1718 }
1719
1720 if ((res = mp_init_copy (&x, a)) != MP_OKAY) {
1721 goto LBL_T2;
1722 }
1723
1724 if ((res = mp_init_copy (&y, b)) != MP_OKAY) {
1725 goto LBL_X;
1726 }
1727
1728 /* fix the sign */
1729 neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG;
1730 x.sign = y.sign = MP_ZPOS;
1731
1732 /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */
1733 norm = mp_count_bits(&y) % DIGIT_BIT;
1734 if (norm < (int)(DIGIT_BIT-1)) {
1735 norm = (DIGIT_BIT-1) - norm;
1736 if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) {
1737 goto LBL_Y;
1738 }
1739 if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) {
1740 goto LBL_Y;
1741 }
1742 } else {
1743 norm = 0;
1744 }
1745
1746 /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */
1747 n = x.used - 1;
1748 t = y.used - 1;
1749
1750 /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */
1751 if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */
1752 goto LBL_Y;
1753 }
1754
1755 while (mp_cmp (&x, &y) != MP_LT) {
1756 ++(q.dp[n - t]);
1757 if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) {
1758 goto LBL_Y;
1759 }
1760 }
1761
1762 /* reset y by shifting it back down */
1763 mp_rshd (&y, n - t);
1764
1765 /* step 3. for i from n down to (t + 1) */
1766 for (i = n; i >= (t + 1); i--) {
1767 if (i > x.used) {
1768 continue;
1769 }
1770
1771 /* step 3.1 if xi == yt then set q{i-t-1} to b-1,
1772 * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */
1773 if (x.dp[i] == y.dp[t]) {
1774 q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1);
1775 } else {
1776 mp_word tmp;
1777 tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT);
1778 tmp |= ((mp_word) x.dp[i - 1]);
1779 tmp /= ((mp_word) y.dp[t]);
1780 if (tmp > (mp_word) MP_MASK)
1781 tmp = MP_MASK;
1782 q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK));
1783 }
1784
1785 /* while (q{i-t-1} * (yt * b + y{t-1})) >
1786 xi * b**2 + xi-1 * b + xi-2
1787
1788 do q{i-t-1} -= 1;
1789 */
1790 q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK;
1791 do {
1792 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK;
1793
1794 /* find left hand */
1795 mp_zero (&t1);
1796 t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1];
1797 t1.dp[1] = y.dp[t];
1798 t1.used = 2;
1799 if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1800 goto LBL_Y;
1801 }
1802
1803 /* find right hand */
1804 t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2];
1805 t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1];
1806 t2.dp[2] = x.dp[i];
1807 t2.used = 3;
1808 } while (mp_cmp_mag(&t1, &t2) == MP_GT);
1809
1810 /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */
1811 if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) {
1812 goto LBL_Y;
1813 }
1814
1815 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1816 goto LBL_Y;
1817 }
1818
1819 if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) {
1820 goto LBL_Y;
1821 }
1822
1823 /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */
1824 if (x.sign == MP_NEG) {
1825 if ((res = mp_copy (&y, &t1)) != MP_OKAY) {
1826 goto LBL_Y;
1827 }
1828 if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) {
1829 goto LBL_Y;
1830 }
1831 if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) {
1832 goto LBL_Y;
1833 }
1834
1835 q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK;
1836 }
1837 }
1838
1839 /* now q is the quotient and x is the remainder
1840 * [which we have to normalize]
1841 */
1842
1843 /* get sign before writing to c */
1844 x.sign = x.used == 0 ? MP_ZPOS : a->sign;
1845
1846 if (c != NULL) {
1847 mp_clamp (&q);
1848 mp_exch (&q, c);
1849 c->sign = neg;
1850 }
1851
1852 if (d != NULL) {
1853 mp_div_2d (&x, norm, &x, NULL);
1854 mp_exch (&x, d);
1855 }
1856
1857 res = MP_OKAY;
1858
1859LBL_Y:mp_clear (&y);
1860LBL_X:mp_clear (&x);
1861LBL_T2:mp_clear (&t2);
1862LBL_T1:mp_clear (&t1);
1863LBL_Q:mp_clear (&q);
1864 return res;
1865}
1866
1867#endif
1868
1869
1870#ifdef MP_LOW_MEM
1871 #define TAB_SIZE 32
1872#else
1873 #define TAB_SIZE 256
1874#endif
1875
1876static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
1877{
1878 mp_int M[TAB_SIZE], res, mu;
1879 mp_digit buf;
1880 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
1881 int (*redux)(mp_int*,mp_int*,mp_int*);
1882
1883 /* find window size */
1884 x = mp_count_bits (X);
1885 if (x <= 7) {
1886 winsize = 2;
1887 } else if (x <= 36) {
1888 winsize = 3;
1889 } else if (x <= 140) {
1890 winsize = 4;
1891 } else if (x <= 450) {
1892 winsize = 5;
1893 } else if (x <= 1303) {
1894 winsize = 6;
1895 } else if (x <= 3529) {
1896 winsize = 7;
1897 } else {
1898 winsize = 8;
1899 }
1900
1901#ifdef MP_LOW_MEM
1902 if (winsize > 5) {
1903 winsize = 5;
1904 }
1905#endif
1906
1907 /* init M array */
1908 /* init first cell */
1909 if ((err = mp_init(&M[1])) != MP_OKAY) {
1910 return err;
1911 }
1912
1913 /* now init the second half of the array */
1914 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
1915 if ((err = mp_init(&M[x])) != MP_OKAY) {
1916 for (y = 1<<(winsize-1); y < x; y++) {
1917 mp_clear (&M[y]);
1918 }
1919 mp_clear(&M[1]);
1920 return err;
1921 }
1922 }
1923
1924 /* create mu, used for Barrett reduction */
1925 if ((err = mp_init (&mu)) != MP_OKAY) {
1926 goto LBL_M;
1927 }
1928
1929 if (redmode == 0) {
1930 if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) {
1931 goto LBL_MU;
1932 }
1933 redux = mp_reduce;
1934 } else {
1935 if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) {
1936 goto LBL_MU;
1937 }
1938 redux = mp_reduce_2k_l;
1939 }
1940
1941 /* create M table
1942 *
1943 * The M table contains powers of the base,
1944 * e.g. M[x] = G**x mod P
1945 *
1946 * The first half of the table is not
1947 * computed though accept for M[0] and M[1]
1948 */
1949 if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) {
1950 goto LBL_MU;
1951 }
1952
1953 /* compute the value at M[1<<(winsize-1)] by squaring
1954 * M[1] (winsize-1) times
1955 */
1956 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
1957 goto LBL_MU;
1958 }
1959
1960 for (x = 0; x < (winsize - 1); x++) {
1961 /* square it */
1962 if ((err = mp_sqr (&M[1 << (winsize - 1)],
1963 &M[1 << (winsize - 1)])) != MP_OKAY) {
1964 goto LBL_MU;
1965 }
1966
1967 /* reduce modulo P */
1968 if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) {
1969 goto LBL_MU;
1970 }
1971 }
1972
1973 /* create upper table, that is M[x] = M[x-1] * M[1] (mod P)
1974 * for x = (2**(winsize - 1) + 1) to (2**winsize - 1)
1975 */
1976 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
1977 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
1978 goto LBL_MU;
1979 }
1980 if ((err = redux (&M[x], P, &mu)) != MP_OKAY) {
1981 goto LBL_MU;
1982 }
1983 }
1984
1985 /* setup result */
1986 if ((err = mp_init (&res)) != MP_OKAY) {
1987 goto LBL_MU;
1988 }
1989 mp_set (&res, 1);
1990
1991 /* set initial mode and bit cnt */
1992 mode = 0;
1993 bitcnt = 1;
1994 buf = 0;
1995 digidx = X->used - 1;
1996 bitcpy = 0;
1997 bitbuf = 0;
1998
1999 for (;;) {
2000 /* grab next digit as required */
2001 if (--bitcnt == 0) {
2002 /* if digidx == -1 we are out of digits */
2003 if (digidx == -1) {
2004 break;
2005 }
2006 /* read next digit and reset the bitcnt */
2007 buf = X->dp[digidx--];
2008 bitcnt = (int) DIGIT_BIT;
2009 }
2010
2011 /* grab the next msb from the exponent */
2012 y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1;
2013 buf <<= (mp_digit)1;
2014
2015 /* if the bit is zero and mode == 0 then we ignore it
2016 * These represent the leading zero bits before the first 1 bit
2017 * in the exponent. Technically this opt is not required but it
2018 * does lower the # of trivial squaring/reductions used
2019 */
2020 if (mode == 0 && y == 0) {
2021 continue;
2022 }
2023
2024 /* if the bit is zero and mode == 1 then we square */
2025 if (mode == 1 && y == 0) {
2026 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2027 goto LBL_RES;
2028 }
2029 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2030 goto LBL_RES;
2031 }
2032 continue;
2033 }
2034
2035 /* else we add it to the window */
2036 bitbuf |= (y << (winsize - ++bitcpy));
2037 mode = 2;
2038
2039 if (bitcpy == winsize) {
2040 /* ok window is filled so square as required and multiply */
2041 /* square first */
2042 for (x = 0; x < winsize; x++) {
2043 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2044 goto LBL_RES;
2045 }
2046 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2047 goto LBL_RES;
2048 }
2049 }
2050
2051 /* then multiply */
2052 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
2053 goto LBL_RES;
2054 }
2055 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2056 goto LBL_RES;
2057 }
2058
2059 /* empty window and reset */
2060 bitcpy = 0;
2061 bitbuf = 0;
2062 mode = 1;
2063 }
2064 }
2065
2066 /* if bits remain then square/multiply */
2067 if (mode == 2 && bitcpy > 0) {
2068 /* square then multiply if the bit is set */
2069 for (x = 0; x < bitcpy; x++) {
2070 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
2071 goto LBL_RES;
2072 }
2073 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2074 goto LBL_RES;
2075 }
2076
2077 bitbuf <<= 1;
2078 if ((bitbuf & (1 << winsize)) != 0) {
2079 /* then multiply */
2080 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
2081 goto LBL_RES;
2082 }
2083 if ((err = redux (&res, P, &mu)) != MP_OKAY) {
2084 goto LBL_RES;
2085 }
2086 }
2087 }
2088 }
2089
2090 mp_exch (&res, Y);
2091 err = MP_OKAY;
2092LBL_RES:mp_clear (&res);
2093LBL_MU:mp_clear (&mu);
2094LBL_M:
2095 mp_clear(&M[1]);
2096 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2097 mp_clear (&M[x]);
2098 }
2099 return err;
2100}
2101
2102
2103/* computes b = a*a */
2104static int mp_sqr (mp_int * a, mp_int * b)
2105{
2106 int res;
2107
2108#ifdef BN_MP_TOOM_SQR_C
2109 /* use Toom-Cook? */
2110 if (a->used >= TOOM_SQR_CUTOFF) {
2111 res = mp_toom_sqr(a, b);
2112 /* Karatsuba? */
2113 } else
2114#endif
2115#ifdef BN_MP_KARATSUBA_SQR_C
2116if (a->used >= KARATSUBA_SQR_CUTOFF) {
2117 res = mp_karatsuba_sqr (a, b);
2118 } else
2119#endif
2120 {
2121#ifdef BN_FAST_S_MP_SQR_C
2122 /* can we use the fast comba multiplier? */
2123 if ((a->used * 2 + 1) < MP_WARRAY &&
2124 a->used <
2125 (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) {
2126 res = fast_s_mp_sqr (a, b);
2127 } else
2128#endif
2129#ifdef BN_S_MP_SQR_C
2130 res = s_mp_sqr (a, b);
2131#else
2132#error mp_sqr could fail
2133 res = MP_VAL;
2134#endif
2135 }
2136 b->sign = MP_ZPOS;
2137 return res;
2138}
2139
2140
2141/* reduces a modulo n where n is of the form 2**p - d
2142 This differs from reduce_2k since "d" can be larger
2143 than a single digit.
2144*/
2145static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d)
2146{
2147 mp_int q;
2148 int p, res;
2149
2150 if ((res = mp_init(&q)) != MP_OKAY) {
2151 return res;
2152 }
2153
2154 p = mp_count_bits(n);
2155top:
2156 /* q = a/2**p, a = a mod 2**p */
2157 if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) {
2158 goto ERR;
2159 }
2160
2161 /* q = q * d */
2162 if ((res = mp_mul(&q, d, &q)) != MP_OKAY) {
2163 goto ERR;
2164 }
2165
2166 /* a = a + q */
2167 if ((res = s_mp_add(a, &q, a)) != MP_OKAY) {
2168 goto ERR;
2169 }
2170
2171 if (mp_cmp_mag(a, n) != MP_LT) {
2172 s_mp_sub(a, n, a);
2173 goto top;
2174 }
2175
2176ERR:
2177 mp_clear(&q);
2178 return res;
2179}
2180
2181
2182/* determines the setup value */
2183static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d)
2184{
2185 int res;
2186 mp_int tmp;
2187
2188 if ((res = mp_init(&tmp)) != MP_OKAY) {
2189 return res;
2190 }
2191
2192 if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) {
2193 goto ERR;
2194 }
2195
2196 if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) {
2197 goto ERR;
2198 }
2199
2200ERR:
2201 mp_clear(&tmp);
2202 return res;
2203}
2204
2205
2206/* computes a = 2**b
2207 *
2208 * Simple algorithm which zeroes the int, grows it then just sets one bit
2209 * as required.
2210 */
2211static int mp_2expt (mp_int * a, int b)
2212{
2213 int res;
2214
2215 /* zero a as per default */
2216 mp_zero (a);
2217
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -08002218 /* grow a to accommodate the single bit */
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07002219 if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) {
2220 return res;
2221 }
2222
2223 /* set the used count of where the bit will go */
2224 a->used = b / DIGIT_BIT + 1;
2225
2226 /* put the single bit in its place */
2227 a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT);
2228
2229 return MP_OKAY;
2230}
2231
2232
2233/* pre-calculate the value required for Barrett reduction
2234 * For a given modulus "b" it calulates the value required in "a"
2235 */
2236static int mp_reduce_setup (mp_int * a, mp_int * b)
2237{
2238 int res;
2239
2240 if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) {
2241 return res;
2242 }
2243 return mp_div (a, b, a, NULL);
2244}
2245
2246
2247/* reduces x mod m, assumes 0 < x < m**2, mu is
2248 * precomputed via mp_reduce_setup.
2249 * From HAC pp.604 Algorithm 14.42
2250 */
2251static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu)
2252{
2253 mp_int q;
2254 int res, um = m->used;
2255
2256 /* q = x */
2257 if ((res = mp_init_copy (&q, x)) != MP_OKAY) {
2258 return res;
2259 }
2260
2261 /* q1 = x / b**(k-1) */
2262 mp_rshd (&q, um - 1);
2263
2264 /* according to HAC this optimization is ok */
2265 if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) {
2266 if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) {
2267 goto CLEANUP;
2268 }
2269 } else {
2270#ifdef BN_S_MP_MUL_HIGH_DIGS_C
2271 if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2272 goto CLEANUP;
2273 }
2274#elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C)
2275 if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) {
2276 goto CLEANUP;
2277 }
2278#else
2279 {
2280#error mp_reduce would always fail
2281 res = MP_VAL;
2282 goto CLEANUP;
2283 }
2284#endif
2285 }
2286
2287 /* q3 = q2 / b**(k+1) */
2288 mp_rshd (&q, um + 1);
2289
2290 /* x = x mod b**(k+1), quick (no division) */
2291 if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) {
2292 goto CLEANUP;
2293 }
2294
2295 /* q = q * m mod b**(k+1), quick (no division) */
2296 if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) {
2297 goto CLEANUP;
2298 }
2299
2300 /* x = x - q */
2301 if ((res = mp_sub (x, &q, x)) != MP_OKAY) {
2302 goto CLEANUP;
2303 }
2304
2305 /* If x < 0, add b**(k+1) to it */
2306 if (mp_cmp_d (x, 0) == MP_LT) {
2307 mp_set (&q, 1);
2308 if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) {
2309 goto CLEANUP;
2310 }
2311 if ((res = mp_add (x, &q, x)) != MP_OKAY) {
2312 goto CLEANUP;
2313 }
2314 }
2315
2316 /* Back off if it's too big */
2317 while (mp_cmp (x, m) != MP_LT) {
2318 if ((res = s_mp_sub (x, m, x)) != MP_OKAY) {
2319 goto CLEANUP;
2320 }
2321 }
2322
2323CLEANUP:
2324 mp_clear (&q);
2325
2326 return res;
2327}
2328
2329
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -08002330/* multiplies |a| * |b| and only computes up to digs digits of result
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07002331 * HAC pp. 595, Algorithm 14.12 Modified so you can control how
2332 * many digits of output are created.
2333 */
2334static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2335{
2336 mp_int t;
2337 int res, pa, pb, ix, iy;
2338 mp_digit u;
2339 mp_word r;
2340 mp_digit tmpx, *tmpt, *tmpy;
2341
2342 /* can we use the fast multiplier? */
2343 if (((digs) < MP_WARRAY) &&
2344 MIN (a->used, b->used) <
2345 (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2346 return fast_s_mp_mul_digs (a, b, c, digs);
2347 }
2348
2349 if ((res = mp_init_size (&t, digs)) != MP_OKAY) {
2350 return res;
2351 }
2352 t.used = digs;
2353
2354 /* compute the digits of the product directly */
2355 pa = a->used;
2356 for (ix = 0; ix < pa; ix++) {
2357 /* set the carry to zero */
2358 u = 0;
2359
2360 /* limit ourselves to making digs digits of output */
2361 pb = MIN (b->used, digs - ix);
2362
2363 /* setup some aliases */
2364 /* copy of the digit from a used within the nested loop */
2365 tmpx = a->dp[ix];
2366
2367 /* an alias for the destination shifted ix places */
2368 tmpt = t.dp + ix;
2369
2370 /* an alias for the digits of b */
2371 tmpy = b->dp;
2372
2373 /* compute the columns of the output and propagate the carry */
2374 for (iy = 0; iy < pb; iy++) {
2375 /* compute the column as a mp_word */
2376 r = ((mp_word)*tmpt) +
2377 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2378 ((mp_word) u);
2379
2380 /* the new column is the lower part of the result */
2381 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2382
2383 /* get the carry word from the result */
2384 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2385 }
2386 /* set carry if it is placed below digs */
2387 if (ix + iy < digs) {
2388 *tmpt = u;
2389 }
2390 }
2391
2392 mp_clamp (&t);
2393 mp_exch (&t, c);
2394
2395 mp_clear (&t);
2396 return MP_OKAY;
2397}
2398
2399
2400/* Fast (comba) multiplier
2401 *
2402 * This is the fast column-array [comba] multiplier. It is
2403 * designed to compute the columns of the product first
2404 * then handle the carries afterwards. This has the effect
2405 * of making the nested loops that compute the columns very
2406 * simple and schedulable on super-scalar processors.
2407 *
2408 * This has been modified to produce a variable number of
2409 * digits of output so if say only a half-product is required
2410 * you don't have to compute the upper half (a feature
2411 * required for fast Barrett reduction).
2412 *
2413 * Based on Algorithm 14.12 on pp.595 of HAC.
2414 *
2415 */
2416static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2417{
2418 int olduse, res, pa, ix, iz;
2419 mp_digit W[MP_WARRAY];
2420 register mp_word _W;
2421
2422 /* grow the destination as required */
2423 if (c->alloc < digs) {
2424 if ((res = mp_grow (c, digs)) != MP_OKAY) {
2425 return res;
2426 }
2427 }
2428
2429 /* number of output digits to produce */
2430 pa = MIN(digs, a->used + b->used);
2431
2432 /* clear the carry */
2433 _W = 0;
2434 for (ix = 0; ix < pa; ix++) {
2435 int tx, ty;
2436 int iy;
2437 mp_digit *tmpx, *tmpy;
2438
2439 /* get offsets into the two bignums */
2440 ty = MIN(b->used-1, ix);
2441 tx = ix - ty;
2442
2443 /* setup temp aliases */
2444 tmpx = a->dp + tx;
2445 tmpy = b->dp + ty;
2446
2447 /* this is the number of times the loop will iterrate, essentially
2448 while (tx++ < a->used && ty-- >= 0) { ... }
2449 */
2450 iy = MIN(a->used-tx, ty+1);
2451
2452 /* execute loop */
2453 for (iz = 0; iz < iy; ++iz) {
2454 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
2455
2456 }
2457
2458 /* store term */
2459 W[ix] = ((mp_digit)_W) & MP_MASK;
2460
2461 /* make next carry */
2462 _W = _W >> ((mp_word)DIGIT_BIT);
2463 }
2464
2465 /* setup dest */
2466 olduse = c->used;
2467 c->used = pa;
2468
2469 {
2470 register mp_digit *tmpc;
2471 tmpc = c->dp;
2472 for (ix = 0; ix < pa+1; ix++) {
2473 /* now extract the previous digit [below the carry] */
2474 *tmpc++ = W[ix];
2475 }
2476
2477 /* clear unused digits [that existed in the old copy of c] */
2478 for (; ix < olduse; ix++) {
2479 *tmpc++ = 0;
2480 }
2481 }
2482 mp_clamp (c);
2483 return MP_OKAY;
2484}
2485
2486
2487/* init an mp_init for a given size */
2488static int mp_init_size (mp_int * a, int size)
2489{
2490 int x;
2491
2492 /* pad size so there are always extra digits */
2493 size += (MP_PREC * 2) - (size % MP_PREC);
2494
2495 /* alloc mem */
2496 a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size);
2497 if (a->dp == NULL) {
2498 return MP_MEM;
2499 }
2500
2501 /* set the members */
2502 a->used = 0;
2503 a->alloc = size;
2504 a->sign = MP_ZPOS;
2505
2506 /* zero the digits */
2507 for (x = 0; x < size; x++) {
2508 a->dp[x] = 0;
2509 }
2510
2511 return MP_OKAY;
2512}
2513
2514
2515/* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */
2516static int s_mp_sqr (mp_int * a, mp_int * b)
2517{
2518 mp_int t;
2519 int res, ix, iy, pa;
2520 mp_word r;
2521 mp_digit u, tmpx, *tmpt;
2522
2523 pa = a->used;
2524 if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) {
2525 return res;
2526 }
2527
2528 /* default used is maximum possible size */
2529 t.used = 2*pa + 1;
2530
2531 for (ix = 0; ix < pa; ix++) {
2532 /* first calculate the digit at 2*ix */
2533 /* calculate double precision result */
2534 r = ((mp_word) t.dp[2*ix]) +
2535 ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]);
2536
2537 /* store lower part in result */
2538 t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK));
2539
2540 /* get the carry */
2541 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2542
2543 /* left hand side of A[ix] * A[iy] */
2544 tmpx = a->dp[ix];
2545
2546 /* alias for where to store the results */
2547 tmpt = t.dp + (2*ix + 1);
2548
2549 for (iy = ix + 1; iy < pa; iy++) {
2550 /* first calculate the product */
2551 r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]);
2552
2553 /* now calculate the double precision result, note we use
2554 * addition instead of *2 since it's easier to optimize
2555 */
2556 r = ((mp_word) *tmpt) + r + r + ((mp_word) u);
2557
2558 /* store lower part */
2559 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2560
2561 /* get carry */
2562 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2563 }
2564 /* propagate upwards */
2565 while (u != ((mp_digit) 0)) {
2566 r = ((mp_word) *tmpt) + ((mp_word) u);
2567 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2568 u = (mp_digit)(r >> ((mp_word) DIGIT_BIT));
2569 }
2570 }
2571
2572 mp_clamp (&t);
2573 mp_exch (&t, b);
2574 mp_clear (&t);
2575 return MP_OKAY;
2576}
2577
2578
2579/* multiplies |a| * |b| and does not compute the lower digs digits
2580 * [meant to get the higher part of the product]
2581 */
2582static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs)
2583{
2584 mp_int t;
2585 int res, pa, pb, ix, iy;
2586 mp_digit u;
2587 mp_word r;
2588 mp_digit tmpx, *tmpt, *tmpy;
2589
2590 /* can we use the fast multiplier? */
2591#ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C
2592 if (((a->used + b->used + 1) < MP_WARRAY)
2593 && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
2594 return fast_s_mp_mul_high_digs (a, b, c, digs);
2595 }
2596#endif
2597
2598 if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) {
2599 return res;
2600 }
2601 t.used = a->used + b->used + 1;
2602
2603 pa = a->used;
2604 pb = b->used;
2605 for (ix = 0; ix < pa; ix++) {
2606 /* clear the carry */
2607 u = 0;
2608
2609 /* left hand side of A[ix] * B[iy] */
2610 tmpx = a->dp[ix];
2611
2612 /* alias to the address of where the digits will be stored */
2613 tmpt = &(t.dp[digs]);
2614
2615 /* alias for where to read the right hand side from */
2616 tmpy = b->dp + (digs - ix);
2617
2618 for (iy = digs - ix; iy < pb; iy++) {
2619 /* calculate the double precision result */
2620 r = ((mp_word)*tmpt) +
2621 ((mp_word)tmpx) * ((mp_word)*tmpy++) +
2622 ((mp_word) u);
2623
2624 /* get the lower part */
2625 *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK));
2626
2627 /* carry the carry */
2628 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
2629 }
2630 *tmpt = u;
2631 }
2632 mp_clamp (&t);
2633 mp_exch (&t, c);
2634 mp_clear (&t);
2635 return MP_OKAY;
2636}
2637
2638
2639#ifdef BN_MP_MONTGOMERY_SETUP_C
2640/* setups the montgomery reduction stuff */
2641static int
2642mp_montgomery_setup (mp_int * n, mp_digit * rho)
2643{
2644 mp_digit x, b;
2645
2646/* fast inversion mod 2**k
2647 *
2648 * Based on the fact that
2649 *
2650 * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n)
2651 * => 2*X*A - X*X*A*A = 1
2652 * => 2*(1) - (1) = 1
2653 */
2654 b = n->dp[0];
2655
2656 if ((b & 1) == 0) {
2657 return MP_VAL;
2658 }
2659
2660 x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */
2661 x *= 2 - b * x; /* here x*a==1 mod 2**8 */
2662#if !defined(MP_8BIT)
2663 x *= 2 - b * x; /* here x*a==1 mod 2**16 */
2664#endif
2665#if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT))
2666 x *= 2 - b * x; /* here x*a==1 mod 2**32 */
2667#endif
2668#ifdef MP_64BIT
2669 x *= 2 - b * x; /* here x*a==1 mod 2**64 */
2670#endif
2671
2672 /* rho = -1/m mod b */
2673 *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK;
2674
2675 return MP_OKAY;
2676}
2677#endif
2678
2679
2680#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
2681/* computes xR**-1 == x (mod N) via Montgomery Reduction
2682 *
2683 * This is an optimized implementation of montgomery_reduce
2684 * which uses the comba method to quickly calculate the columns of the
2685 * reduction.
2686 *
2687 * Based on Algorithm 14.32 on pp.601 of HAC.
2688*/
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -08002689static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho)
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07002690{
2691 int ix, res, olduse;
2692 mp_word W[MP_WARRAY];
2693
2694 /* get old used count */
2695 olduse = x->used;
2696
2697 /* grow a as required */
2698 if (x->alloc < n->used + 1) {
2699 if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) {
2700 return res;
2701 }
2702 }
2703
2704 /* first we have to get the digits of the input into
2705 * an array of double precision words W[...]
2706 */
2707 {
2708 register mp_word *_W;
2709 register mp_digit *tmpx;
2710
2711 /* alias for the W[] array */
2712 _W = W;
2713
2714 /* alias for the digits of x*/
2715 tmpx = x->dp;
2716
2717 /* copy the digits of a into W[0..a->used-1] */
2718 for (ix = 0; ix < x->used; ix++) {
2719 *_W++ = *tmpx++;
2720 }
2721
2722 /* zero the high words of W[a->used..m->used*2] */
2723 for (; ix < n->used * 2 + 1; ix++) {
2724 *_W++ = 0;
2725 }
2726 }
2727
2728 /* now we proceed to zero successive digits
2729 * from the least significant upwards
2730 */
2731 for (ix = 0; ix < n->used; ix++) {
2732 /* mu = ai * m' mod b
2733 *
2734 * We avoid a double precision multiplication (which isn't required)
2735 * by casting the value down to a mp_digit. Note this requires
2736 * that W[ix-1] have the carry cleared (see after the inner loop)
2737 */
2738 register mp_digit mu;
2739 mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK);
2740
2741 /* a = a + mu * m * b**i
2742 *
2743 * This is computed in place and on the fly. The multiplication
2744 * by b**i is handled by offseting which columns the results
2745 * are added to.
2746 *
2747 * Note the comba method normally doesn't handle carries in the
2748 * inner loop In this case we fix the carry from the previous
2749 * column since the Montgomery reduction requires digits of the
2750 * result (so far) [see above] to work. This is
2751 * handled by fixing up one carry after the inner loop. The
2752 * carry fixups are done in order so after these loops the
2753 * first m->used words of W[] have the carries fixed
2754 */
2755 {
2756 register int iy;
2757 register mp_digit *tmpn;
2758 register mp_word *_W;
2759
2760 /* alias for the digits of the modulus */
2761 tmpn = n->dp;
2762
2763 /* Alias for the columns set by an offset of ix */
2764 _W = W + ix;
2765
2766 /* inner loop */
2767 for (iy = 0; iy < n->used; iy++) {
2768 *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++);
2769 }
2770 }
2771
2772 /* now fix carry for next digit, W[ix+1] */
2773 W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT);
2774 }
2775
2776 /* now we have to propagate the carries and
2777 * shift the words downward [all those least
2778 * significant digits we zeroed].
2779 */
2780 {
2781 register mp_digit *tmpx;
2782 register mp_word *_W, *_W1;
2783
2784 /* nox fix rest of carries */
2785
2786 /* alias for current word */
2787 _W1 = W + ix;
2788
2789 /* alias for next word, where the carry goes */
2790 _W = W + ++ix;
2791
2792 for (; ix <= n->used * 2 + 1; ix++) {
2793 *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT);
2794 }
2795
2796 /* copy out, A = A/b**n
2797 *
2798 * The result is A/b**n but instead of converting from an
2799 * array of mp_word to mp_digit than calling mp_rshd
2800 * we just copy them in the right order
2801 */
2802
2803 /* alias for destination word */
2804 tmpx = x->dp;
2805
2806 /* alias for shifted double precision result */
2807 _W = W + n->used;
2808
2809 for (ix = 0; ix < n->used + 1; ix++) {
2810 *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK));
2811 }
2812
2813 /* zero oldused digits, if the input a was larger than
2814 * m->used+1 we'll have to clear the digits
2815 */
2816 for (; ix < olduse; ix++) {
2817 *tmpx++ = 0;
2818 }
2819 }
2820
2821 /* set the max used and clamp */
2822 x->used = n->used + 1;
2823 mp_clamp (x);
2824
2825 /* if A >= m then A = A - m */
2826 if (mp_cmp_mag (x, n) != MP_LT) {
2827 return s_mp_sub (x, n, x);
2828 }
2829 return MP_OKAY;
2830}
2831#endif
2832
2833
2834#ifdef BN_MP_MUL_2_C
2835/* b = a*2 */
2836static int mp_mul_2(mp_int * a, mp_int * b)
2837{
2838 int x, res, oldused;
2839
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -08002840 /* grow to accommodate result */
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07002841 if (b->alloc < a->used + 1) {
2842 if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) {
2843 return res;
2844 }
2845 }
2846
2847 oldused = b->used;
2848 b->used = a->used;
2849
2850 {
2851 register mp_digit r, rr, *tmpa, *tmpb;
2852
2853 /* alias for source */
2854 tmpa = a->dp;
2855
2856 /* alias for dest */
2857 tmpb = b->dp;
2858
2859 /* carry */
2860 r = 0;
2861 for (x = 0; x < a->used; x++) {
2862
2863 /* get what will be the *next* carry bit from the
2864 * MSB of the current digit
2865 */
2866 rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1));
2867
2868 /* now shift up this digit, add in the carry [from the previous] */
2869 *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK;
2870
2871 /* copy the carry that would be from the source
2872 * digit into the next iteration
2873 */
2874 r = rr;
2875 }
2876
2877 /* new leading digit? */
2878 if (r != 0) {
2879 /* add a MSB which is always 1 at this point */
2880 *tmpb = 1;
2881 ++(b->used);
2882 }
2883
2884 /* now zero any excess digits on the destination
2885 * that we didn't write to
2886 */
2887 tmpb = b->dp + b->used;
2888 for (x = b->used; x < oldused; x++) {
2889 *tmpb++ = 0;
2890 }
2891 }
2892 b->sign = a->sign;
2893 return MP_OKAY;
2894}
2895#endif
2896
2897
2898#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
2899/*
2900 * shifts with subtractions when the result is greater than b.
2901 *
Dmitry Shmidt1f69aa52012-01-24 16:10:04 -08002902 * The method is slightly modified to shift B unconditionally up to just under
2903 * the leading bit of b. This saves a lot of multiple precision shifting.
Dmitry Shmidt8d520ff2011-05-09 14:06:53 -07002904 */
2905static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b)
2906{
2907 int x, bits, res;
2908
2909 /* how many bits of last digit does b use */
2910 bits = mp_count_bits (b) % DIGIT_BIT;
2911
2912 if (b->used > 1) {
2913 if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) {
2914 return res;
2915 }
2916 } else {
2917 mp_set(a, 1);
2918 bits = 1;
2919 }
2920
2921
2922 /* now compute C = A * B mod b */
2923 for (x = bits - 1; x < (int)DIGIT_BIT; x++) {
2924 if ((res = mp_mul_2 (a, a)) != MP_OKAY) {
2925 return res;
2926 }
2927 if (mp_cmp_mag (a, b) != MP_LT) {
2928 if ((res = s_mp_sub (a, b, a)) != MP_OKAY) {
2929 return res;
2930 }
2931 }
2932 }
2933
2934 return MP_OKAY;
2935}
2936#endif
2937
2938
2939#ifdef BN_MP_EXPTMOD_FAST_C
2940/* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85
2941 *
2942 * Uses a left-to-right k-ary sliding window to compute the modular exponentiation.
2943 * The value of k changes based on the size of the exponent.
2944 *
2945 * Uses Montgomery or Diminished Radix reduction [whichever appropriate]
2946 */
2947
2948static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode)
2949{
2950 mp_int M[TAB_SIZE], res;
2951 mp_digit buf, mp;
2952 int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize;
2953
2954 /* use a pointer to the reduction algorithm. This allows us to use
2955 * one of many reduction algorithms without modding the guts of
2956 * the code with if statements everywhere.
2957 */
2958 int (*redux)(mp_int*,mp_int*,mp_digit);
2959
2960 /* find window size */
2961 x = mp_count_bits (X);
2962 if (x <= 7) {
2963 winsize = 2;
2964 } else if (x <= 36) {
2965 winsize = 3;
2966 } else if (x <= 140) {
2967 winsize = 4;
2968 } else if (x <= 450) {
2969 winsize = 5;
2970 } else if (x <= 1303) {
2971 winsize = 6;
2972 } else if (x <= 3529) {
2973 winsize = 7;
2974 } else {
2975 winsize = 8;
2976 }
2977
2978#ifdef MP_LOW_MEM
2979 if (winsize > 5) {
2980 winsize = 5;
2981 }
2982#endif
2983
2984 /* init M array */
2985 /* init first cell */
2986 if ((err = mp_init(&M[1])) != MP_OKAY) {
2987 return err;
2988 }
2989
2990 /* now init the second half of the array */
2991 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
2992 if ((err = mp_init(&M[x])) != MP_OKAY) {
2993 for (y = 1<<(winsize-1); y < x; y++) {
2994 mp_clear (&M[y]);
2995 }
2996 mp_clear(&M[1]);
2997 return err;
2998 }
2999 }
3000
3001 /* determine and setup reduction code */
3002 if (redmode == 0) {
3003#ifdef BN_MP_MONTGOMERY_SETUP_C
3004 /* now setup montgomery */
3005 if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) {
3006 goto LBL_M;
3007 }
3008#else
3009 err = MP_VAL;
3010 goto LBL_M;
3011#endif
3012
3013 /* automatically pick the comba one if available (saves quite a few calls/ifs) */
3014#ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C
3015 if (((P->used * 2 + 1) < MP_WARRAY) &&
3016 P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) {
3017 redux = fast_mp_montgomery_reduce;
3018 } else
3019#endif
3020 {
3021#ifdef BN_MP_MONTGOMERY_REDUCE_C
3022 /* use slower baseline Montgomery method */
3023 redux = mp_montgomery_reduce;
3024#else
3025 err = MP_VAL;
3026 goto LBL_M;
3027#endif
3028 }
3029 } else if (redmode == 1) {
3030#if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C)
3031 /* setup DR reduction for moduli of the form B**k - b */
3032 mp_dr_setup(P, &mp);
3033 redux = mp_dr_reduce;
3034#else
3035 err = MP_VAL;
3036 goto LBL_M;
3037#endif
3038 } else {
3039#if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C)
3040 /* setup DR reduction for moduli of the form 2**k - b */
3041 if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) {
3042 goto LBL_M;
3043 }
3044 redux = mp_reduce_2k;
3045#else
3046 err = MP_VAL;
3047 goto LBL_M;
3048#endif
3049 }
3050
3051 /* setup result */
3052 if ((err = mp_init (&res)) != MP_OKAY) {
3053 goto LBL_M;
3054 }
3055
3056 /* create M table
3057 *
3058
3059 *
3060 * The first half of the table is not computed though accept for M[0] and M[1]
3061 */
3062
3063 if (redmode == 0) {
3064#ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C
3065 /* now we need R mod m */
3066 if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) {
3067 goto LBL_RES;
3068 }
3069#else
3070 err = MP_VAL;
3071 goto LBL_RES;
3072#endif
3073
3074 /* now set M[1] to G * R mod m */
3075 if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) {
3076 goto LBL_RES;
3077 }
3078 } else {
3079 mp_set(&res, 1);
3080 if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) {
3081 goto LBL_RES;
3082 }
3083 }
3084
3085 /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */
3086 if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) {
3087 goto LBL_RES;
3088 }
3089
3090 for (x = 0; x < (winsize - 1); x++) {
3091 if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) {
3092 goto LBL_RES;
3093 }
3094 if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) {
3095 goto LBL_RES;
3096 }
3097 }
3098
3099 /* create upper table */
3100 for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) {
3101 if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) {
3102 goto LBL_RES;
3103 }
3104 if ((err = redux (&M[x], P, mp)) != MP_OKAY) {
3105 goto LBL_RES;
3106 }
3107 }
3108
3109 /* set initial mode and bit cnt */
3110 mode = 0;
3111 bitcnt = 1;
3112 buf = 0;
3113 digidx = X->used - 1;
3114 bitcpy = 0;
3115 bitbuf = 0;
3116
3117 for (;;) {
3118 /* grab next digit as required */
3119 if (--bitcnt == 0) {
3120 /* if digidx == -1 we are out of digits so break */
3121 if (digidx == -1) {
3122 break;
3123 }
3124 /* read next digit and reset bitcnt */
3125 buf = X->dp[digidx--];
3126 bitcnt = (int)DIGIT_BIT;
3127 }
3128
3129 /* grab the next msb from the exponent */
3130 y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1;
3131 buf <<= (mp_digit)1;
3132
3133 /* if the bit is zero and mode == 0 then we ignore it
3134 * These represent the leading zero bits before the first 1 bit
3135 * in the exponent. Technically this opt is not required but it
3136 * does lower the # of trivial squaring/reductions used
3137 */
3138 if (mode == 0 && y == 0) {
3139 continue;
3140 }
3141
3142 /* if the bit is zero and mode == 1 then we square */
3143 if (mode == 1 && y == 0) {
3144 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3145 goto LBL_RES;
3146 }
3147 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3148 goto LBL_RES;
3149 }
3150 continue;
3151 }
3152
3153 /* else we add it to the window */
3154 bitbuf |= (y << (winsize - ++bitcpy));
3155 mode = 2;
3156
3157 if (bitcpy == winsize) {
3158 /* ok window is filled so square as required and multiply */
3159 /* square first */
3160 for (x = 0; x < winsize; x++) {
3161 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3162 goto LBL_RES;
3163 }
3164 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3165 goto LBL_RES;
3166 }
3167 }
3168
3169 /* then multiply */
3170 if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) {
3171 goto LBL_RES;
3172 }
3173 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3174 goto LBL_RES;
3175 }
3176
3177 /* empty window and reset */
3178 bitcpy = 0;
3179 bitbuf = 0;
3180 mode = 1;
3181 }
3182 }
3183
3184 /* if bits remain then square/multiply */
3185 if (mode == 2 && bitcpy > 0) {
3186 /* square then multiply if the bit is set */
3187 for (x = 0; x < bitcpy; x++) {
3188 if ((err = mp_sqr (&res, &res)) != MP_OKAY) {
3189 goto LBL_RES;
3190 }
3191 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3192 goto LBL_RES;
3193 }
3194
3195 /* get next bit of the window */
3196 bitbuf <<= 1;
3197 if ((bitbuf & (1 << winsize)) != 0) {
3198 /* then multiply */
3199 if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) {
3200 goto LBL_RES;
3201 }
3202 if ((err = redux (&res, P, mp)) != MP_OKAY) {
3203 goto LBL_RES;
3204 }
3205 }
3206 }
3207 }
3208
3209 if (redmode == 0) {
3210 /* fixup result if Montgomery reduction is used
3211 * recall that any value in a Montgomery system is
3212 * actually multiplied by R mod n. So we have
3213 * to reduce one more time to cancel out the factor
3214 * of R.
3215 */
3216 if ((err = redux(&res, P, mp)) != MP_OKAY) {
3217 goto LBL_RES;
3218 }
3219 }
3220
3221 /* swap res with Y */
3222 mp_exch (&res, Y);
3223 err = MP_OKAY;
3224LBL_RES:mp_clear (&res);
3225LBL_M:
3226 mp_clear(&M[1]);
3227 for (x = 1<<(winsize-1); x < (1 << winsize); x++) {
3228 mp_clear (&M[x]);
3229 }
3230 return err;
3231}
3232#endif
3233
3234
3235#ifdef BN_FAST_S_MP_SQR_C
3236/* the jist of squaring...
3237 * you do like mult except the offset of the tmpx [one that
3238 * starts closer to zero] can't equal the offset of tmpy.
3239 * So basically you set up iy like before then you min it with
3240 * (ty-tx) so that it never happens. You double all those
3241 * you add in the inner loop
3242
3243After that loop you do the squares and add them in.
3244*/
3245
3246static int fast_s_mp_sqr (mp_int * a, mp_int * b)
3247{
3248 int olduse, res, pa, ix, iz;
3249 mp_digit W[MP_WARRAY], *tmpx;
3250 mp_word W1;
3251
3252 /* grow the destination as required */
3253 pa = a->used + a->used;
3254 if (b->alloc < pa) {
3255 if ((res = mp_grow (b, pa)) != MP_OKAY) {
3256 return res;
3257 }
3258 }
3259
3260 /* number of output digits to produce */
3261 W1 = 0;
3262 for (ix = 0; ix < pa; ix++) {
3263 int tx, ty, iy;
3264 mp_word _W;
3265 mp_digit *tmpy;
3266
3267 /* clear counter */
3268 _W = 0;
3269
3270 /* get offsets into the two bignums */
3271 ty = MIN(a->used-1, ix);
3272 tx = ix - ty;
3273
3274 /* setup temp aliases */
3275 tmpx = a->dp + tx;
3276 tmpy = a->dp + ty;
3277
3278 /* this is the number of times the loop will iterrate, essentially
3279 while (tx++ < a->used && ty-- >= 0) { ... }
3280 */
3281 iy = MIN(a->used-tx, ty+1);
3282
3283 /* now for squaring tx can never equal ty
3284 * we halve the distance since they approach at a rate of 2x
3285 * and we have to round because odd cases need to be executed
3286 */
3287 iy = MIN(iy, (ty-tx+1)>>1);
3288
3289 /* execute loop */
3290 for (iz = 0; iz < iy; iz++) {
3291 _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--);
3292 }
3293
3294 /* double the inner product and add carry */
3295 _W = _W + _W + W1;
3296
3297 /* even columns have the square term in them */
3298 if ((ix&1) == 0) {
3299 _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]);
3300 }
3301
3302 /* store it */
3303 W[ix] = (mp_digit)(_W & MP_MASK);
3304
3305 /* make next carry */
3306 W1 = _W >> ((mp_word)DIGIT_BIT);
3307 }
3308
3309 /* setup dest */
3310 olduse = b->used;
3311 b->used = a->used+a->used;
3312
3313 {
3314 mp_digit *tmpb;
3315 tmpb = b->dp;
3316 for (ix = 0; ix < pa; ix++) {
3317 *tmpb++ = W[ix] & MP_MASK;
3318 }
3319
3320 /* clear unused digits [that existed in the old copy of c] */
3321 for (; ix < olduse; ix++) {
3322 *tmpb++ = 0;
3323 }
3324 }
3325 mp_clamp (b);
3326 return MP_OKAY;
3327}
3328#endif
3329
3330
3331#ifdef BN_MP_MUL_D_C
3332/* multiply by a digit */
3333static int
3334mp_mul_d (mp_int * a, mp_digit b, mp_int * c)
3335{
3336 mp_digit u, *tmpa, *tmpc;
3337 mp_word r;
3338 int ix, res, olduse;
3339
3340 /* make sure c is big enough to hold a*b */
3341 if (c->alloc < a->used + 1) {
3342 if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) {
3343 return res;
3344 }
3345 }
3346
3347 /* get the original destinations used count */
3348 olduse = c->used;
3349
3350 /* set the sign */
3351 c->sign = a->sign;
3352
3353 /* alias for a->dp [source] */
3354 tmpa = a->dp;
3355
3356 /* alias for c->dp [dest] */
3357 tmpc = c->dp;
3358
3359 /* zero carry */
3360 u = 0;
3361
3362 /* compute columns */
3363 for (ix = 0; ix < a->used; ix++) {
3364 /* compute product and carry sum for this term */
3365 r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b);
3366
3367 /* mask off higher bits to get a single digit */
3368 *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK));
3369
3370 /* send carry into next iteration */
3371 u = (mp_digit) (r >> ((mp_word) DIGIT_BIT));
3372 }
3373
3374 /* store final carry [if any] and increment ix offset */
3375 *tmpc++ = u;
3376 ++ix;
3377
3378 /* now zero digits above the top */
3379 while (ix++ < olduse) {
3380 *tmpc++ = 0;
3381 }
3382
3383 /* set used count */
3384 c->used = a->used + 1;
3385 mp_clamp(c);
3386
3387 return MP_OKAY;
3388}
3389#endif