Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 1 | /* |
| 2 | * Minimal code for RSA support from LibTomMath 0.41 |
| 3 | * http://libtom.org/ |
| 4 | * http://libtom.org/files/ltm-0.41.tar.bz2 |
| 5 | * This library was released in public domain by Tom St Denis. |
| 6 | * |
| 7 | * The combination in this file may not use all of the optimized algorithms |
| 8 | * from LibTomMath and may be considerable slower than the LibTomMath with its |
| 9 | * default settings. The main purpose of having this version here is to make it |
| 10 | * easier to build bignum.c wrapper without having to install and build an |
| 11 | * external library. |
| 12 | * |
| 13 | * If CONFIG_INTERNAL_LIBTOMMATH is defined, bignum.c includes this |
| 14 | * libtommath.c file instead of using the external LibTomMath library. |
| 15 | */ |
| 16 | |
| 17 | #ifndef CHAR_BIT |
| 18 | #define CHAR_BIT 8 |
| 19 | #endif |
| 20 | |
| 21 | #define BN_MP_INVMOD_C |
| 22 | #define BN_S_MP_EXPTMOD_C /* Note: #undef in tommath_superclass.h; this would |
| 23 | * require BN_MP_EXPTMOD_FAST_C instead */ |
| 24 | #define BN_S_MP_MUL_DIGS_C |
| 25 | #define BN_MP_INVMOD_SLOW_C |
| 26 | #define BN_S_MP_SQR_C |
| 27 | #define BN_S_MP_MUL_HIGH_DIGS_C /* Note: #undef in tommath_superclass.h; this |
| 28 | * would require other than mp_reduce */ |
| 29 | |
| 30 | #ifdef LTM_FAST |
| 31 | |
| 32 | /* Use faster div at the cost of about 1 kB */ |
| 33 | #define BN_MP_MUL_D_C |
| 34 | |
| 35 | /* Include faster exptmod (Montgomery) at the cost of about 2.5 kB in code */ |
| 36 | #define BN_MP_EXPTMOD_FAST_C |
| 37 | #define BN_MP_MONTGOMERY_SETUP_C |
| 38 | #define BN_FAST_MP_MONTGOMERY_REDUCE_C |
| 39 | #define BN_MP_MONTGOMERY_CALC_NORMALIZATION_C |
| 40 | #define BN_MP_MUL_2_C |
| 41 | |
| 42 | /* Include faster sqr at the cost of about 0.5 kB in code */ |
| 43 | #define BN_FAST_S_MP_SQR_C |
| 44 | |
| 45 | #else /* LTM_FAST */ |
| 46 | |
| 47 | #define BN_MP_DIV_SMALL |
| 48 | #define BN_MP_INIT_MULTI_C |
| 49 | #define BN_MP_CLEAR_MULTI_C |
| 50 | #define BN_MP_ABS_C |
| 51 | #endif /* LTM_FAST */ |
| 52 | |
| 53 | /* Current uses do not require support for negative exponent in exptmod, so we |
| 54 | * can save about 1.5 kB in leaving out invmod. */ |
| 55 | #define LTM_NO_NEG_EXP |
| 56 | |
| 57 | /* from tommath.h */ |
| 58 | |
| 59 | #ifndef MIN |
| 60 | #define MIN(x,y) ((x)<(y)?(x):(y)) |
| 61 | #endif |
| 62 | |
| 63 | #ifndef MAX |
| 64 | #define MAX(x,y) ((x)>(y)?(x):(y)) |
| 65 | #endif |
| 66 | |
| 67 | #define OPT_CAST(x) |
| 68 | |
| 69 | typedef unsigned long mp_digit; |
| 70 | typedef u64 mp_word; |
| 71 | |
| 72 | #define DIGIT_BIT 28 |
| 73 | #define MP_28BIT |
| 74 | |
| 75 | |
| 76 | #define XMALLOC os_malloc |
| 77 | #define XFREE os_free |
| 78 | #define XREALLOC os_realloc |
| 79 | |
| 80 | |
| 81 | #define MP_MASK ((((mp_digit)1)<<((mp_digit)DIGIT_BIT))-((mp_digit)1)) |
| 82 | |
| 83 | #define MP_LT -1 /* less than */ |
| 84 | #define MP_EQ 0 /* equal to */ |
| 85 | #define MP_GT 1 /* greater than */ |
| 86 | |
| 87 | #define MP_ZPOS 0 /* positive integer */ |
| 88 | #define MP_NEG 1 /* negative */ |
| 89 | |
| 90 | #define MP_OKAY 0 /* ok result */ |
| 91 | #define MP_MEM -2 /* out of mem */ |
| 92 | #define MP_VAL -3 /* invalid input */ |
| 93 | |
| 94 | #define MP_YES 1 /* yes response */ |
| 95 | #define MP_NO 0 /* no response */ |
| 96 | |
| 97 | typedef int mp_err; |
| 98 | |
| 99 | /* define this to use lower memory usage routines (exptmods mostly) */ |
| 100 | #define MP_LOW_MEM |
| 101 | |
| 102 | /* default precision */ |
| 103 | #ifndef MP_PREC |
| 104 | #ifndef MP_LOW_MEM |
| 105 | #define MP_PREC 32 /* default digits of precision */ |
| 106 | #else |
| 107 | #define MP_PREC 8 /* default digits of precision */ |
| 108 | #endif |
| 109 | #endif |
| 110 | |
| 111 | /* size of comba arrays, should be at least 2 * 2**(BITS_PER_WORD - BITS_PER_DIGIT*2) */ |
| 112 | #define MP_WARRAY (1 << (sizeof(mp_word) * CHAR_BIT - 2 * DIGIT_BIT + 1)) |
| 113 | |
| 114 | /* the infamous mp_int structure */ |
| 115 | typedef struct { |
| 116 | int used, alloc, sign; |
| 117 | mp_digit *dp; |
| 118 | } mp_int; |
| 119 | |
| 120 | |
| 121 | /* ---> Basic Manipulations <--- */ |
| 122 | #define mp_iszero(a) (((a)->used == 0) ? MP_YES : MP_NO) |
| 123 | #define mp_iseven(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 0)) ? MP_YES : MP_NO) |
| 124 | #define mp_isodd(a) (((a)->used > 0 && (((a)->dp[0] & 1) == 1)) ? MP_YES : MP_NO) |
| 125 | |
| 126 | |
| 127 | /* prototypes for copied functions */ |
| 128 | #define s_mp_mul(a, b, c) s_mp_mul_digs(a, b, c, (a)->used + (b)->used + 1) |
| 129 | static int s_mp_exptmod(mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); |
| 130 | static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); |
| 131 | static int s_mp_sqr(mp_int * a, mp_int * b); |
| 132 | static int s_mp_mul_high_digs(mp_int * a, mp_int * b, mp_int * c, int digs); |
| 133 | |
| 134 | static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs); |
| 135 | |
| 136 | #ifdef BN_MP_INIT_MULTI_C |
| 137 | static int mp_init_multi(mp_int *mp, ...); |
| 138 | #endif |
| 139 | #ifdef BN_MP_CLEAR_MULTI_C |
| 140 | static void mp_clear_multi(mp_int *mp, ...); |
| 141 | #endif |
| 142 | static int mp_lshd(mp_int * a, int b); |
| 143 | static void mp_set(mp_int * a, mp_digit b); |
| 144 | static void mp_clamp(mp_int * a); |
| 145 | static void mp_exch(mp_int * a, mp_int * b); |
| 146 | static void mp_rshd(mp_int * a, int b); |
| 147 | static void mp_zero(mp_int * a); |
| 148 | static int mp_mod_2d(mp_int * a, int b, mp_int * c); |
| 149 | static int mp_div_2d(mp_int * a, int b, mp_int * c, mp_int * d); |
| 150 | static int mp_init_copy(mp_int * a, mp_int * b); |
| 151 | static int mp_mul_2d(mp_int * a, int b, mp_int * c); |
| 152 | #ifndef LTM_NO_NEG_EXP |
| 153 | static int mp_div_2(mp_int * a, mp_int * b); |
| 154 | static int mp_invmod(mp_int * a, mp_int * b, mp_int * c); |
| 155 | static int mp_invmod_slow(mp_int * a, mp_int * b, mp_int * c); |
| 156 | #endif /* LTM_NO_NEG_EXP */ |
| 157 | static int mp_copy(mp_int * a, mp_int * b); |
| 158 | static int mp_count_bits(mp_int * a); |
| 159 | static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d); |
| 160 | static int mp_mod(mp_int * a, mp_int * b, mp_int * c); |
| 161 | static int mp_grow(mp_int * a, int size); |
| 162 | static int mp_cmp_mag(mp_int * a, mp_int * b); |
| 163 | #ifdef BN_MP_ABS_C |
| 164 | static int mp_abs(mp_int * a, mp_int * b); |
| 165 | #endif |
| 166 | static int mp_sqr(mp_int * a, mp_int * b); |
| 167 | static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d); |
| 168 | static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d); |
| 169 | static int mp_2expt(mp_int * a, int b); |
| 170 | static int mp_reduce_setup(mp_int * a, mp_int * b); |
| 171 | static int mp_reduce(mp_int * x, mp_int * m, mp_int * mu); |
| 172 | static int mp_init_size(mp_int * a, int size); |
| 173 | #ifdef BN_MP_EXPTMOD_FAST_C |
| 174 | static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode); |
| 175 | #endif /* BN_MP_EXPTMOD_FAST_C */ |
| 176 | #ifdef BN_FAST_S_MP_SQR_C |
| 177 | static int fast_s_mp_sqr (mp_int * a, mp_int * b); |
| 178 | #endif /* BN_FAST_S_MP_SQR_C */ |
| 179 | #ifdef BN_MP_MUL_D_C |
| 180 | static int mp_mul_d (mp_int * a, mp_digit b, mp_int * c); |
| 181 | #endif /* BN_MP_MUL_D_C */ |
| 182 | |
| 183 | |
| 184 | |
| 185 | /* functions from bn_<func name>.c */ |
| 186 | |
| 187 | |
| 188 | /* reverse an array, used for radix code */ |
| 189 | static void bn_reverse (unsigned char *s, int len) |
| 190 | { |
| 191 | int ix, iy; |
| 192 | unsigned char t; |
| 193 | |
| 194 | ix = 0; |
| 195 | iy = len - 1; |
| 196 | while (ix < iy) { |
| 197 | t = s[ix]; |
| 198 | s[ix] = s[iy]; |
| 199 | s[iy] = t; |
| 200 | ++ix; |
| 201 | --iy; |
| 202 | } |
| 203 | } |
| 204 | |
| 205 | |
| 206 | /* low level addition, based on HAC pp.594, Algorithm 14.7 */ |
| 207 | static int s_mp_add (mp_int * a, mp_int * b, mp_int * c) |
| 208 | { |
| 209 | mp_int *x; |
| 210 | int olduse, res, min, max; |
| 211 | |
| 212 | /* find sizes, we let |a| <= |b| which means we have to sort |
| 213 | * them. "x" will point to the input with the most digits |
| 214 | */ |
| 215 | if (a->used > b->used) { |
| 216 | min = b->used; |
| 217 | max = a->used; |
| 218 | x = a; |
| 219 | } else { |
| 220 | min = a->used; |
| 221 | max = b->used; |
| 222 | x = b; |
| 223 | } |
| 224 | |
| 225 | /* init result */ |
| 226 | if (c->alloc < max + 1) { |
| 227 | if ((res = mp_grow (c, max + 1)) != MP_OKAY) { |
| 228 | return res; |
| 229 | } |
| 230 | } |
| 231 | |
| 232 | /* get old used digit count and set new one */ |
| 233 | olduse = c->used; |
| 234 | c->used = max + 1; |
| 235 | |
| 236 | { |
| 237 | register mp_digit u, *tmpa, *tmpb, *tmpc; |
| 238 | register int i; |
| 239 | |
| 240 | /* alias for digit pointers */ |
| 241 | |
| 242 | /* first input */ |
| 243 | tmpa = a->dp; |
| 244 | |
| 245 | /* second input */ |
| 246 | tmpb = b->dp; |
| 247 | |
| 248 | /* destination */ |
| 249 | tmpc = c->dp; |
| 250 | |
| 251 | /* zero the carry */ |
| 252 | u = 0; |
| 253 | for (i = 0; i < min; i++) { |
| 254 | /* Compute the sum at one digit, T[i] = A[i] + B[i] + U */ |
| 255 | *tmpc = *tmpa++ + *tmpb++ + u; |
| 256 | |
| 257 | /* U = carry bit of T[i] */ |
| 258 | u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| 259 | |
| 260 | /* take away carry bit from T[i] */ |
| 261 | *tmpc++ &= MP_MASK; |
| 262 | } |
| 263 | |
| 264 | /* now copy higher words if any, that is in A+B |
| 265 | * if A or B has more digits add those in |
| 266 | */ |
| 267 | if (min != max) { |
| 268 | for (; i < max; i++) { |
| 269 | /* T[i] = X[i] + U */ |
| 270 | *tmpc = x->dp[i] + u; |
| 271 | |
| 272 | /* U = carry bit of T[i] */ |
| 273 | u = *tmpc >> ((mp_digit)DIGIT_BIT); |
| 274 | |
| 275 | /* take away carry bit from T[i] */ |
| 276 | *tmpc++ &= MP_MASK; |
| 277 | } |
| 278 | } |
| 279 | |
| 280 | /* add carry */ |
| 281 | *tmpc++ = u; |
| 282 | |
| 283 | /* clear digits above oldused */ |
| 284 | for (i = c->used; i < olduse; i++) { |
| 285 | *tmpc++ = 0; |
| 286 | } |
| 287 | } |
| 288 | |
| 289 | mp_clamp (c); |
| 290 | return MP_OKAY; |
| 291 | } |
| 292 | |
| 293 | |
| 294 | /* low level subtraction (assumes |a| > |b|), HAC pp.595 Algorithm 14.9 */ |
| 295 | static int s_mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| 296 | { |
| 297 | int olduse, res, min, max; |
| 298 | |
| 299 | /* find sizes */ |
| 300 | min = b->used; |
| 301 | max = a->used; |
| 302 | |
| 303 | /* init result */ |
| 304 | if (c->alloc < max) { |
| 305 | if ((res = mp_grow (c, max)) != MP_OKAY) { |
| 306 | return res; |
| 307 | } |
| 308 | } |
| 309 | olduse = c->used; |
| 310 | c->used = max; |
| 311 | |
| 312 | { |
| 313 | register mp_digit u, *tmpa, *tmpb, *tmpc; |
| 314 | register int i; |
| 315 | |
| 316 | /* alias for digit pointers */ |
| 317 | tmpa = a->dp; |
| 318 | tmpb = b->dp; |
| 319 | tmpc = c->dp; |
| 320 | |
| 321 | /* set carry to zero */ |
| 322 | u = 0; |
| 323 | for (i = 0; i < min; i++) { |
| 324 | /* T[i] = A[i] - B[i] - U */ |
| 325 | *tmpc = *tmpa++ - *tmpb++ - u; |
| 326 | |
| 327 | /* U = carry bit of T[i] |
| 328 | * Note this saves performing an AND operation since |
| 329 | * if a carry does occur it will propagate all the way to the |
| 330 | * MSB. As a result a single shift is enough to get the carry |
| 331 | */ |
| 332 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| 333 | |
| 334 | /* Clear carry from T[i] */ |
| 335 | *tmpc++ &= MP_MASK; |
| 336 | } |
| 337 | |
| 338 | /* now copy higher words if any, e.g. if A has more digits than B */ |
| 339 | for (; i < max; i++) { |
| 340 | /* T[i] = A[i] - U */ |
| 341 | *tmpc = *tmpa++ - u; |
| 342 | |
| 343 | /* U = carry bit of T[i] */ |
| 344 | u = *tmpc >> ((mp_digit)(CHAR_BIT * sizeof (mp_digit) - 1)); |
| 345 | |
| 346 | /* Clear carry from T[i] */ |
| 347 | *tmpc++ &= MP_MASK; |
| 348 | } |
| 349 | |
| 350 | /* clear digits above used (since we may not have grown result above) */ |
| 351 | for (i = c->used; i < olduse; i++) { |
| 352 | *tmpc++ = 0; |
| 353 | } |
| 354 | } |
| 355 | |
| 356 | mp_clamp (c); |
| 357 | return MP_OKAY; |
| 358 | } |
| 359 | |
| 360 | |
| 361 | /* init a new mp_int */ |
| 362 | static int mp_init (mp_int * a) |
| 363 | { |
| 364 | int i; |
| 365 | |
| 366 | /* allocate memory required and clear it */ |
| 367 | a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * MP_PREC); |
| 368 | if (a->dp == NULL) { |
| 369 | return MP_MEM; |
| 370 | } |
| 371 | |
| 372 | /* set the digits to zero */ |
| 373 | for (i = 0; i < MP_PREC; i++) { |
| 374 | a->dp[i] = 0; |
| 375 | } |
| 376 | |
| 377 | /* set the used to zero, allocated digits to the default precision |
| 378 | * and sign to positive */ |
| 379 | a->used = 0; |
| 380 | a->alloc = MP_PREC; |
| 381 | a->sign = MP_ZPOS; |
| 382 | |
| 383 | return MP_OKAY; |
| 384 | } |
| 385 | |
| 386 | |
| 387 | /* clear one (frees) */ |
| 388 | static void mp_clear (mp_int * a) |
| 389 | { |
| 390 | int i; |
| 391 | |
| 392 | /* only do anything if a hasn't been freed previously */ |
| 393 | if (a->dp != NULL) { |
| 394 | /* first zero the digits */ |
| 395 | for (i = 0; i < a->used; i++) { |
| 396 | a->dp[i] = 0; |
| 397 | } |
| 398 | |
| 399 | /* free ram */ |
| 400 | XFREE(a->dp); |
| 401 | |
| 402 | /* reset members to make debugging easier */ |
| 403 | a->dp = NULL; |
| 404 | a->alloc = a->used = 0; |
| 405 | a->sign = MP_ZPOS; |
| 406 | } |
| 407 | } |
| 408 | |
| 409 | |
| 410 | /* high level addition (handles signs) */ |
| 411 | static int mp_add (mp_int * a, mp_int * b, mp_int * c) |
| 412 | { |
| 413 | int sa, sb, res; |
| 414 | |
| 415 | /* get sign of both inputs */ |
| 416 | sa = a->sign; |
| 417 | sb = b->sign; |
| 418 | |
| 419 | /* handle two cases, not four */ |
| 420 | if (sa == sb) { |
| 421 | /* both positive or both negative */ |
| 422 | /* add their magnitudes, copy the sign */ |
| 423 | c->sign = sa; |
| 424 | res = s_mp_add (a, b, c); |
| 425 | } else { |
| 426 | /* one positive, the other negative */ |
| 427 | /* subtract the one with the greater magnitude from */ |
| 428 | /* the one of the lesser magnitude. The result gets */ |
| 429 | /* the sign of the one with the greater magnitude. */ |
| 430 | if (mp_cmp_mag (a, b) == MP_LT) { |
| 431 | c->sign = sb; |
| 432 | res = s_mp_sub (b, a, c); |
| 433 | } else { |
| 434 | c->sign = sa; |
| 435 | res = s_mp_sub (a, b, c); |
| 436 | } |
| 437 | } |
| 438 | return res; |
| 439 | } |
| 440 | |
| 441 | |
| 442 | /* high level subtraction (handles signs) */ |
| 443 | static int mp_sub (mp_int * a, mp_int * b, mp_int * c) |
| 444 | { |
| 445 | int sa, sb, res; |
| 446 | |
| 447 | sa = a->sign; |
| 448 | sb = b->sign; |
| 449 | |
| 450 | if (sa != sb) { |
| 451 | /* subtract a negative from a positive, OR */ |
| 452 | /* subtract a positive from a negative. */ |
| 453 | /* In either case, ADD their magnitudes, */ |
| 454 | /* and use the sign of the first number. */ |
| 455 | c->sign = sa; |
| 456 | res = s_mp_add (a, b, c); |
| 457 | } else { |
| 458 | /* subtract a positive from a positive, OR */ |
| 459 | /* subtract a negative from a negative. */ |
| 460 | /* First, take the difference between their */ |
| 461 | /* magnitudes, then... */ |
| 462 | if (mp_cmp_mag (a, b) != MP_LT) { |
| 463 | /* Copy the sign from the first */ |
| 464 | c->sign = sa; |
| 465 | /* The first has a larger or equal magnitude */ |
| 466 | res = s_mp_sub (a, b, c); |
| 467 | } else { |
| 468 | /* The result has the *opposite* sign from */ |
| 469 | /* the first number. */ |
| 470 | c->sign = (sa == MP_ZPOS) ? MP_NEG : MP_ZPOS; |
| 471 | /* The second has a larger magnitude */ |
| 472 | res = s_mp_sub (b, a, c); |
| 473 | } |
| 474 | } |
| 475 | return res; |
| 476 | } |
| 477 | |
| 478 | |
| 479 | /* high level multiplication (handles sign) */ |
| 480 | static int mp_mul (mp_int * a, mp_int * b, mp_int * c) |
| 481 | { |
| 482 | int res, neg; |
| 483 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| 484 | |
| 485 | /* use Toom-Cook? */ |
| 486 | #ifdef BN_MP_TOOM_MUL_C |
| 487 | if (MIN (a->used, b->used) >= TOOM_MUL_CUTOFF) { |
| 488 | res = mp_toom_mul(a, b, c); |
| 489 | } else |
| 490 | #endif |
| 491 | #ifdef BN_MP_KARATSUBA_MUL_C |
| 492 | /* use Karatsuba? */ |
| 493 | if (MIN (a->used, b->used) >= KARATSUBA_MUL_CUTOFF) { |
| 494 | res = mp_karatsuba_mul (a, b, c); |
| 495 | } else |
| 496 | #endif |
| 497 | { |
| 498 | /* can we use the fast multiplier? |
| 499 | * |
| 500 | * The fast multiplier can be used if the output will |
| 501 | * have less than MP_WARRAY digits and the number of |
| 502 | * digits won't affect carry propagation |
| 503 | */ |
| 504 | #ifdef BN_FAST_S_MP_MUL_DIGS_C |
| 505 | int digs = a->used + b->used + 1; |
| 506 | |
| 507 | if ((digs < MP_WARRAY) && |
| 508 | MIN(a->used, b->used) <= |
| 509 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| 510 | res = fast_s_mp_mul_digs (a, b, c, digs); |
| 511 | } else |
| 512 | #endif |
| 513 | #ifdef BN_S_MP_MUL_DIGS_C |
| 514 | res = s_mp_mul (a, b, c); /* uses s_mp_mul_digs */ |
| 515 | #else |
| 516 | #error mp_mul could fail |
| 517 | res = MP_VAL; |
| 518 | #endif |
| 519 | |
| 520 | } |
| 521 | c->sign = (c->used > 0) ? neg : MP_ZPOS; |
| 522 | return res; |
| 523 | } |
| 524 | |
| 525 | |
| 526 | /* d = a * b (mod c) */ |
| 527 | static int mp_mulmod (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| 528 | { |
| 529 | int res; |
| 530 | mp_int t; |
| 531 | |
| 532 | if ((res = mp_init (&t)) != MP_OKAY) { |
| 533 | return res; |
| 534 | } |
| 535 | |
| 536 | if ((res = mp_mul (a, b, &t)) != MP_OKAY) { |
| 537 | mp_clear (&t); |
| 538 | return res; |
| 539 | } |
| 540 | res = mp_mod (&t, c, d); |
| 541 | mp_clear (&t); |
| 542 | return res; |
| 543 | } |
| 544 | |
| 545 | |
| 546 | /* c = a mod b, 0 <= c < b */ |
| 547 | static int mp_mod (mp_int * a, mp_int * b, mp_int * c) |
| 548 | { |
| 549 | mp_int t; |
| 550 | int res; |
| 551 | |
| 552 | if ((res = mp_init (&t)) != MP_OKAY) { |
| 553 | return res; |
| 554 | } |
| 555 | |
| 556 | if ((res = mp_div (a, b, NULL, &t)) != MP_OKAY) { |
| 557 | mp_clear (&t); |
| 558 | return res; |
| 559 | } |
| 560 | |
| 561 | if (t.sign != b->sign) { |
| 562 | res = mp_add (b, &t, c); |
| 563 | } else { |
| 564 | res = MP_OKAY; |
| 565 | mp_exch (&t, c); |
| 566 | } |
| 567 | |
| 568 | mp_clear (&t); |
| 569 | return res; |
| 570 | } |
| 571 | |
| 572 | |
| 573 | /* this is a shell function that calls either the normal or Montgomery |
| 574 | * exptmod functions. Originally the call to the montgomery code was |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 575 | * embedded in the normal function but that wasted a lot of stack space |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 576 | * for nothing (since 99% of the time the Montgomery code would be called) |
| 577 | */ |
| 578 | static int mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y) |
| 579 | { |
| 580 | int dr; |
| 581 | |
| 582 | /* modulus P must be positive */ |
| 583 | if (P->sign == MP_NEG) { |
| 584 | return MP_VAL; |
| 585 | } |
| 586 | |
| 587 | /* if exponent X is negative we have to recurse */ |
| 588 | if (X->sign == MP_NEG) { |
| 589 | #ifdef LTM_NO_NEG_EXP |
| 590 | return MP_VAL; |
| 591 | #else /* LTM_NO_NEG_EXP */ |
| 592 | #ifdef BN_MP_INVMOD_C |
| 593 | mp_int tmpG, tmpX; |
| 594 | int err; |
| 595 | |
| 596 | /* first compute 1/G mod P */ |
| 597 | if ((err = mp_init(&tmpG)) != MP_OKAY) { |
| 598 | return err; |
| 599 | } |
| 600 | if ((err = mp_invmod(G, P, &tmpG)) != MP_OKAY) { |
| 601 | mp_clear(&tmpG); |
| 602 | return err; |
| 603 | } |
| 604 | |
| 605 | /* now get |X| */ |
| 606 | if ((err = mp_init(&tmpX)) != MP_OKAY) { |
| 607 | mp_clear(&tmpG); |
| 608 | return err; |
| 609 | } |
| 610 | if ((err = mp_abs(X, &tmpX)) != MP_OKAY) { |
| 611 | mp_clear_multi(&tmpG, &tmpX, NULL); |
| 612 | return err; |
| 613 | } |
| 614 | |
| 615 | /* and now compute (1/G)**|X| instead of G**X [X < 0] */ |
| 616 | err = mp_exptmod(&tmpG, &tmpX, P, Y); |
| 617 | mp_clear_multi(&tmpG, &tmpX, NULL); |
| 618 | return err; |
| 619 | #else |
| 620 | #error mp_exptmod would always fail |
| 621 | /* no invmod */ |
| 622 | return MP_VAL; |
| 623 | #endif |
| 624 | #endif /* LTM_NO_NEG_EXP */ |
| 625 | } |
| 626 | |
| 627 | /* modified diminished radix reduction */ |
| 628 | #if defined(BN_MP_REDUCE_IS_2K_L_C) && defined(BN_MP_REDUCE_2K_L_C) && defined(BN_S_MP_EXPTMOD_C) |
| 629 | if (mp_reduce_is_2k_l(P) == MP_YES) { |
| 630 | return s_mp_exptmod(G, X, P, Y, 1); |
| 631 | } |
| 632 | #endif |
| 633 | |
| 634 | #ifdef BN_MP_DR_IS_MODULUS_C |
| 635 | /* is it a DR modulus? */ |
| 636 | dr = mp_dr_is_modulus(P); |
| 637 | #else |
| 638 | /* default to no */ |
| 639 | dr = 0; |
| 640 | #endif |
| 641 | |
| 642 | #ifdef BN_MP_REDUCE_IS_2K_C |
| 643 | /* if not, is it a unrestricted DR modulus? */ |
| 644 | if (dr == 0) { |
| 645 | dr = mp_reduce_is_2k(P) << 1; |
| 646 | } |
| 647 | #endif |
| 648 | |
| 649 | /* if the modulus is odd or dr != 0 use the montgomery method */ |
| 650 | #ifdef BN_MP_EXPTMOD_FAST_C |
| 651 | if (mp_isodd (P) == 1 || dr != 0) { |
| 652 | return mp_exptmod_fast (G, X, P, Y, dr); |
| 653 | } else { |
| 654 | #endif |
| 655 | #ifdef BN_S_MP_EXPTMOD_C |
| 656 | /* otherwise use the generic Barrett reduction technique */ |
| 657 | return s_mp_exptmod (G, X, P, Y, 0); |
| 658 | #else |
| 659 | #error mp_exptmod could fail |
| 660 | /* no exptmod for evens */ |
| 661 | return MP_VAL; |
| 662 | #endif |
| 663 | #ifdef BN_MP_EXPTMOD_FAST_C |
| 664 | } |
| 665 | #endif |
| 666 | } |
| 667 | |
| 668 | |
| 669 | /* compare two ints (signed)*/ |
| 670 | static int mp_cmp (mp_int * a, mp_int * b) |
| 671 | { |
| 672 | /* compare based on sign */ |
| 673 | if (a->sign != b->sign) { |
| 674 | if (a->sign == MP_NEG) { |
| 675 | return MP_LT; |
| 676 | } else { |
| 677 | return MP_GT; |
| 678 | } |
| 679 | } |
| 680 | |
| 681 | /* compare digits */ |
| 682 | if (a->sign == MP_NEG) { |
| 683 | /* if negative compare opposite direction */ |
| 684 | return mp_cmp_mag(b, a); |
| 685 | } else { |
| 686 | return mp_cmp_mag(a, b); |
| 687 | } |
| 688 | } |
| 689 | |
| 690 | |
| 691 | /* compare a digit */ |
| 692 | static int mp_cmp_d(mp_int * a, mp_digit b) |
| 693 | { |
| 694 | /* compare based on sign */ |
| 695 | if (a->sign == MP_NEG) { |
| 696 | return MP_LT; |
| 697 | } |
| 698 | |
| 699 | /* compare based on magnitude */ |
| 700 | if (a->used > 1) { |
| 701 | return MP_GT; |
| 702 | } |
| 703 | |
| 704 | /* compare the only digit of a to b */ |
| 705 | if (a->dp[0] > b) { |
| 706 | return MP_GT; |
| 707 | } else if (a->dp[0] < b) { |
| 708 | return MP_LT; |
| 709 | } else { |
| 710 | return MP_EQ; |
| 711 | } |
| 712 | } |
| 713 | |
| 714 | |
| 715 | #ifndef LTM_NO_NEG_EXP |
| 716 | /* hac 14.61, pp608 */ |
| 717 | static int mp_invmod (mp_int * a, mp_int * b, mp_int * c) |
| 718 | { |
| 719 | /* b cannot be negative */ |
| 720 | if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| 721 | return MP_VAL; |
| 722 | } |
| 723 | |
| 724 | #ifdef BN_FAST_MP_INVMOD_C |
| 725 | /* if the modulus is odd we can use a faster routine instead */ |
| 726 | if (mp_isodd (b) == 1) { |
| 727 | return fast_mp_invmod (a, b, c); |
| 728 | } |
| 729 | #endif |
| 730 | |
| 731 | #ifdef BN_MP_INVMOD_SLOW_C |
| 732 | return mp_invmod_slow(a, b, c); |
| 733 | #endif |
| 734 | |
| 735 | #ifndef BN_FAST_MP_INVMOD_C |
| 736 | #ifndef BN_MP_INVMOD_SLOW_C |
| 737 | #error mp_invmod would always fail |
| 738 | #endif |
| 739 | #endif |
| 740 | return MP_VAL; |
| 741 | } |
| 742 | #endif /* LTM_NO_NEG_EXP */ |
| 743 | |
| 744 | |
| 745 | /* get the size for an unsigned equivalent */ |
| 746 | static int mp_unsigned_bin_size (mp_int * a) |
| 747 | { |
| 748 | int size = mp_count_bits (a); |
| 749 | return (size / 8 + ((size & 7) != 0 ? 1 : 0)); |
| 750 | } |
| 751 | |
| 752 | |
| 753 | #ifndef LTM_NO_NEG_EXP |
| 754 | /* hac 14.61, pp608 */ |
| 755 | static int mp_invmod_slow (mp_int * a, mp_int * b, mp_int * c) |
| 756 | { |
| 757 | mp_int x, y, u, v, A, B, C, D; |
| 758 | int res; |
| 759 | |
| 760 | /* b cannot be negative */ |
| 761 | if (b->sign == MP_NEG || mp_iszero(b) == 1) { |
| 762 | return MP_VAL; |
| 763 | } |
| 764 | |
| 765 | /* init temps */ |
| 766 | if ((res = mp_init_multi(&x, &y, &u, &v, |
| 767 | &A, &B, &C, &D, NULL)) != MP_OKAY) { |
| 768 | return res; |
| 769 | } |
| 770 | |
| 771 | /* x = a, y = b */ |
| 772 | if ((res = mp_mod(a, b, &x)) != MP_OKAY) { |
| 773 | goto LBL_ERR; |
| 774 | } |
| 775 | if ((res = mp_copy (b, &y)) != MP_OKAY) { |
| 776 | goto LBL_ERR; |
| 777 | } |
| 778 | |
| 779 | /* 2. [modified] if x,y are both even then return an error! */ |
| 780 | if (mp_iseven (&x) == 1 && mp_iseven (&y) == 1) { |
| 781 | res = MP_VAL; |
| 782 | goto LBL_ERR; |
| 783 | } |
| 784 | |
| 785 | /* 3. u=x, v=y, A=1, B=0, C=0,D=1 */ |
| 786 | if ((res = mp_copy (&x, &u)) != MP_OKAY) { |
| 787 | goto LBL_ERR; |
| 788 | } |
| 789 | if ((res = mp_copy (&y, &v)) != MP_OKAY) { |
| 790 | goto LBL_ERR; |
| 791 | } |
| 792 | mp_set (&A, 1); |
| 793 | mp_set (&D, 1); |
| 794 | |
| 795 | top: |
| 796 | /* 4. while u is even do */ |
| 797 | while (mp_iseven (&u) == 1) { |
| 798 | /* 4.1 u = u/2 */ |
| 799 | if ((res = mp_div_2 (&u, &u)) != MP_OKAY) { |
| 800 | goto LBL_ERR; |
| 801 | } |
| 802 | /* 4.2 if A or B is odd then */ |
| 803 | if (mp_isodd (&A) == 1 || mp_isodd (&B) == 1) { |
| 804 | /* A = (A+y)/2, B = (B-x)/2 */ |
| 805 | if ((res = mp_add (&A, &y, &A)) != MP_OKAY) { |
| 806 | goto LBL_ERR; |
| 807 | } |
| 808 | if ((res = mp_sub (&B, &x, &B)) != MP_OKAY) { |
| 809 | goto LBL_ERR; |
| 810 | } |
| 811 | } |
| 812 | /* A = A/2, B = B/2 */ |
| 813 | if ((res = mp_div_2 (&A, &A)) != MP_OKAY) { |
| 814 | goto LBL_ERR; |
| 815 | } |
| 816 | if ((res = mp_div_2 (&B, &B)) != MP_OKAY) { |
| 817 | goto LBL_ERR; |
| 818 | } |
| 819 | } |
| 820 | |
| 821 | /* 5. while v is even do */ |
| 822 | while (mp_iseven (&v) == 1) { |
| 823 | /* 5.1 v = v/2 */ |
| 824 | if ((res = mp_div_2 (&v, &v)) != MP_OKAY) { |
| 825 | goto LBL_ERR; |
| 826 | } |
| 827 | /* 5.2 if C or D is odd then */ |
| 828 | if (mp_isodd (&C) == 1 || mp_isodd (&D) == 1) { |
| 829 | /* C = (C+y)/2, D = (D-x)/2 */ |
| 830 | if ((res = mp_add (&C, &y, &C)) != MP_OKAY) { |
| 831 | goto LBL_ERR; |
| 832 | } |
| 833 | if ((res = mp_sub (&D, &x, &D)) != MP_OKAY) { |
| 834 | goto LBL_ERR; |
| 835 | } |
| 836 | } |
| 837 | /* C = C/2, D = D/2 */ |
| 838 | if ((res = mp_div_2 (&C, &C)) != MP_OKAY) { |
| 839 | goto LBL_ERR; |
| 840 | } |
| 841 | if ((res = mp_div_2 (&D, &D)) != MP_OKAY) { |
| 842 | goto LBL_ERR; |
| 843 | } |
| 844 | } |
| 845 | |
| 846 | /* 6. if u >= v then */ |
| 847 | if (mp_cmp (&u, &v) != MP_LT) { |
| 848 | /* u = u - v, A = A - C, B = B - D */ |
| 849 | if ((res = mp_sub (&u, &v, &u)) != MP_OKAY) { |
| 850 | goto LBL_ERR; |
| 851 | } |
| 852 | |
| 853 | if ((res = mp_sub (&A, &C, &A)) != MP_OKAY) { |
| 854 | goto LBL_ERR; |
| 855 | } |
| 856 | |
| 857 | if ((res = mp_sub (&B, &D, &B)) != MP_OKAY) { |
| 858 | goto LBL_ERR; |
| 859 | } |
| 860 | } else { |
| 861 | /* v - v - u, C = C - A, D = D - B */ |
| 862 | if ((res = mp_sub (&v, &u, &v)) != MP_OKAY) { |
| 863 | goto LBL_ERR; |
| 864 | } |
| 865 | |
| 866 | if ((res = mp_sub (&C, &A, &C)) != MP_OKAY) { |
| 867 | goto LBL_ERR; |
| 868 | } |
| 869 | |
| 870 | if ((res = mp_sub (&D, &B, &D)) != MP_OKAY) { |
| 871 | goto LBL_ERR; |
| 872 | } |
| 873 | } |
| 874 | |
| 875 | /* if not zero goto step 4 */ |
| 876 | if (mp_iszero (&u) == 0) |
| 877 | goto top; |
| 878 | |
| 879 | /* now a = C, b = D, gcd == g*v */ |
| 880 | |
| 881 | /* if v != 1 then there is no inverse */ |
| 882 | if (mp_cmp_d (&v, 1) != MP_EQ) { |
| 883 | res = MP_VAL; |
| 884 | goto LBL_ERR; |
| 885 | } |
| 886 | |
| 887 | /* if its too low */ |
| 888 | while (mp_cmp_d(&C, 0) == MP_LT) { |
| 889 | if ((res = mp_add(&C, b, &C)) != MP_OKAY) { |
| 890 | goto LBL_ERR; |
| 891 | } |
| 892 | } |
| 893 | |
| 894 | /* too big */ |
| 895 | while (mp_cmp_mag(&C, b) != MP_LT) { |
| 896 | if ((res = mp_sub(&C, b, &C)) != MP_OKAY) { |
| 897 | goto LBL_ERR; |
| 898 | } |
| 899 | } |
| 900 | |
| 901 | /* C is now the inverse */ |
| 902 | mp_exch (&C, c); |
| 903 | res = MP_OKAY; |
| 904 | LBL_ERR:mp_clear_multi (&x, &y, &u, &v, &A, &B, &C, &D, NULL); |
| 905 | return res; |
| 906 | } |
| 907 | #endif /* LTM_NO_NEG_EXP */ |
| 908 | |
| 909 | |
| 910 | /* compare maginitude of two ints (unsigned) */ |
| 911 | static int mp_cmp_mag (mp_int * a, mp_int * b) |
| 912 | { |
| 913 | int n; |
| 914 | mp_digit *tmpa, *tmpb; |
| 915 | |
| 916 | /* compare based on # of non-zero digits */ |
| 917 | if (a->used > b->used) { |
| 918 | return MP_GT; |
| 919 | } |
| 920 | |
| 921 | if (a->used < b->used) { |
| 922 | return MP_LT; |
| 923 | } |
| 924 | |
| 925 | /* alias for a */ |
| 926 | tmpa = a->dp + (a->used - 1); |
| 927 | |
| 928 | /* alias for b */ |
| 929 | tmpb = b->dp + (a->used - 1); |
| 930 | |
| 931 | /* compare based on digits */ |
| 932 | for (n = 0; n < a->used; ++n, --tmpa, --tmpb) { |
| 933 | if (*tmpa > *tmpb) { |
| 934 | return MP_GT; |
| 935 | } |
| 936 | |
| 937 | if (*tmpa < *tmpb) { |
| 938 | return MP_LT; |
| 939 | } |
| 940 | } |
| 941 | return MP_EQ; |
| 942 | } |
| 943 | |
| 944 | |
| 945 | /* reads a unsigned char array, assumes the msb is stored first [big endian] */ |
| 946 | static int mp_read_unsigned_bin (mp_int * a, const unsigned char *b, int c) |
| 947 | { |
| 948 | int res; |
| 949 | |
| 950 | /* make sure there are at least two digits */ |
| 951 | if (a->alloc < 2) { |
| 952 | if ((res = mp_grow(a, 2)) != MP_OKAY) { |
| 953 | return res; |
| 954 | } |
| 955 | } |
| 956 | |
| 957 | /* zero the int */ |
| 958 | mp_zero (a); |
| 959 | |
| 960 | /* read the bytes in */ |
| 961 | while (c-- > 0) { |
| 962 | if ((res = mp_mul_2d (a, 8, a)) != MP_OKAY) { |
| 963 | return res; |
| 964 | } |
| 965 | |
| 966 | #ifndef MP_8BIT |
| 967 | a->dp[0] |= *b++; |
| 968 | a->used += 1; |
| 969 | #else |
| 970 | a->dp[0] = (*b & MP_MASK); |
| 971 | a->dp[1] |= ((*b++ >> 7U) & 1); |
| 972 | a->used += 2; |
| 973 | #endif |
| 974 | } |
| 975 | mp_clamp (a); |
| 976 | return MP_OKAY; |
| 977 | } |
| 978 | |
| 979 | |
| 980 | /* store in unsigned [big endian] format */ |
| 981 | static int mp_to_unsigned_bin (mp_int * a, unsigned char *b) |
| 982 | { |
| 983 | int x, res; |
| 984 | mp_int t; |
| 985 | |
| 986 | if ((res = mp_init_copy (&t, a)) != MP_OKAY) { |
| 987 | return res; |
| 988 | } |
| 989 | |
| 990 | x = 0; |
| 991 | while (mp_iszero (&t) == 0) { |
| 992 | #ifndef MP_8BIT |
| 993 | b[x++] = (unsigned char) (t.dp[0] & 255); |
| 994 | #else |
| 995 | b[x++] = (unsigned char) (t.dp[0] | ((t.dp[1] & 0x01) << 7)); |
| 996 | #endif |
| 997 | if ((res = mp_div_2d (&t, 8, &t, NULL)) != MP_OKAY) { |
| 998 | mp_clear (&t); |
| 999 | return res; |
| 1000 | } |
| 1001 | } |
| 1002 | bn_reverse (b, x); |
| 1003 | mp_clear (&t); |
| 1004 | return MP_OKAY; |
| 1005 | } |
| 1006 | |
| 1007 | |
| 1008 | /* shift right by a certain bit count (store quotient in c, optional remainder in d) */ |
| 1009 | static int mp_div_2d (mp_int * a, int b, mp_int * c, mp_int * d) |
| 1010 | { |
| 1011 | mp_digit D, r, rr; |
| 1012 | int x, res; |
| 1013 | mp_int t; |
| 1014 | |
| 1015 | |
| 1016 | /* if the shift count is <= 0 then we do no work */ |
| 1017 | if (b <= 0) { |
| 1018 | res = mp_copy (a, c); |
| 1019 | if (d != NULL) { |
| 1020 | mp_zero (d); |
| 1021 | } |
| 1022 | return res; |
| 1023 | } |
| 1024 | |
| 1025 | if ((res = mp_init (&t)) != MP_OKAY) { |
| 1026 | return res; |
| 1027 | } |
| 1028 | |
| 1029 | /* get the remainder */ |
| 1030 | if (d != NULL) { |
| 1031 | if ((res = mp_mod_2d (a, b, &t)) != MP_OKAY) { |
| 1032 | mp_clear (&t); |
| 1033 | return res; |
| 1034 | } |
| 1035 | } |
| 1036 | |
| 1037 | /* copy */ |
| 1038 | if ((res = mp_copy (a, c)) != MP_OKAY) { |
| 1039 | mp_clear (&t); |
| 1040 | return res; |
| 1041 | } |
| 1042 | |
| 1043 | /* shift by as many digits in the bit count */ |
| 1044 | if (b >= (int)DIGIT_BIT) { |
| 1045 | mp_rshd (c, b / DIGIT_BIT); |
| 1046 | } |
| 1047 | |
| 1048 | /* shift any bit count < DIGIT_BIT */ |
| 1049 | D = (mp_digit) (b % DIGIT_BIT); |
| 1050 | if (D != 0) { |
| 1051 | register mp_digit *tmpc, mask, shift; |
| 1052 | |
| 1053 | /* mask */ |
| 1054 | mask = (((mp_digit)1) << D) - 1; |
| 1055 | |
| 1056 | /* shift for lsb */ |
| 1057 | shift = DIGIT_BIT - D; |
| 1058 | |
| 1059 | /* alias */ |
| 1060 | tmpc = c->dp + (c->used - 1); |
| 1061 | |
| 1062 | /* carry */ |
| 1063 | r = 0; |
| 1064 | for (x = c->used - 1; x >= 0; x--) { |
| 1065 | /* get the lower bits of this word in a temp */ |
| 1066 | rr = *tmpc & mask; |
| 1067 | |
| 1068 | /* shift the current word and mix in the carry bits from the previous word */ |
| 1069 | *tmpc = (*tmpc >> D) | (r << shift); |
| 1070 | --tmpc; |
| 1071 | |
| 1072 | /* set the carry to the carry bits of the current word found above */ |
| 1073 | r = rr; |
| 1074 | } |
| 1075 | } |
| 1076 | mp_clamp (c); |
| 1077 | if (d != NULL) { |
| 1078 | mp_exch (&t, d); |
| 1079 | } |
| 1080 | mp_clear (&t); |
| 1081 | return MP_OKAY; |
| 1082 | } |
| 1083 | |
| 1084 | |
| 1085 | static int mp_init_copy (mp_int * a, mp_int * b) |
| 1086 | { |
| 1087 | int res; |
| 1088 | |
| 1089 | if ((res = mp_init (a)) != MP_OKAY) { |
| 1090 | return res; |
| 1091 | } |
| 1092 | return mp_copy (b, a); |
| 1093 | } |
| 1094 | |
| 1095 | |
| 1096 | /* set to zero */ |
| 1097 | static void mp_zero (mp_int * a) |
| 1098 | { |
| 1099 | int n; |
| 1100 | mp_digit *tmp; |
| 1101 | |
| 1102 | a->sign = MP_ZPOS; |
| 1103 | a->used = 0; |
| 1104 | |
| 1105 | tmp = a->dp; |
| 1106 | for (n = 0; n < a->alloc; n++) { |
| 1107 | *tmp++ = 0; |
| 1108 | } |
| 1109 | } |
| 1110 | |
| 1111 | |
| 1112 | /* copy, b = a */ |
| 1113 | static int mp_copy (mp_int * a, mp_int * b) |
| 1114 | { |
| 1115 | int res, n; |
| 1116 | |
| 1117 | /* if dst == src do nothing */ |
| 1118 | if (a == b) { |
| 1119 | return MP_OKAY; |
| 1120 | } |
| 1121 | |
| 1122 | /* grow dest */ |
| 1123 | if (b->alloc < a->used) { |
| 1124 | if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| 1125 | return res; |
| 1126 | } |
| 1127 | } |
| 1128 | |
| 1129 | /* zero b and copy the parameters over */ |
| 1130 | { |
| 1131 | register mp_digit *tmpa, *tmpb; |
| 1132 | |
| 1133 | /* pointer aliases */ |
| 1134 | |
| 1135 | /* source */ |
| 1136 | tmpa = a->dp; |
| 1137 | |
| 1138 | /* destination */ |
| 1139 | tmpb = b->dp; |
| 1140 | |
| 1141 | /* copy all the digits */ |
| 1142 | for (n = 0; n < a->used; n++) { |
| 1143 | *tmpb++ = *tmpa++; |
| 1144 | } |
| 1145 | |
| 1146 | /* clear high digits */ |
| 1147 | for (; n < b->used; n++) { |
| 1148 | *tmpb++ = 0; |
| 1149 | } |
| 1150 | } |
| 1151 | |
| 1152 | /* copy used count and sign */ |
| 1153 | b->used = a->used; |
| 1154 | b->sign = a->sign; |
| 1155 | return MP_OKAY; |
| 1156 | } |
| 1157 | |
| 1158 | |
| 1159 | /* shift right a certain amount of digits */ |
| 1160 | static void mp_rshd (mp_int * a, int b) |
| 1161 | { |
| 1162 | int x; |
| 1163 | |
| 1164 | /* if b <= 0 then ignore it */ |
| 1165 | if (b <= 0) { |
| 1166 | return; |
| 1167 | } |
| 1168 | |
| 1169 | /* if b > used then simply zero it and return */ |
| 1170 | if (a->used <= b) { |
| 1171 | mp_zero (a); |
| 1172 | return; |
| 1173 | } |
| 1174 | |
| 1175 | { |
| 1176 | register mp_digit *bottom, *top; |
| 1177 | |
| 1178 | /* shift the digits down */ |
| 1179 | |
| 1180 | /* bottom */ |
| 1181 | bottom = a->dp; |
| 1182 | |
| 1183 | /* top [offset into digits] */ |
| 1184 | top = a->dp + b; |
| 1185 | |
| 1186 | /* this is implemented as a sliding window where |
| 1187 | * the window is b-digits long and digits from |
| 1188 | * the top of the window are copied to the bottom |
| 1189 | * |
| 1190 | * e.g. |
| 1191 | |
| 1192 | b-2 | b-1 | b0 | b1 | b2 | ... | bb | ----> |
| 1193 | /\ | ----> |
| 1194 | \-------------------/ ----> |
| 1195 | */ |
| 1196 | for (x = 0; x < (a->used - b); x++) { |
| 1197 | *bottom++ = *top++; |
| 1198 | } |
| 1199 | |
| 1200 | /* zero the top digits */ |
| 1201 | for (; x < a->used; x++) { |
| 1202 | *bottom++ = 0; |
| 1203 | } |
| 1204 | } |
| 1205 | |
| 1206 | /* remove excess digits */ |
| 1207 | a->used -= b; |
| 1208 | } |
| 1209 | |
| 1210 | |
| 1211 | /* swap the elements of two integers, for cases where you can't simply swap the |
| 1212 | * mp_int pointers around |
| 1213 | */ |
| 1214 | static void mp_exch (mp_int * a, mp_int * b) |
| 1215 | { |
| 1216 | mp_int t; |
| 1217 | |
| 1218 | t = *a; |
| 1219 | *a = *b; |
| 1220 | *b = t; |
| 1221 | } |
| 1222 | |
| 1223 | |
| 1224 | /* trim unused digits |
| 1225 | * |
| 1226 | * This is used to ensure that leading zero digits are |
| 1227 | * trimed and the leading "used" digit will be non-zero |
| 1228 | * Typically very fast. Also fixes the sign if there |
| 1229 | * are no more leading digits |
| 1230 | */ |
| 1231 | static void mp_clamp (mp_int * a) |
| 1232 | { |
| 1233 | /* decrease used while the most significant digit is |
| 1234 | * zero. |
| 1235 | */ |
| 1236 | while (a->used > 0 && a->dp[a->used - 1] == 0) { |
| 1237 | --(a->used); |
| 1238 | } |
| 1239 | |
| 1240 | /* reset the sign flag if used == 0 */ |
| 1241 | if (a->used == 0) { |
| 1242 | a->sign = MP_ZPOS; |
| 1243 | } |
| 1244 | } |
| 1245 | |
| 1246 | |
| 1247 | /* grow as required */ |
| 1248 | static int mp_grow (mp_int * a, int size) |
| 1249 | { |
| 1250 | int i; |
| 1251 | mp_digit *tmp; |
| 1252 | |
| 1253 | /* if the alloc size is smaller alloc more ram */ |
| 1254 | if (a->alloc < size) { |
| 1255 | /* ensure there are always at least MP_PREC digits extra on top */ |
| 1256 | size += (MP_PREC * 2) - (size % MP_PREC); |
| 1257 | |
| 1258 | /* reallocate the array a->dp |
| 1259 | * |
| 1260 | * We store the return in a temporary variable |
| 1261 | * in case the operation failed we don't want |
| 1262 | * to overwrite the dp member of a. |
| 1263 | */ |
| 1264 | tmp = OPT_CAST(mp_digit) XREALLOC (a->dp, sizeof (mp_digit) * size); |
| 1265 | if (tmp == NULL) { |
| 1266 | /* reallocation failed but "a" is still valid [can be freed] */ |
| 1267 | return MP_MEM; |
| 1268 | } |
| 1269 | |
| 1270 | /* reallocation succeeded so set a->dp */ |
| 1271 | a->dp = tmp; |
| 1272 | |
| 1273 | /* zero excess digits */ |
| 1274 | i = a->alloc; |
| 1275 | a->alloc = size; |
| 1276 | for (; i < a->alloc; i++) { |
| 1277 | a->dp[i] = 0; |
| 1278 | } |
| 1279 | } |
| 1280 | return MP_OKAY; |
| 1281 | } |
| 1282 | |
| 1283 | |
| 1284 | #ifdef BN_MP_ABS_C |
| 1285 | /* b = |a| |
| 1286 | * |
| 1287 | * Simple function copies the input and fixes the sign to positive |
| 1288 | */ |
| 1289 | static int mp_abs (mp_int * a, mp_int * b) |
| 1290 | { |
| 1291 | int res; |
| 1292 | |
| 1293 | /* copy a to b */ |
| 1294 | if (a != b) { |
| 1295 | if ((res = mp_copy (a, b)) != MP_OKAY) { |
| 1296 | return res; |
| 1297 | } |
| 1298 | } |
| 1299 | |
| 1300 | /* force the sign of b to positive */ |
| 1301 | b->sign = MP_ZPOS; |
| 1302 | |
| 1303 | return MP_OKAY; |
| 1304 | } |
| 1305 | #endif |
| 1306 | |
| 1307 | |
| 1308 | /* set to a digit */ |
| 1309 | static void mp_set (mp_int * a, mp_digit b) |
| 1310 | { |
| 1311 | mp_zero (a); |
| 1312 | a->dp[0] = b & MP_MASK; |
| 1313 | a->used = (a->dp[0] != 0) ? 1 : 0; |
| 1314 | } |
| 1315 | |
| 1316 | |
| 1317 | #ifndef LTM_NO_NEG_EXP |
| 1318 | /* b = a/2 */ |
| 1319 | static int mp_div_2(mp_int * a, mp_int * b) |
| 1320 | { |
| 1321 | int x, res, oldused; |
| 1322 | |
| 1323 | /* copy */ |
| 1324 | if (b->alloc < a->used) { |
| 1325 | if ((res = mp_grow (b, a->used)) != MP_OKAY) { |
| 1326 | return res; |
| 1327 | } |
| 1328 | } |
| 1329 | |
| 1330 | oldused = b->used; |
| 1331 | b->used = a->used; |
| 1332 | { |
| 1333 | register mp_digit r, rr, *tmpa, *tmpb; |
| 1334 | |
| 1335 | /* source alias */ |
| 1336 | tmpa = a->dp + b->used - 1; |
| 1337 | |
| 1338 | /* dest alias */ |
| 1339 | tmpb = b->dp + b->used - 1; |
| 1340 | |
| 1341 | /* carry */ |
| 1342 | r = 0; |
| 1343 | for (x = b->used - 1; x >= 0; x--) { |
| 1344 | /* get the carry for the next iteration */ |
| 1345 | rr = *tmpa & 1; |
| 1346 | |
| 1347 | /* shift the current digit, add in carry and store */ |
| 1348 | *tmpb-- = (*tmpa-- >> 1) | (r << (DIGIT_BIT - 1)); |
| 1349 | |
| 1350 | /* forward carry to next iteration */ |
| 1351 | r = rr; |
| 1352 | } |
| 1353 | |
| 1354 | /* zero excess digits */ |
| 1355 | tmpb = b->dp + b->used; |
| 1356 | for (x = b->used; x < oldused; x++) { |
| 1357 | *tmpb++ = 0; |
| 1358 | } |
| 1359 | } |
| 1360 | b->sign = a->sign; |
| 1361 | mp_clamp (b); |
| 1362 | return MP_OKAY; |
| 1363 | } |
| 1364 | #endif /* LTM_NO_NEG_EXP */ |
| 1365 | |
| 1366 | |
| 1367 | /* shift left by a certain bit count */ |
| 1368 | static int mp_mul_2d (mp_int * a, int b, mp_int * c) |
| 1369 | { |
| 1370 | mp_digit d; |
| 1371 | int res; |
| 1372 | |
| 1373 | /* copy */ |
| 1374 | if (a != c) { |
| 1375 | if ((res = mp_copy (a, c)) != MP_OKAY) { |
| 1376 | return res; |
| 1377 | } |
| 1378 | } |
| 1379 | |
| 1380 | if (c->alloc < (int)(c->used + b/DIGIT_BIT + 1)) { |
| 1381 | if ((res = mp_grow (c, c->used + b / DIGIT_BIT + 1)) != MP_OKAY) { |
| 1382 | return res; |
| 1383 | } |
| 1384 | } |
| 1385 | |
| 1386 | /* shift by as many digits in the bit count */ |
| 1387 | if (b >= (int)DIGIT_BIT) { |
| 1388 | if ((res = mp_lshd (c, b / DIGIT_BIT)) != MP_OKAY) { |
| 1389 | return res; |
| 1390 | } |
| 1391 | } |
| 1392 | |
| 1393 | /* shift any bit count < DIGIT_BIT */ |
| 1394 | d = (mp_digit) (b % DIGIT_BIT); |
| 1395 | if (d != 0) { |
| 1396 | register mp_digit *tmpc, shift, mask, r, rr; |
| 1397 | register int x; |
| 1398 | |
| 1399 | /* bitmask for carries */ |
| 1400 | mask = (((mp_digit)1) << d) - 1; |
| 1401 | |
| 1402 | /* shift for msbs */ |
| 1403 | shift = DIGIT_BIT - d; |
| 1404 | |
| 1405 | /* alias */ |
| 1406 | tmpc = c->dp; |
| 1407 | |
| 1408 | /* carry */ |
| 1409 | r = 0; |
| 1410 | for (x = 0; x < c->used; x++) { |
| 1411 | /* get the higher bits of the current word */ |
| 1412 | rr = (*tmpc >> shift) & mask; |
| 1413 | |
| 1414 | /* shift the current word and OR in the carry */ |
| 1415 | *tmpc = ((*tmpc << d) | r) & MP_MASK; |
| 1416 | ++tmpc; |
| 1417 | |
| 1418 | /* set the carry to the carry bits of the current word */ |
| 1419 | r = rr; |
| 1420 | } |
| 1421 | |
| 1422 | /* set final carry */ |
| 1423 | if (r != 0) { |
| 1424 | c->dp[(c->used)++] = r; |
| 1425 | } |
| 1426 | } |
| 1427 | mp_clamp (c); |
| 1428 | return MP_OKAY; |
| 1429 | } |
| 1430 | |
| 1431 | |
| 1432 | #ifdef BN_MP_INIT_MULTI_C |
| 1433 | static int mp_init_multi(mp_int *mp, ...) |
| 1434 | { |
| 1435 | mp_err res = MP_OKAY; /* Assume ok until proven otherwise */ |
| 1436 | int n = 0; /* Number of ok inits */ |
| 1437 | mp_int* cur_arg = mp; |
| 1438 | va_list args; |
| 1439 | |
| 1440 | va_start(args, mp); /* init args to next argument from caller */ |
| 1441 | while (cur_arg != NULL) { |
| 1442 | if (mp_init(cur_arg) != MP_OKAY) { |
| 1443 | /* Oops - error! Back-track and mp_clear what we already |
| 1444 | succeeded in init-ing, then return error. |
| 1445 | */ |
| 1446 | va_list clean_args; |
| 1447 | |
| 1448 | /* end the current list */ |
| 1449 | va_end(args); |
| 1450 | |
| 1451 | /* now start cleaning up */ |
| 1452 | cur_arg = mp; |
| 1453 | va_start(clean_args, mp); |
| 1454 | while (n--) { |
| 1455 | mp_clear(cur_arg); |
| 1456 | cur_arg = va_arg(clean_args, mp_int*); |
| 1457 | } |
| 1458 | va_end(clean_args); |
| 1459 | res = MP_MEM; |
| 1460 | break; |
| 1461 | } |
| 1462 | n++; |
| 1463 | cur_arg = va_arg(args, mp_int*); |
| 1464 | } |
| 1465 | va_end(args); |
| 1466 | return res; /* Assumed ok, if error flagged above. */ |
| 1467 | } |
| 1468 | #endif |
| 1469 | |
| 1470 | |
| 1471 | #ifdef BN_MP_CLEAR_MULTI_C |
| 1472 | static void mp_clear_multi(mp_int *mp, ...) |
| 1473 | { |
| 1474 | mp_int* next_mp = mp; |
| 1475 | va_list args; |
| 1476 | va_start(args, mp); |
| 1477 | while (next_mp != NULL) { |
| 1478 | mp_clear(next_mp); |
| 1479 | next_mp = va_arg(args, mp_int*); |
| 1480 | } |
| 1481 | va_end(args); |
| 1482 | } |
| 1483 | #endif |
| 1484 | |
| 1485 | |
| 1486 | /* shift left a certain amount of digits */ |
| 1487 | static int mp_lshd (mp_int * a, int b) |
| 1488 | { |
| 1489 | int x, res; |
| 1490 | |
| 1491 | /* if its less than zero return */ |
| 1492 | if (b <= 0) { |
| 1493 | return MP_OKAY; |
| 1494 | } |
| 1495 | |
| 1496 | /* grow to fit the new digits */ |
| 1497 | if (a->alloc < a->used + b) { |
| 1498 | if ((res = mp_grow (a, a->used + b)) != MP_OKAY) { |
| 1499 | return res; |
| 1500 | } |
| 1501 | } |
| 1502 | |
| 1503 | { |
| 1504 | register mp_digit *top, *bottom; |
| 1505 | |
| 1506 | /* increment the used by the shift amount then copy upwards */ |
| 1507 | a->used += b; |
| 1508 | |
| 1509 | /* top */ |
| 1510 | top = a->dp + a->used - 1; |
| 1511 | |
| 1512 | /* base */ |
| 1513 | bottom = a->dp + a->used - 1 - b; |
| 1514 | |
| 1515 | /* much like mp_rshd this is implemented using a sliding window |
| 1516 | * except the window goes the otherway around. Copying from |
| 1517 | * the bottom to the top. see bn_mp_rshd.c for more info. |
| 1518 | */ |
| 1519 | for (x = a->used - 1; x >= b; x--) { |
| 1520 | *top-- = *bottom--; |
| 1521 | } |
| 1522 | |
| 1523 | /* zero the lower digits */ |
| 1524 | top = a->dp; |
| 1525 | for (x = 0; x < b; x++) { |
| 1526 | *top++ = 0; |
| 1527 | } |
| 1528 | } |
| 1529 | return MP_OKAY; |
| 1530 | } |
| 1531 | |
| 1532 | |
| 1533 | /* returns the number of bits in an int */ |
| 1534 | static int mp_count_bits (mp_int * a) |
| 1535 | { |
| 1536 | int r; |
| 1537 | mp_digit q; |
| 1538 | |
| 1539 | /* shortcut */ |
| 1540 | if (a->used == 0) { |
| 1541 | return 0; |
| 1542 | } |
| 1543 | |
| 1544 | /* get number of digits and add that */ |
| 1545 | r = (a->used - 1) * DIGIT_BIT; |
| 1546 | |
| 1547 | /* take the last digit and count the bits in it */ |
| 1548 | q = a->dp[a->used - 1]; |
| 1549 | while (q > ((mp_digit) 0)) { |
| 1550 | ++r; |
| 1551 | q >>= ((mp_digit) 1); |
| 1552 | } |
| 1553 | return r; |
| 1554 | } |
| 1555 | |
| 1556 | |
| 1557 | /* calc a value mod 2**b */ |
| 1558 | static int mp_mod_2d (mp_int * a, int b, mp_int * c) |
| 1559 | { |
| 1560 | int x, res; |
| 1561 | |
| 1562 | /* if b is <= 0 then zero the int */ |
| 1563 | if (b <= 0) { |
| 1564 | mp_zero (c); |
| 1565 | return MP_OKAY; |
| 1566 | } |
| 1567 | |
| 1568 | /* if the modulus is larger than the value than return */ |
| 1569 | if (b >= (int) (a->used * DIGIT_BIT)) { |
| 1570 | res = mp_copy (a, c); |
| 1571 | return res; |
| 1572 | } |
| 1573 | |
| 1574 | /* copy */ |
| 1575 | if ((res = mp_copy (a, c)) != MP_OKAY) { |
| 1576 | return res; |
| 1577 | } |
| 1578 | |
| 1579 | /* zero digits above the last digit of the modulus */ |
| 1580 | for (x = (b / DIGIT_BIT) + ((b % DIGIT_BIT) == 0 ? 0 : 1); x < c->used; x++) { |
| 1581 | c->dp[x] = 0; |
| 1582 | } |
| 1583 | /* clear the digit that is not completely outside/inside the modulus */ |
| 1584 | c->dp[b / DIGIT_BIT] &= |
| 1585 | (mp_digit) ((((mp_digit) 1) << (((mp_digit) b) % DIGIT_BIT)) - ((mp_digit) 1)); |
| 1586 | mp_clamp (c); |
| 1587 | return MP_OKAY; |
| 1588 | } |
| 1589 | |
| 1590 | |
| 1591 | #ifdef BN_MP_DIV_SMALL |
| 1592 | |
| 1593 | /* slower bit-bang division... also smaller */ |
| 1594 | static int mp_div(mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| 1595 | { |
| 1596 | mp_int ta, tb, tq, q; |
| 1597 | int res, n, n2; |
| 1598 | |
| 1599 | /* is divisor zero ? */ |
| 1600 | if (mp_iszero (b) == 1) { |
| 1601 | return MP_VAL; |
| 1602 | } |
| 1603 | |
| 1604 | /* if a < b then q=0, r = a */ |
| 1605 | if (mp_cmp_mag (a, b) == MP_LT) { |
| 1606 | if (d != NULL) { |
| 1607 | res = mp_copy (a, d); |
| 1608 | } else { |
| 1609 | res = MP_OKAY; |
| 1610 | } |
| 1611 | if (c != NULL) { |
| 1612 | mp_zero (c); |
| 1613 | } |
| 1614 | return res; |
| 1615 | } |
| 1616 | |
| 1617 | /* init our temps */ |
| 1618 | if ((res = mp_init_multi(&ta, &tb, &tq, &q, NULL) != MP_OKAY)) { |
| 1619 | return res; |
| 1620 | } |
| 1621 | |
| 1622 | |
| 1623 | mp_set(&tq, 1); |
| 1624 | n = mp_count_bits(a) - mp_count_bits(b); |
| 1625 | if (((res = mp_abs(a, &ta)) != MP_OKAY) || |
| 1626 | ((res = mp_abs(b, &tb)) != MP_OKAY) || |
| 1627 | ((res = mp_mul_2d(&tb, n, &tb)) != MP_OKAY) || |
| 1628 | ((res = mp_mul_2d(&tq, n, &tq)) != MP_OKAY)) { |
| 1629 | goto LBL_ERR; |
| 1630 | } |
| 1631 | |
| 1632 | while (n-- >= 0) { |
| 1633 | if (mp_cmp(&tb, &ta) != MP_GT) { |
| 1634 | if (((res = mp_sub(&ta, &tb, &ta)) != MP_OKAY) || |
| 1635 | ((res = mp_add(&q, &tq, &q)) != MP_OKAY)) { |
| 1636 | goto LBL_ERR; |
| 1637 | } |
| 1638 | } |
| 1639 | if (((res = mp_div_2d(&tb, 1, &tb, NULL)) != MP_OKAY) || |
| 1640 | ((res = mp_div_2d(&tq, 1, &tq, NULL)) != MP_OKAY)) { |
| 1641 | goto LBL_ERR; |
| 1642 | } |
| 1643 | } |
| 1644 | |
| 1645 | /* now q == quotient and ta == remainder */ |
| 1646 | n = a->sign; |
| 1647 | n2 = (a->sign == b->sign ? MP_ZPOS : MP_NEG); |
| 1648 | if (c != NULL) { |
| 1649 | mp_exch(c, &q); |
| 1650 | c->sign = (mp_iszero(c) == MP_YES) ? MP_ZPOS : n2; |
| 1651 | } |
| 1652 | if (d != NULL) { |
| 1653 | mp_exch(d, &ta); |
| 1654 | d->sign = (mp_iszero(d) == MP_YES) ? MP_ZPOS : n; |
| 1655 | } |
| 1656 | LBL_ERR: |
| 1657 | mp_clear_multi(&ta, &tb, &tq, &q, NULL); |
| 1658 | return res; |
| 1659 | } |
| 1660 | |
| 1661 | #else |
| 1662 | |
| 1663 | /* integer signed division. |
| 1664 | * c*b + d == a [e.g. a/b, c=quotient, d=remainder] |
| 1665 | * HAC pp.598 Algorithm 14.20 |
| 1666 | * |
| 1667 | * Note that the description in HAC is horribly |
| 1668 | * incomplete. For example, it doesn't consider |
| 1669 | * the case where digits are removed from 'x' in |
| 1670 | * the inner loop. It also doesn't consider the |
| 1671 | * case that y has fewer than three digits, etc.. |
| 1672 | * |
| 1673 | * The overall algorithm is as described as |
| 1674 | * 14.20 from HAC but fixed to treat these cases. |
| 1675 | */ |
| 1676 | static int mp_div (mp_int * a, mp_int * b, mp_int * c, mp_int * d) |
| 1677 | { |
| 1678 | mp_int q, x, y, t1, t2; |
| 1679 | int res, n, t, i, norm, neg; |
| 1680 | |
| 1681 | /* is divisor zero ? */ |
| 1682 | if (mp_iszero (b) == 1) { |
| 1683 | return MP_VAL; |
| 1684 | } |
| 1685 | |
| 1686 | /* if a < b then q=0, r = a */ |
| 1687 | if (mp_cmp_mag (a, b) == MP_LT) { |
| 1688 | if (d != NULL) { |
| 1689 | res = mp_copy (a, d); |
| 1690 | } else { |
| 1691 | res = MP_OKAY; |
| 1692 | } |
| 1693 | if (c != NULL) { |
| 1694 | mp_zero (c); |
| 1695 | } |
| 1696 | return res; |
| 1697 | } |
| 1698 | |
| 1699 | if ((res = mp_init_size (&q, a->used + 2)) != MP_OKAY) { |
| 1700 | return res; |
| 1701 | } |
| 1702 | q.used = a->used + 2; |
| 1703 | |
| 1704 | if ((res = mp_init (&t1)) != MP_OKAY) { |
| 1705 | goto LBL_Q; |
| 1706 | } |
| 1707 | |
| 1708 | if ((res = mp_init (&t2)) != MP_OKAY) { |
| 1709 | goto LBL_T1; |
| 1710 | } |
| 1711 | |
| 1712 | if ((res = mp_init_copy (&x, a)) != MP_OKAY) { |
| 1713 | goto LBL_T2; |
| 1714 | } |
| 1715 | |
| 1716 | if ((res = mp_init_copy (&y, b)) != MP_OKAY) { |
| 1717 | goto LBL_X; |
| 1718 | } |
| 1719 | |
| 1720 | /* fix the sign */ |
| 1721 | neg = (a->sign == b->sign) ? MP_ZPOS : MP_NEG; |
| 1722 | x.sign = y.sign = MP_ZPOS; |
| 1723 | |
| 1724 | /* normalize both x and y, ensure that y >= b/2, [b == 2**DIGIT_BIT] */ |
| 1725 | norm = mp_count_bits(&y) % DIGIT_BIT; |
| 1726 | if (norm < (int)(DIGIT_BIT-1)) { |
| 1727 | norm = (DIGIT_BIT-1) - norm; |
| 1728 | if ((res = mp_mul_2d (&x, norm, &x)) != MP_OKAY) { |
| 1729 | goto LBL_Y; |
| 1730 | } |
| 1731 | if ((res = mp_mul_2d (&y, norm, &y)) != MP_OKAY) { |
| 1732 | goto LBL_Y; |
| 1733 | } |
| 1734 | } else { |
| 1735 | norm = 0; |
| 1736 | } |
| 1737 | |
| 1738 | /* note hac does 0 based, so if used==5 then its 0,1,2,3,4, e.g. use 4 */ |
| 1739 | n = x.used - 1; |
| 1740 | t = y.used - 1; |
| 1741 | |
| 1742 | /* while (x >= y*b**n-t) do { q[n-t] += 1; x -= y*b**{n-t} } */ |
| 1743 | if ((res = mp_lshd (&y, n - t)) != MP_OKAY) { /* y = y*b**{n-t} */ |
| 1744 | goto LBL_Y; |
| 1745 | } |
| 1746 | |
| 1747 | while (mp_cmp (&x, &y) != MP_LT) { |
| 1748 | ++(q.dp[n - t]); |
| 1749 | if ((res = mp_sub (&x, &y, &x)) != MP_OKAY) { |
| 1750 | goto LBL_Y; |
| 1751 | } |
| 1752 | } |
| 1753 | |
| 1754 | /* reset y by shifting it back down */ |
| 1755 | mp_rshd (&y, n - t); |
| 1756 | |
| 1757 | /* step 3. for i from n down to (t + 1) */ |
| 1758 | for (i = n; i >= (t + 1); i--) { |
| 1759 | if (i > x.used) { |
| 1760 | continue; |
| 1761 | } |
| 1762 | |
| 1763 | /* step 3.1 if xi == yt then set q{i-t-1} to b-1, |
| 1764 | * otherwise set q{i-t-1} to (xi*b + x{i-1})/yt */ |
| 1765 | if (x.dp[i] == y.dp[t]) { |
| 1766 | q.dp[i - t - 1] = ((((mp_digit)1) << DIGIT_BIT) - 1); |
| 1767 | } else { |
| 1768 | mp_word tmp; |
| 1769 | tmp = ((mp_word) x.dp[i]) << ((mp_word) DIGIT_BIT); |
| 1770 | tmp |= ((mp_word) x.dp[i - 1]); |
| 1771 | tmp /= ((mp_word) y.dp[t]); |
| 1772 | if (tmp > (mp_word) MP_MASK) |
| 1773 | tmp = MP_MASK; |
| 1774 | q.dp[i - t - 1] = (mp_digit) (tmp & (mp_word) (MP_MASK)); |
| 1775 | } |
| 1776 | |
| 1777 | /* while (q{i-t-1} * (yt * b + y{t-1})) > |
| 1778 | xi * b**2 + xi-1 * b + xi-2 |
| 1779 | |
| 1780 | do q{i-t-1} -= 1; |
| 1781 | */ |
| 1782 | q.dp[i - t - 1] = (q.dp[i - t - 1] + 1) & MP_MASK; |
| 1783 | do { |
| 1784 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1) & MP_MASK; |
| 1785 | |
| 1786 | /* find left hand */ |
| 1787 | mp_zero (&t1); |
| 1788 | t1.dp[0] = (t - 1 < 0) ? 0 : y.dp[t - 1]; |
| 1789 | t1.dp[1] = y.dp[t]; |
| 1790 | t1.used = 2; |
| 1791 | if ((res = mp_mul_d (&t1, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| 1792 | goto LBL_Y; |
| 1793 | } |
| 1794 | |
| 1795 | /* find right hand */ |
| 1796 | t2.dp[0] = (i - 2 < 0) ? 0 : x.dp[i - 2]; |
| 1797 | t2.dp[1] = (i - 1 < 0) ? 0 : x.dp[i - 1]; |
| 1798 | t2.dp[2] = x.dp[i]; |
| 1799 | t2.used = 3; |
| 1800 | } while (mp_cmp_mag(&t1, &t2) == MP_GT); |
| 1801 | |
| 1802 | /* step 3.3 x = x - q{i-t-1} * y * b**{i-t-1} */ |
| 1803 | if ((res = mp_mul_d (&y, q.dp[i - t - 1], &t1)) != MP_OKAY) { |
| 1804 | goto LBL_Y; |
| 1805 | } |
| 1806 | |
| 1807 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| 1808 | goto LBL_Y; |
| 1809 | } |
| 1810 | |
| 1811 | if ((res = mp_sub (&x, &t1, &x)) != MP_OKAY) { |
| 1812 | goto LBL_Y; |
| 1813 | } |
| 1814 | |
| 1815 | /* if x < 0 then { x = x + y*b**{i-t-1}; q{i-t-1} -= 1; } */ |
| 1816 | if (x.sign == MP_NEG) { |
| 1817 | if ((res = mp_copy (&y, &t1)) != MP_OKAY) { |
| 1818 | goto LBL_Y; |
| 1819 | } |
| 1820 | if ((res = mp_lshd (&t1, i - t - 1)) != MP_OKAY) { |
| 1821 | goto LBL_Y; |
| 1822 | } |
| 1823 | if ((res = mp_add (&x, &t1, &x)) != MP_OKAY) { |
| 1824 | goto LBL_Y; |
| 1825 | } |
| 1826 | |
| 1827 | q.dp[i - t - 1] = (q.dp[i - t - 1] - 1UL) & MP_MASK; |
| 1828 | } |
| 1829 | } |
| 1830 | |
| 1831 | /* now q is the quotient and x is the remainder |
| 1832 | * [which we have to normalize] |
| 1833 | */ |
| 1834 | |
| 1835 | /* get sign before writing to c */ |
| 1836 | x.sign = x.used == 0 ? MP_ZPOS : a->sign; |
| 1837 | |
| 1838 | if (c != NULL) { |
| 1839 | mp_clamp (&q); |
| 1840 | mp_exch (&q, c); |
| 1841 | c->sign = neg; |
| 1842 | } |
| 1843 | |
| 1844 | if (d != NULL) { |
| 1845 | mp_div_2d (&x, norm, &x, NULL); |
| 1846 | mp_exch (&x, d); |
| 1847 | } |
| 1848 | |
| 1849 | res = MP_OKAY; |
| 1850 | |
| 1851 | LBL_Y:mp_clear (&y); |
| 1852 | LBL_X:mp_clear (&x); |
| 1853 | LBL_T2:mp_clear (&t2); |
| 1854 | LBL_T1:mp_clear (&t1); |
| 1855 | LBL_Q:mp_clear (&q); |
| 1856 | return res; |
| 1857 | } |
| 1858 | |
| 1859 | #endif |
| 1860 | |
| 1861 | |
| 1862 | #ifdef MP_LOW_MEM |
| 1863 | #define TAB_SIZE 32 |
| 1864 | #else |
| 1865 | #define TAB_SIZE 256 |
| 1866 | #endif |
| 1867 | |
| 1868 | static int s_mp_exptmod (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) |
| 1869 | { |
| 1870 | mp_int M[TAB_SIZE], res, mu; |
| 1871 | mp_digit buf; |
| 1872 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
| 1873 | int (*redux)(mp_int*,mp_int*,mp_int*); |
| 1874 | |
| 1875 | /* find window size */ |
| 1876 | x = mp_count_bits (X); |
| 1877 | if (x <= 7) { |
| 1878 | winsize = 2; |
| 1879 | } else if (x <= 36) { |
| 1880 | winsize = 3; |
| 1881 | } else if (x <= 140) { |
| 1882 | winsize = 4; |
| 1883 | } else if (x <= 450) { |
| 1884 | winsize = 5; |
| 1885 | } else if (x <= 1303) { |
| 1886 | winsize = 6; |
| 1887 | } else if (x <= 3529) { |
| 1888 | winsize = 7; |
| 1889 | } else { |
| 1890 | winsize = 8; |
| 1891 | } |
| 1892 | |
| 1893 | #ifdef MP_LOW_MEM |
| 1894 | if (winsize > 5) { |
| 1895 | winsize = 5; |
| 1896 | } |
| 1897 | #endif |
| 1898 | |
| 1899 | /* init M array */ |
| 1900 | /* init first cell */ |
| 1901 | if ((err = mp_init(&M[1])) != MP_OKAY) { |
| 1902 | return err; |
| 1903 | } |
| 1904 | |
| 1905 | /* now init the second half of the array */ |
| 1906 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| 1907 | if ((err = mp_init(&M[x])) != MP_OKAY) { |
| 1908 | for (y = 1<<(winsize-1); y < x; y++) { |
| 1909 | mp_clear (&M[y]); |
| 1910 | } |
| 1911 | mp_clear(&M[1]); |
| 1912 | return err; |
| 1913 | } |
| 1914 | } |
| 1915 | |
| 1916 | /* create mu, used for Barrett reduction */ |
| 1917 | if ((err = mp_init (&mu)) != MP_OKAY) { |
| 1918 | goto LBL_M; |
| 1919 | } |
| 1920 | |
| 1921 | if (redmode == 0) { |
| 1922 | if ((err = mp_reduce_setup (&mu, P)) != MP_OKAY) { |
| 1923 | goto LBL_MU; |
| 1924 | } |
| 1925 | redux = mp_reduce; |
| 1926 | } else { |
| 1927 | if ((err = mp_reduce_2k_setup_l (P, &mu)) != MP_OKAY) { |
| 1928 | goto LBL_MU; |
| 1929 | } |
| 1930 | redux = mp_reduce_2k_l; |
| 1931 | } |
| 1932 | |
| 1933 | /* create M table |
| 1934 | * |
| 1935 | * The M table contains powers of the base, |
| 1936 | * e.g. M[x] = G**x mod P |
| 1937 | * |
| 1938 | * The first half of the table is not |
| 1939 | * computed though accept for M[0] and M[1] |
| 1940 | */ |
| 1941 | if ((err = mp_mod (G, P, &M[1])) != MP_OKAY) { |
| 1942 | goto LBL_MU; |
| 1943 | } |
| 1944 | |
| 1945 | /* compute the value at M[1<<(winsize-1)] by squaring |
| 1946 | * M[1] (winsize-1) times |
| 1947 | */ |
| 1948 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| 1949 | goto LBL_MU; |
| 1950 | } |
| 1951 | |
| 1952 | for (x = 0; x < (winsize - 1); x++) { |
| 1953 | /* square it */ |
| 1954 | if ((err = mp_sqr (&M[1 << (winsize - 1)], |
| 1955 | &M[1 << (winsize - 1)])) != MP_OKAY) { |
| 1956 | goto LBL_MU; |
| 1957 | } |
| 1958 | |
| 1959 | /* reduce modulo P */ |
| 1960 | if ((err = redux (&M[1 << (winsize - 1)], P, &mu)) != MP_OKAY) { |
| 1961 | goto LBL_MU; |
| 1962 | } |
| 1963 | } |
| 1964 | |
| 1965 | /* create upper table, that is M[x] = M[x-1] * M[1] (mod P) |
| 1966 | * for x = (2**(winsize - 1) + 1) to (2**winsize - 1) |
| 1967 | */ |
| 1968 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
| 1969 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
| 1970 | goto LBL_MU; |
| 1971 | } |
| 1972 | if ((err = redux (&M[x], P, &mu)) != MP_OKAY) { |
| 1973 | goto LBL_MU; |
| 1974 | } |
| 1975 | } |
| 1976 | |
| 1977 | /* setup result */ |
| 1978 | if ((err = mp_init (&res)) != MP_OKAY) { |
| 1979 | goto LBL_MU; |
| 1980 | } |
| 1981 | mp_set (&res, 1); |
| 1982 | |
| 1983 | /* set initial mode and bit cnt */ |
| 1984 | mode = 0; |
| 1985 | bitcnt = 1; |
| 1986 | buf = 0; |
| 1987 | digidx = X->used - 1; |
| 1988 | bitcpy = 0; |
| 1989 | bitbuf = 0; |
| 1990 | |
| 1991 | for (;;) { |
| 1992 | /* grab next digit as required */ |
| 1993 | if (--bitcnt == 0) { |
| 1994 | /* if digidx == -1 we are out of digits */ |
| 1995 | if (digidx == -1) { |
| 1996 | break; |
| 1997 | } |
| 1998 | /* read next digit and reset the bitcnt */ |
| 1999 | buf = X->dp[digidx--]; |
| 2000 | bitcnt = (int) DIGIT_BIT; |
| 2001 | } |
| 2002 | |
| 2003 | /* grab the next msb from the exponent */ |
| 2004 | y = (buf >> (mp_digit)(DIGIT_BIT - 1)) & 1; |
| 2005 | buf <<= (mp_digit)1; |
| 2006 | |
| 2007 | /* if the bit is zero and mode == 0 then we ignore it |
| 2008 | * These represent the leading zero bits before the first 1 bit |
| 2009 | * in the exponent. Technically this opt is not required but it |
| 2010 | * does lower the # of trivial squaring/reductions used |
| 2011 | */ |
| 2012 | if (mode == 0 && y == 0) { |
| 2013 | continue; |
| 2014 | } |
| 2015 | |
| 2016 | /* if the bit is zero and mode == 1 then we square */ |
| 2017 | if (mode == 1 && y == 0) { |
| 2018 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 2019 | goto LBL_RES; |
| 2020 | } |
| 2021 | if ((err = redux (&res, P, &mu)) != MP_OKAY) { |
| 2022 | goto LBL_RES; |
| 2023 | } |
| 2024 | continue; |
| 2025 | } |
| 2026 | |
| 2027 | /* else we add it to the window */ |
| 2028 | bitbuf |= (y << (winsize - ++bitcpy)); |
| 2029 | mode = 2; |
| 2030 | |
| 2031 | if (bitcpy == winsize) { |
| 2032 | /* ok window is filled so square as required and multiply */ |
| 2033 | /* square first */ |
| 2034 | for (x = 0; x < winsize; x++) { |
| 2035 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 2036 | goto LBL_RES; |
| 2037 | } |
| 2038 | if ((err = redux (&res, P, &mu)) != MP_OKAY) { |
| 2039 | goto LBL_RES; |
| 2040 | } |
| 2041 | } |
| 2042 | |
| 2043 | /* then multiply */ |
| 2044 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
| 2045 | goto LBL_RES; |
| 2046 | } |
| 2047 | if ((err = redux (&res, P, &mu)) != MP_OKAY) { |
| 2048 | goto LBL_RES; |
| 2049 | } |
| 2050 | |
| 2051 | /* empty window and reset */ |
| 2052 | bitcpy = 0; |
| 2053 | bitbuf = 0; |
| 2054 | mode = 1; |
| 2055 | } |
| 2056 | } |
| 2057 | |
| 2058 | /* if bits remain then square/multiply */ |
| 2059 | if (mode == 2 && bitcpy > 0) { |
| 2060 | /* square then multiply if the bit is set */ |
| 2061 | for (x = 0; x < bitcpy; x++) { |
| 2062 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 2063 | goto LBL_RES; |
| 2064 | } |
| 2065 | if ((err = redux (&res, P, &mu)) != MP_OKAY) { |
| 2066 | goto LBL_RES; |
| 2067 | } |
| 2068 | |
| 2069 | bitbuf <<= 1; |
| 2070 | if ((bitbuf & (1 << winsize)) != 0) { |
| 2071 | /* then multiply */ |
| 2072 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
| 2073 | goto LBL_RES; |
| 2074 | } |
| 2075 | if ((err = redux (&res, P, &mu)) != MP_OKAY) { |
| 2076 | goto LBL_RES; |
| 2077 | } |
| 2078 | } |
| 2079 | } |
| 2080 | } |
| 2081 | |
| 2082 | mp_exch (&res, Y); |
| 2083 | err = MP_OKAY; |
| 2084 | LBL_RES:mp_clear (&res); |
| 2085 | LBL_MU:mp_clear (&mu); |
| 2086 | LBL_M: |
| 2087 | mp_clear(&M[1]); |
| 2088 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| 2089 | mp_clear (&M[x]); |
| 2090 | } |
| 2091 | return err; |
| 2092 | } |
| 2093 | |
| 2094 | |
| 2095 | /* computes b = a*a */ |
| 2096 | static int mp_sqr (mp_int * a, mp_int * b) |
| 2097 | { |
| 2098 | int res; |
| 2099 | |
| 2100 | #ifdef BN_MP_TOOM_SQR_C |
| 2101 | /* use Toom-Cook? */ |
| 2102 | if (a->used >= TOOM_SQR_CUTOFF) { |
| 2103 | res = mp_toom_sqr(a, b); |
| 2104 | /* Karatsuba? */ |
| 2105 | } else |
| 2106 | #endif |
| 2107 | #ifdef BN_MP_KARATSUBA_SQR_C |
| 2108 | if (a->used >= KARATSUBA_SQR_CUTOFF) { |
| 2109 | res = mp_karatsuba_sqr (a, b); |
| 2110 | } else |
| 2111 | #endif |
| 2112 | { |
| 2113 | #ifdef BN_FAST_S_MP_SQR_C |
| 2114 | /* can we use the fast comba multiplier? */ |
| 2115 | if ((a->used * 2 + 1) < MP_WARRAY && |
| 2116 | a->used < |
| 2117 | (1 << (sizeof(mp_word) * CHAR_BIT - 2*DIGIT_BIT - 1))) { |
| 2118 | res = fast_s_mp_sqr (a, b); |
| 2119 | } else |
| 2120 | #endif |
| 2121 | #ifdef BN_S_MP_SQR_C |
| 2122 | res = s_mp_sqr (a, b); |
| 2123 | #else |
| 2124 | #error mp_sqr could fail |
| 2125 | res = MP_VAL; |
| 2126 | #endif |
| 2127 | } |
| 2128 | b->sign = MP_ZPOS; |
| 2129 | return res; |
| 2130 | } |
| 2131 | |
| 2132 | |
| 2133 | /* reduces a modulo n where n is of the form 2**p - d |
| 2134 | This differs from reduce_2k since "d" can be larger |
| 2135 | than a single digit. |
| 2136 | */ |
| 2137 | static int mp_reduce_2k_l(mp_int *a, mp_int *n, mp_int *d) |
| 2138 | { |
| 2139 | mp_int q; |
| 2140 | int p, res; |
| 2141 | |
| 2142 | if ((res = mp_init(&q)) != MP_OKAY) { |
| 2143 | return res; |
| 2144 | } |
| 2145 | |
| 2146 | p = mp_count_bits(n); |
| 2147 | top: |
| 2148 | /* q = a/2**p, a = a mod 2**p */ |
| 2149 | if ((res = mp_div_2d(a, p, &q, a)) != MP_OKAY) { |
| 2150 | goto ERR; |
| 2151 | } |
| 2152 | |
| 2153 | /* q = q * d */ |
| 2154 | if ((res = mp_mul(&q, d, &q)) != MP_OKAY) { |
| 2155 | goto ERR; |
| 2156 | } |
| 2157 | |
| 2158 | /* a = a + q */ |
| 2159 | if ((res = s_mp_add(a, &q, a)) != MP_OKAY) { |
| 2160 | goto ERR; |
| 2161 | } |
| 2162 | |
| 2163 | if (mp_cmp_mag(a, n) != MP_LT) { |
| 2164 | s_mp_sub(a, n, a); |
| 2165 | goto top; |
| 2166 | } |
| 2167 | |
| 2168 | ERR: |
| 2169 | mp_clear(&q); |
| 2170 | return res; |
| 2171 | } |
| 2172 | |
| 2173 | |
| 2174 | /* determines the setup value */ |
| 2175 | static int mp_reduce_2k_setup_l(mp_int *a, mp_int *d) |
| 2176 | { |
| 2177 | int res; |
| 2178 | mp_int tmp; |
| 2179 | |
| 2180 | if ((res = mp_init(&tmp)) != MP_OKAY) { |
| 2181 | return res; |
| 2182 | } |
| 2183 | |
| 2184 | if ((res = mp_2expt(&tmp, mp_count_bits(a))) != MP_OKAY) { |
| 2185 | goto ERR; |
| 2186 | } |
| 2187 | |
| 2188 | if ((res = s_mp_sub(&tmp, a, d)) != MP_OKAY) { |
| 2189 | goto ERR; |
| 2190 | } |
| 2191 | |
| 2192 | ERR: |
| 2193 | mp_clear(&tmp); |
| 2194 | return res; |
| 2195 | } |
| 2196 | |
| 2197 | |
| 2198 | /* computes a = 2**b |
| 2199 | * |
| 2200 | * Simple algorithm which zeroes the int, grows it then just sets one bit |
| 2201 | * as required. |
| 2202 | */ |
| 2203 | static int mp_2expt (mp_int * a, int b) |
| 2204 | { |
| 2205 | int res; |
| 2206 | |
| 2207 | /* zero a as per default */ |
| 2208 | mp_zero (a); |
| 2209 | |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 2210 | /* grow a to accommodate the single bit */ |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 2211 | if ((res = mp_grow (a, b / DIGIT_BIT + 1)) != MP_OKAY) { |
| 2212 | return res; |
| 2213 | } |
| 2214 | |
| 2215 | /* set the used count of where the bit will go */ |
| 2216 | a->used = b / DIGIT_BIT + 1; |
| 2217 | |
| 2218 | /* put the single bit in its place */ |
| 2219 | a->dp[b / DIGIT_BIT] = ((mp_digit)1) << (b % DIGIT_BIT); |
| 2220 | |
| 2221 | return MP_OKAY; |
| 2222 | } |
| 2223 | |
| 2224 | |
| 2225 | /* pre-calculate the value required for Barrett reduction |
| 2226 | * For a given modulus "b" it calulates the value required in "a" |
| 2227 | */ |
| 2228 | static int mp_reduce_setup (mp_int * a, mp_int * b) |
| 2229 | { |
| 2230 | int res; |
| 2231 | |
| 2232 | if ((res = mp_2expt (a, b->used * 2 * DIGIT_BIT)) != MP_OKAY) { |
| 2233 | return res; |
| 2234 | } |
| 2235 | return mp_div (a, b, a, NULL); |
| 2236 | } |
| 2237 | |
| 2238 | |
| 2239 | /* reduces x mod m, assumes 0 < x < m**2, mu is |
| 2240 | * precomputed via mp_reduce_setup. |
| 2241 | * From HAC pp.604 Algorithm 14.42 |
| 2242 | */ |
| 2243 | static int mp_reduce (mp_int * x, mp_int * m, mp_int * mu) |
| 2244 | { |
| 2245 | mp_int q; |
| 2246 | int res, um = m->used; |
| 2247 | |
| 2248 | /* q = x */ |
| 2249 | if ((res = mp_init_copy (&q, x)) != MP_OKAY) { |
| 2250 | return res; |
| 2251 | } |
| 2252 | |
| 2253 | /* q1 = x / b**(k-1) */ |
| 2254 | mp_rshd (&q, um - 1); |
| 2255 | |
| 2256 | /* according to HAC this optimization is ok */ |
| 2257 | if (((unsigned long) um) > (((mp_digit)1) << (DIGIT_BIT - 1))) { |
| 2258 | if ((res = mp_mul (&q, mu, &q)) != MP_OKAY) { |
| 2259 | goto CLEANUP; |
| 2260 | } |
| 2261 | } else { |
| 2262 | #ifdef BN_S_MP_MUL_HIGH_DIGS_C |
| 2263 | if ((res = s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { |
| 2264 | goto CLEANUP; |
| 2265 | } |
| 2266 | #elif defined(BN_FAST_S_MP_MUL_HIGH_DIGS_C) |
| 2267 | if ((res = fast_s_mp_mul_high_digs (&q, mu, &q, um)) != MP_OKAY) { |
| 2268 | goto CLEANUP; |
| 2269 | } |
| 2270 | #else |
| 2271 | { |
| 2272 | #error mp_reduce would always fail |
| 2273 | res = MP_VAL; |
| 2274 | goto CLEANUP; |
| 2275 | } |
| 2276 | #endif |
| 2277 | } |
| 2278 | |
| 2279 | /* q3 = q2 / b**(k+1) */ |
| 2280 | mp_rshd (&q, um + 1); |
| 2281 | |
| 2282 | /* x = x mod b**(k+1), quick (no division) */ |
| 2283 | if ((res = mp_mod_2d (x, DIGIT_BIT * (um + 1), x)) != MP_OKAY) { |
| 2284 | goto CLEANUP; |
| 2285 | } |
| 2286 | |
| 2287 | /* q = q * m mod b**(k+1), quick (no division) */ |
| 2288 | if ((res = s_mp_mul_digs (&q, m, &q, um + 1)) != MP_OKAY) { |
| 2289 | goto CLEANUP; |
| 2290 | } |
| 2291 | |
| 2292 | /* x = x - q */ |
| 2293 | if ((res = mp_sub (x, &q, x)) != MP_OKAY) { |
| 2294 | goto CLEANUP; |
| 2295 | } |
| 2296 | |
| 2297 | /* If x < 0, add b**(k+1) to it */ |
| 2298 | if (mp_cmp_d (x, 0) == MP_LT) { |
| 2299 | mp_set (&q, 1); |
| 2300 | if ((res = mp_lshd (&q, um + 1)) != MP_OKAY) { |
| 2301 | goto CLEANUP; |
| 2302 | } |
| 2303 | if ((res = mp_add (x, &q, x)) != MP_OKAY) { |
| 2304 | goto CLEANUP; |
| 2305 | } |
| 2306 | } |
| 2307 | |
| 2308 | /* Back off if it's too big */ |
| 2309 | while (mp_cmp (x, m) != MP_LT) { |
| 2310 | if ((res = s_mp_sub (x, m, x)) != MP_OKAY) { |
| 2311 | goto CLEANUP; |
| 2312 | } |
| 2313 | } |
| 2314 | |
| 2315 | CLEANUP: |
| 2316 | mp_clear (&q); |
| 2317 | |
| 2318 | return res; |
| 2319 | } |
| 2320 | |
| 2321 | |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 2322 | /* multiplies |a| * |b| and only computes up to digs digits of result |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 2323 | * HAC pp. 595, Algorithm 14.12 Modified so you can control how |
| 2324 | * many digits of output are created. |
| 2325 | */ |
| 2326 | static int s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| 2327 | { |
| 2328 | mp_int t; |
| 2329 | int res, pa, pb, ix, iy; |
| 2330 | mp_digit u; |
| 2331 | mp_word r; |
| 2332 | mp_digit tmpx, *tmpt, *tmpy; |
| 2333 | |
| 2334 | /* can we use the fast multiplier? */ |
| 2335 | if (((digs) < MP_WARRAY) && |
| 2336 | MIN (a->used, b->used) < |
| 2337 | (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| 2338 | return fast_s_mp_mul_digs (a, b, c, digs); |
| 2339 | } |
| 2340 | |
| 2341 | if ((res = mp_init_size (&t, digs)) != MP_OKAY) { |
| 2342 | return res; |
| 2343 | } |
| 2344 | t.used = digs; |
| 2345 | |
| 2346 | /* compute the digits of the product directly */ |
| 2347 | pa = a->used; |
| 2348 | for (ix = 0; ix < pa; ix++) { |
| 2349 | /* set the carry to zero */ |
| 2350 | u = 0; |
| 2351 | |
| 2352 | /* limit ourselves to making digs digits of output */ |
| 2353 | pb = MIN (b->used, digs - ix); |
| 2354 | |
| 2355 | /* setup some aliases */ |
| 2356 | /* copy of the digit from a used within the nested loop */ |
| 2357 | tmpx = a->dp[ix]; |
| 2358 | |
| 2359 | /* an alias for the destination shifted ix places */ |
| 2360 | tmpt = t.dp + ix; |
| 2361 | |
| 2362 | /* an alias for the digits of b */ |
| 2363 | tmpy = b->dp; |
| 2364 | |
| 2365 | /* compute the columns of the output and propagate the carry */ |
| 2366 | for (iy = 0; iy < pb; iy++) { |
| 2367 | /* compute the column as a mp_word */ |
| 2368 | r = ((mp_word)*tmpt) + |
| 2369 | ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
| 2370 | ((mp_word) u); |
| 2371 | |
| 2372 | /* the new column is the lower part of the result */ |
| 2373 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 2374 | |
| 2375 | /* get the carry word from the result */ |
| 2376 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| 2377 | } |
| 2378 | /* set carry if it is placed below digs */ |
| 2379 | if (ix + iy < digs) { |
| 2380 | *tmpt = u; |
| 2381 | } |
| 2382 | } |
| 2383 | |
| 2384 | mp_clamp (&t); |
| 2385 | mp_exch (&t, c); |
| 2386 | |
| 2387 | mp_clear (&t); |
| 2388 | return MP_OKAY; |
| 2389 | } |
| 2390 | |
| 2391 | |
| 2392 | /* Fast (comba) multiplier |
| 2393 | * |
| 2394 | * This is the fast column-array [comba] multiplier. It is |
| 2395 | * designed to compute the columns of the product first |
| 2396 | * then handle the carries afterwards. This has the effect |
| 2397 | * of making the nested loops that compute the columns very |
| 2398 | * simple and schedulable on super-scalar processors. |
| 2399 | * |
| 2400 | * This has been modified to produce a variable number of |
| 2401 | * digits of output so if say only a half-product is required |
| 2402 | * you don't have to compute the upper half (a feature |
| 2403 | * required for fast Barrett reduction). |
| 2404 | * |
| 2405 | * Based on Algorithm 14.12 on pp.595 of HAC. |
| 2406 | * |
| 2407 | */ |
| 2408 | static int fast_s_mp_mul_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| 2409 | { |
| 2410 | int olduse, res, pa, ix, iz; |
| 2411 | mp_digit W[MP_WARRAY]; |
| 2412 | register mp_word _W; |
| 2413 | |
| 2414 | /* grow the destination as required */ |
| 2415 | if (c->alloc < digs) { |
| 2416 | if ((res = mp_grow (c, digs)) != MP_OKAY) { |
| 2417 | return res; |
| 2418 | } |
| 2419 | } |
| 2420 | |
| 2421 | /* number of output digits to produce */ |
| 2422 | pa = MIN(digs, a->used + b->used); |
| 2423 | |
| 2424 | /* clear the carry */ |
| 2425 | _W = 0; |
| 2426 | for (ix = 0; ix < pa; ix++) { |
| 2427 | int tx, ty; |
| 2428 | int iy; |
| 2429 | mp_digit *tmpx, *tmpy; |
| 2430 | |
| 2431 | /* get offsets into the two bignums */ |
| 2432 | ty = MIN(b->used-1, ix); |
| 2433 | tx = ix - ty; |
| 2434 | |
| 2435 | /* setup temp aliases */ |
| 2436 | tmpx = a->dp + tx; |
| 2437 | tmpy = b->dp + ty; |
| 2438 | |
| 2439 | /* this is the number of times the loop will iterrate, essentially |
| 2440 | while (tx++ < a->used && ty-- >= 0) { ... } |
| 2441 | */ |
| 2442 | iy = MIN(a->used-tx, ty+1); |
| 2443 | |
| 2444 | /* execute loop */ |
| 2445 | for (iz = 0; iz < iy; ++iz) { |
| 2446 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| 2447 | |
| 2448 | } |
| 2449 | |
| 2450 | /* store term */ |
| 2451 | W[ix] = ((mp_digit)_W) & MP_MASK; |
| 2452 | |
| 2453 | /* make next carry */ |
| 2454 | _W = _W >> ((mp_word)DIGIT_BIT); |
| 2455 | } |
| 2456 | |
| 2457 | /* setup dest */ |
| 2458 | olduse = c->used; |
| 2459 | c->used = pa; |
| 2460 | |
| 2461 | { |
| 2462 | register mp_digit *tmpc; |
| 2463 | tmpc = c->dp; |
| 2464 | for (ix = 0; ix < pa+1; ix++) { |
| 2465 | /* now extract the previous digit [below the carry] */ |
| 2466 | *tmpc++ = W[ix]; |
| 2467 | } |
| 2468 | |
| 2469 | /* clear unused digits [that existed in the old copy of c] */ |
| 2470 | for (; ix < olduse; ix++) { |
| 2471 | *tmpc++ = 0; |
| 2472 | } |
| 2473 | } |
| 2474 | mp_clamp (c); |
| 2475 | return MP_OKAY; |
| 2476 | } |
| 2477 | |
| 2478 | |
| 2479 | /* init an mp_init for a given size */ |
| 2480 | static int mp_init_size (mp_int * a, int size) |
| 2481 | { |
| 2482 | int x; |
| 2483 | |
| 2484 | /* pad size so there are always extra digits */ |
| 2485 | size += (MP_PREC * 2) - (size % MP_PREC); |
| 2486 | |
| 2487 | /* alloc mem */ |
| 2488 | a->dp = OPT_CAST(mp_digit) XMALLOC (sizeof (mp_digit) * size); |
| 2489 | if (a->dp == NULL) { |
| 2490 | return MP_MEM; |
| 2491 | } |
| 2492 | |
| 2493 | /* set the members */ |
| 2494 | a->used = 0; |
| 2495 | a->alloc = size; |
| 2496 | a->sign = MP_ZPOS; |
| 2497 | |
| 2498 | /* zero the digits */ |
| 2499 | for (x = 0; x < size; x++) { |
| 2500 | a->dp[x] = 0; |
| 2501 | } |
| 2502 | |
| 2503 | return MP_OKAY; |
| 2504 | } |
| 2505 | |
| 2506 | |
| 2507 | /* low level squaring, b = a*a, HAC pp.596-597, Algorithm 14.16 */ |
| 2508 | static int s_mp_sqr (mp_int * a, mp_int * b) |
| 2509 | { |
| 2510 | mp_int t; |
| 2511 | int res, ix, iy, pa; |
| 2512 | mp_word r; |
| 2513 | mp_digit u, tmpx, *tmpt; |
| 2514 | |
| 2515 | pa = a->used; |
| 2516 | if ((res = mp_init_size (&t, 2*pa + 1)) != MP_OKAY) { |
| 2517 | return res; |
| 2518 | } |
| 2519 | |
| 2520 | /* default used is maximum possible size */ |
| 2521 | t.used = 2*pa + 1; |
| 2522 | |
| 2523 | for (ix = 0; ix < pa; ix++) { |
| 2524 | /* first calculate the digit at 2*ix */ |
| 2525 | /* calculate double precision result */ |
| 2526 | r = ((mp_word) t.dp[2*ix]) + |
| 2527 | ((mp_word)a->dp[ix])*((mp_word)a->dp[ix]); |
| 2528 | |
| 2529 | /* store lower part in result */ |
| 2530 | t.dp[ix+ix] = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 2531 | |
| 2532 | /* get the carry */ |
| 2533 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| 2534 | |
| 2535 | /* left hand side of A[ix] * A[iy] */ |
| 2536 | tmpx = a->dp[ix]; |
| 2537 | |
| 2538 | /* alias for where to store the results */ |
| 2539 | tmpt = t.dp + (2*ix + 1); |
| 2540 | |
| 2541 | for (iy = ix + 1; iy < pa; iy++) { |
| 2542 | /* first calculate the product */ |
| 2543 | r = ((mp_word)tmpx) * ((mp_word)a->dp[iy]); |
| 2544 | |
| 2545 | /* now calculate the double precision result, note we use |
| 2546 | * addition instead of *2 since it's easier to optimize |
| 2547 | */ |
| 2548 | r = ((mp_word) *tmpt) + r + r + ((mp_word) u); |
| 2549 | |
| 2550 | /* store lower part */ |
| 2551 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 2552 | |
| 2553 | /* get carry */ |
| 2554 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| 2555 | } |
| 2556 | /* propagate upwards */ |
| 2557 | while (u != ((mp_digit) 0)) { |
| 2558 | r = ((mp_word) *tmpt) + ((mp_word) u); |
| 2559 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 2560 | u = (mp_digit)(r >> ((mp_word) DIGIT_BIT)); |
| 2561 | } |
| 2562 | } |
| 2563 | |
| 2564 | mp_clamp (&t); |
| 2565 | mp_exch (&t, b); |
| 2566 | mp_clear (&t); |
| 2567 | return MP_OKAY; |
| 2568 | } |
| 2569 | |
| 2570 | |
| 2571 | /* multiplies |a| * |b| and does not compute the lower digs digits |
| 2572 | * [meant to get the higher part of the product] |
| 2573 | */ |
| 2574 | static int s_mp_mul_high_digs (mp_int * a, mp_int * b, mp_int * c, int digs) |
| 2575 | { |
| 2576 | mp_int t; |
| 2577 | int res, pa, pb, ix, iy; |
| 2578 | mp_digit u; |
| 2579 | mp_word r; |
| 2580 | mp_digit tmpx, *tmpt, *tmpy; |
| 2581 | |
| 2582 | /* can we use the fast multiplier? */ |
| 2583 | #ifdef BN_FAST_S_MP_MUL_HIGH_DIGS_C |
| 2584 | if (((a->used + b->used + 1) < MP_WARRAY) |
| 2585 | && MIN (a->used, b->used) < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| 2586 | return fast_s_mp_mul_high_digs (a, b, c, digs); |
| 2587 | } |
| 2588 | #endif |
| 2589 | |
| 2590 | if ((res = mp_init_size (&t, a->used + b->used + 1)) != MP_OKAY) { |
| 2591 | return res; |
| 2592 | } |
| 2593 | t.used = a->used + b->used + 1; |
| 2594 | |
| 2595 | pa = a->used; |
| 2596 | pb = b->used; |
| 2597 | for (ix = 0; ix < pa; ix++) { |
| 2598 | /* clear the carry */ |
| 2599 | u = 0; |
| 2600 | |
| 2601 | /* left hand side of A[ix] * B[iy] */ |
| 2602 | tmpx = a->dp[ix]; |
| 2603 | |
| 2604 | /* alias to the address of where the digits will be stored */ |
| 2605 | tmpt = &(t.dp[digs]); |
| 2606 | |
| 2607 | /* alias for where to read the right hand side from */ |
| 2608 | tmpy = b->dp + (digs - ix); |
| 2609 | |
| 2610 | for (iy = digs - ix; iy < pb; iy++) { |
| 2611 | /* calculate the double precision result */ |
| 2612 | r = ((mp_word)*tmpt) + |
| 2613 | ((mp_word)tmpx) * ((mp_word)*tmpy++) + |
| 2614 | ((mp_word) u); |
| 2615 | |
| 2616 | /* get the lower part */ |
| 2617 | *tmpt++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 2618 | |
| 2619 | /* carry the carry */ |
| 2620 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| 2621 | } |
| 2622 | *tmpt = u; |
| 2623 | } |
| 2624 | mp_clamp (&t); |
| 2625 | mp_exch (&t, c); |
| 2626 | mp_clear (&t); |
| 2627 | return MP_OKAY; |
| 2628 | } |
| 2629 | |
| 2630 | |
| 2631 | #ifdef BN_MP_MONTGOMERY_SETUP_C |
| 2632 | /* setups the montgomery reduction stuff */ |
| 2633 | static int |
| 2634 | mp_montgomery_setup (mp_int * n, mp_digit * rho) |
| 2635 | { |
| 2636 | mp_digit x, b; |
| 2637 | |
| 2638 | /* fast inversion mod 2**k |
| 2639 | * |
| 2640 | * Based on the fact that |
| 2641 | * |
| 2642 | * XA = 1 (mod 2**n) => (X(2-XA)) A = 1 (mod 2**2n) |
| 2643 | * => 2*X*A - X*X*A*A = 1 |
| 2644 | * => 2*(1) - (1) = 1 |
| 2645 | */ |
| 2646 | b = n->dp[0]; |
| 2647 | |
| 2648 | if ((b & 1) == 0) { |
| 2649 | return MP_VAL; |
| 2650 | } |
| 2651 | |
| 2652 | x = (((b + 2) & 4) << 1) + b; /* here x*a==1 mod 2**4 */ |
| 2653 | x *= 2 - b * x; /* here x*a==1 mod 2**8 */ |
| 2654 | #if !defined(MP_8BIT) |
| 2655 | x *= 2 - b * x; /* here x*a==1 mod 2**16 */ |
| 2656 | #endif |
| 2657 | #if defined(MP_64BIT) || !(defined(MP_8BIT) || defined(MP_16BIT)) |
| 2658 | x *= 2 - b * x; /* here x*a==1 mod 2**32 */ |
| 2659 | #endif |
| 2660 | #ifdef MP_64BIT |
| 2661 | x *= 2 - b * x; /* here x*a==1 mod 2**64 */ |
| 2662 | #endif |
| 2663 | |
| 2664 | /* rho = -1/m mod b */ |
| 2665 | *rho = (unsigned long)(((mp_word)1 << ((mp_word) DIGIT_BIT)) - x) & MP_MASK; |
| 2666 | |
| 2667 | return MP_OKAY; |
| 2668 | } |
| 2669 | #endif |
| 2670 | |
| 2671 | |
| 2672 | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C |
| 2673 | /* computes xR**-1 == x (mod N) via Montgomery Reduction |
| 2674 | * |
| 2675 | * This is an optimized implementation of montgomery_reduce |
| 2676 | * which uses the comba method to quickly calculate the columns of the |
| 2677 | * reduction. |
| 2678 | * |
| 2679 | * Based on Algorithm 14.32 on pp.601 of HAC. |
| 2680 | */ |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 2681 | static int fast_mp_montgomery_reduce (mp_int * x, mp_int * n, mp_digit rho) |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 2682 | { |
| 2683 | int ix, res, olduse; |
| 2684 | mp_word W[MP_WARRAY]; |
| 2685 | |
| 2686 | /* get old used count */ |
| 2687 | olduse = x->used; |
| 2688 | |
| 2689 | /* grow a as required */ |
| 2690 | if (x->alloc < n->used + 1) { |
| 2691 | if ((res = mp_grow (x, n->used + 1)) != MP_OKAY) { |
| 2692 | return res; |
| 2693 | } |
| 2694 | } |
| 2695 | |
| 2696 | /* first we have to get the digits of the input into |
| 2697 | * an array of double precision words W[...] |
| 2698 | */ |
| 2699 | { |
| 2700 | register mp_word *_W; |
| 2701 | register mp_digit *tmpx; |
| 2702 | |
| 2703 | /* alias for the W[] array */ |
| 2704 | _W = W; |
| 2705 | |
| 2706 | /* alias for the digits of x*/ |
| 2707 | tmpx = x->dp; |
| 2708 | |
| 2709 | /* copy the digits of a into W[0..a->used-1] */ |
| 2710 | for (ix = 0; ix < x->used; ix++) { |
| 2711 | *_W++ = *tmpx++; |
| 2712 | } |
| 2713 | |
| 2714 | /* zero the high words of W[a->used..m->used*2] */ |
| 2715 | for (; ix < n->used * 2 + 1; ix++) { |
| 2716 | *_W++ = 0; |
| 2717 | } |
| 2718 | } |
| 2719 | |
| 2720 | /* now we proceed to zero successive digits |
| 2721 | * from the least significant upwards |
| 2722 | */ |
| 2723 | for (ix = 0; ix < n->used; ix++) { |
| 2724 | /* mu = ai * m' mod b |
| 2725 | * |
| 2726 | * We avoid a double precision multiplication (which isn't required) |
| 2727 | * by casting the value down to a mp_digit. Note this requires |
| 2728 | * that W[ix-1] have the carry cleared (see after the inner loop) |
| 2729 | */ |
| 2730 | register mp_digit mu; |
| 2731 | mu = (mp_digit) (((W[ix] & MP_MASK) * rho) & MP_MASK); |
| 2732 | |
| 2733 | /* a = a + mu * m * b**i |
| 2734 | * |
| 2735 | * This is computed in place and on the fly. The multiplication |
| 2736 | * by b**i is handled by offseting which columns the results |
| 2737 | * are added to. |
| 2738 | * |
| 2739 | * Note the comba method normally doesn't handle carries in the |
| 2740 | * inner loop In this case we fix the carry from the previous |
| 2741 | * column since the Montgomery reduction requires digits of the |
| 2742 | * result (so far) [see above] to work. This is |
| 2743 | * handled by fixing up one carry after the inner loop. The |
| 2744 | * carry fixups are done in order so after these loops the |
| 2745 | * first m->used words of W[] have the carries fixed |
| 2746 | */ |
| 2747 | { |
| 2748 | register int iy; |
| 2749 | register mp_digit *tmpn; |
| 2750 | register mp_word *_W; |
| 2751 | |
| 2752 | /* alias for the digits of the modulus */ |
| 2753 | tmpn = n->dp; |
| 2754 | |
| 2755 | /* Alias for the columns set by an offset of ix */ |
| 2756 | _W = W + ix; |
| 2757 | |
| 2758 | /* inner loop */ |
| 2759 | for (iy = 0; iy < n->used; iy++) { |
| 2760 | *_W++ += ((mp_word)mu) * ((mp_word)*tmpn++); |
| 2761 | } |
| 2762 | } |
| 2763 | |
| 2764 | /* now fix carry for next digit, W[ix+1] */ |
| 2765 | W[ix + 1] += W[ix] >> ((mp_word) DIGIT_BIT); |
| 2766 | } |
| 2767 | |
| 2768 | /* now we have to propagate the carries and |
| 2769 | * shift the words downward [all those least |
| 2770 | * significant digits we zeroed]. |
| 2771 | */ |
| 2772 | { |
| 2773 | register mp_digit *tmpx; |
| 2774 | register mp_word *_W, *_W1; |
| 2775 | |
| 2776 | /* nox fix rest of carries */ |
| 2777 | |
| 2778 | /* alias for current word */ |
| 2779 | _W1 = W + ix; |
| 2780 | |
| 2781 | /* alias for next word, where the carry goes */ |
| 2782 | _W = W + ++ix; |
| 2783 | |
| 2784 | for (; ix <= n->used * 2 + 1; ix++) { |
| 2785 | *_W++ += *_W1++ >> ((mp_word) DIGIT_BIT); |
| 2786 | } |
| 2787 | |
| 2788 | /* copy out, A = A/b**n |
| 2789 | * |
| 2790 | * The result is A/b**n but instead of converting from an |
| 2791 | * array of mp_word to mp_digit than calling mp_rshd |
| 2792 | * we just copy them in the right order |
| 2793 | */ |
| 2794 | |
| 2795 | /* alias for destination word */ |
| 2796 | tmpx = x->dp; |
| 2797 | |
| 2798 | /* alias for shifted double precision result */ |
| 2799 | _W = W + n->used; |
| 2800 | |
| 2801 | for (ix = 0; ix < n->used + 1; ix++) { |
| 2802 | *tmpx++ = (mp_digit)(*_W++ & ((mp_word) MP_MASK)); |
| 2803 | } |
| 2804 | |
| 2805 | /* zero oldused digits, if the input a was larger than |
| 2806 | * m->used+1 we'll have to clear the digits |
| 2807 | */ |
| 2808 | for (; ix < olduse; ix++) { |
| 2809 | *tmpx++ = 0; |
| 2810 | } |
| 2811 | } |
| 2812 | |
| 2813 | /* set the max used and clamp */ |
| 2814 | x->used = n->used + 1; |
| 2815 | mp_clamp (x); |
| 2816 | |
| 2817 | /* if A >= m then A = A - m */ |
| 2818 | if (mp_cmp_mag (x, n) != MP_LT) { |
| 2819 | return s_mp_sub (x, n, x); |
| 2820 | } |
| 2821 | return MP_OKAY; |
| 2822 | } |
| 2823 | #endif |
| 2824 | |
| 2825 | |
| 2826 | #ifdef BN_MP_MUL_2_C |
| 2827 | /* b = a*2 */ |
| 2828 | static int mp_mul_2(mp_int * a, mp_int * b) |
| 2829 | { |
| 2830 | int x, res, oldused; |
| 2831 | |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 2832 | /* grow to accommodate result */ |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 2833 | if (b->alloc < a->used + 1) { |
| 2834 | if ((res = mp_grow (b, a->used + 1)) != MP_OKAY) { |
| 2835 | return res; |
| 2836 | } |
| 2837 | } |
| 2838 | |
| 2839 | oldused = b->used; |
| 2840 | b->used = a->used; |
| 2841 | |
| 2842 | { |
| 2843 | register mp_digit r, rr, *tmpa, *tmpb; |
| 2844 | |
| 2845 | /* alias for source */ |
| 2846 | tmpa = a->dp; |
| 2847 | |
| 2848 | /* alias for dest */ |
| 2849 | tmpb = b->dp; |
| 2850 | |
| 2851 | /* carry */ |
| 2852 | r = 0; |
| 2853 | for (x = 0; x < a->used; x++) { |
| 2854 | |
| 2855 | /* get what will be the *next* carry bit from the |
| 2856 | * MSB of the current digit |
| 2857 | */ |
| 2858 | rr = *tmpa >> ((mp_digit)(DIGIT_BIT - 1)); |
| 2859 | |
| 2860 | /* now shift up this digit, add in the carry [from the previous] */ |
| 2861 | *tmpb++ = ((*tmpa++ << ((mp_digit)1)) | r) & MP_MASK; |
| 2862 | |
| 2863 | /* copy the carry that would be from the source |
| 2864 | * digit into the next iteration |
| 2865 | */ |
| 2866 | r = rr; |
| 2867 | } |
| 2868 | |
| 2869 | /* new leading digit? */ |
| 2870 | if (r != 0) { |
| 2871 | /* add a MSB which is always 1 at this point */ |
| 2872 | *tmpb = 1; |
| 2873 | ++(b->used); |
| 2874 | } |
| 2875 | |
| 2876 | /* now zero any excess digits on the destination |
| 2877 | * that we didn't write to |
| 2878 | */ |
| 2879 | tmpb = b->dp + b->used; |
| 2880 | for (x = b->used; x < oldused; x++) { |
| 2881 | *tmpb++ = 0; |
| 2882 | } |
| 2883 | } |
| 2884 | b->sign = a->sign; |
| 2885 | return MP_OKAY; |
| 2886 | } |
| 2887 | #endif |
| 2888 | |
| 2889 | |
| 2890 | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C |
| 2891 | /* |
| 2892 | * shifts with subtractions when the result is greater than b. |
| 2893 | * |
Dmitry Shmidt | 1f69aa5 | 2012-01-24 16:10:04 -0800 | [diff] [blame^] | 2894 | * The method is slightly modified to shift B unconditionally up to just under |
| 2895 | * the leading bit of b. This saves a lot of multiple precision shifting. |
Dmitry Shmidt | 8d520ff | 2011-05-09 14:06:53 -0700 | [diff] [blame] | 2896 | */ |
| 2897 | static int mp_montgomery_calc_normalization (mp_int * a, mp_int * b) |
| 2898 | { |
| 2899 | int x, bits, res; |
| 2900 | |
| 2901 | /* how many bits of last digit does b use */ |
| 2902 | bits = mp_count_bits (b) % DIGIT_BIT; |
| 2903 | |
| 2904 | if (b->used > 1) { |
| 2905 | if ((res = mp_2expt (a, (b->used - 1) * DIGIT_BIT + bits - 1)) != MP_OKAY) { |
| 2906 | return res; |
| 2907 | } |
| 2908 | } else { |
| 2909 | mp_set(a, 1); |
| 2910 | bits = 1; |
| 2911 | } |
| 2912 | |
| 2913 | |
| 2914 | /* now compute C = A * B mod b */ |
| 2915 | for (x = bits - 1; x < (int)DIGIT_BIT; x++) { |
| 2916 | if ((res = mp_mul_2 (a, a)) != MP_OKAY) { |
| 2917 | return res; |
| 2918 | } |
| 2919 | if (mp_cmp_mag (a, b) != MP_LT) { |
| 2920 | if ((res = s_mp_sub (a, b, a)) != MP_OKAY) { |
| 2921 | return res; |
| 2922 | } |
| 2923 | } |
| 2924 | } |
| 2925 | |
| 2926 | return MP_OKAY; |
| 2927 | } |
| 2928 | #endif |
| 2929 | |
| 2930 | |
| 2931 | #ifdef BN_MP_EXPTMOD_FAST_C |
| 2932 | /* computes Y == G**X mod P, HAC pp.616, Algorithm 14.85 |
| 2933 | * |
| 2934 | * Uses a left-to-right k-ary sliding window to compute the modular exponentiation. |
| 2935 | * The value of k changes based on the size of the exponent. |
| 2936 | * |
| 2937 | * Uses Montgomery or Diminished Radix reduction [whichever appropriate] |
| 2938 | */ |
| 2939 | |
| 2940 | static int mp_exptmod_fast (mp_int * G, mp_int * X, mp_int * P, mp_int * Y, int redmode) |
| 2941 | { |
| 2942 | mp_int M[TAB_SIZE], res; |
| 2943 | mp_digit buf, mp; |
| 2944 | int err, bitbuf, bitcpy, bitcnt, mode, digidx, x, y, winsize; |
| 2945 | |
| 2946 | /* use a pointer to the reduction algorithm. This allows us to use |
| 2947 | * one of many reduction algorithms without modding the guts of |
| 2948 | * the code with if statements everywhere. |
| 2949 | */ |
| 2950 | int (*redux)(mp_int*,mp_int*,mp_digit); |
| 2951 | |
| 2952 | /* find window size */ |
| 2953 | x = mp_count_bits (X); |
| 2954 | if (x <= 7) { |
| 2955 | winsize = 2; |
| 2956 | } else if (x <= 36) { |
| 2957 | winsize = 3; |
| 2958 | } else if (x <= 140) { |
| 2959 | winsize = 4; |
| 2960 | } else if (x <= 450) { |
| 2961 | winsize = 5; |
| 2962 | } else if (x <= 1303) { |
| 2963 | winsize = 6; |
| 2964 | } else if (x <= 3529) { |
| 2965 | winsize = 7; |
| 2966 | } else { |
| 2967 | winsize = 8; |
| 2968 | } |
| 2969 | |
| 2970 | #ifdef MP_LOW_MEM |
| 2971 | if (winsize > 5) { |
| 2972 | winsize = 5; |
| 2973 | } |
| 2974 | #endif |
| 2975 | |
| 2976 | /* init M array */ |
| 2977 | /* init first cell */ |
| 2978 | if ((err = mp_init(&M[1])) != MP_OKAY) { |
| 2979 | return err; |
| 2980 | } |
| 2981 | |
| 2982 | /* now init the second half of the array */ |
| 2983 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| 2984 | if ((err = mp_init(&M[x])) != MP_OKAY) { |
| 2985 | for (y = 1<<(winsize-1); y < x; y++) { |
| 2986 | mp_clear (&M[y]); |
| 2987 | } |
| 2988 | mp_clear(&M[1]); |
| 2989 | return err; |
| 2990 | } |
| 2991 | } |
| 2992 | |
| 2993 | /* determine and setup reduction code */ |
| 2994 | if (redmode == 0) { |
| 2995 | #ifdef BN_MP_MONTGOMERY_SETUP_C |
| 2996 | /* now setup montgomery */ |
| 2997 | if ((err = mp_montgomery_setup (P, &mp)) != MP_OKAY) { |
| 2998 | goto LBL_M; |
| 2999 | } |
| 3000 | #else |
| 3001 | err = MP_VAL; |
| 3002 | goto LBL_M; |
| 3003 | #endif |
| 3004 | |
| 3005 | /* automatically pick the comba one if available (saves quite a few calls/ifs) */ |
| 3006 | #ifdef BN_FAST_MP_MONTGOMERY_REDUCE_C |
| 3007 | if (((P->used * 2 + 1) < MP_WARRAY) && |
| 3008 | P->used < (1 << ((CHAR_BIT * sizeof (mp_word)) - (2 * DIGIT_BIT)))) { |
| 3009 | redux = fast_mp_montgomery_reduce; |
| 3010 | } else |
| 3011 | #endif |
| 3012 | { |
| 3013 | #ifdef BN_MP_MONTGOMERY_REDUCE_C |
| 3014 | /* use slower baseline Montgomery method */ |
| 3015 | redux = mp_montgomery_reduce; |
| 3016 | #else |
| 3017 | err = MP_VAL; |
| 3018 | goto LBL_M; |
| 3019 | #endif |
| 3020 | } |
| 3021 | } else if (redmode == 1) { |
| 3022 | #if defined(BN_MP_DR_SETUP_C) && defined(BN_MP_DR_REDUCE_C) |
| 3023 | /* setup DR reduction for moduli of the form B**k - b */ |
| 3024 | mp_dr_setup(P, &mp); |
| 3025 | redux = mp_dr_reduce; |
| 3026 | #else |
| 3027 | err = MP_VAL; |
| 3028 | goto LBL_M; |
| 3029 | #endif |
| 3030 | } else { |
| 3031 | #if defined(BN_MP_REDUCE_2K_SETUP_C) && defined(BN_MP_REDUCE_2K_C) |
| 3032 | /* setup DR reduction for moduli of the form 2**k - b */ |
| 3033 | if ((err = mp_reduce_2k_setup(P, &mp)) != MP_OKAY) { |
| 3034 | goto LBL_M; |
| 3035 | } |
| 3036 | redux = mp_reduce_2k; |
| 3037 | #else |
| 3038 | err = MP_VAL; |
| 3039 | goto LBL_M; |
| 3040 | #endif |
| 3041 | } |
| 3042 | |
| 3043 | /* setup result */ |
| 3044 | if ((err = mp_init (&res)) != MP_OKAY) { |
| 3045 | goto LBL_M; |
| 3046 | } |
| 3047 | |
| 3048 | /* create M table |
| 3049 | * |
| 3050 | |
| 3051 | * |
| 3052 | * The first half of the table is not computed though accept for M[0] and M[1] |
| 3053 | */ |
| 3054 | |
| 3055 | if (redmode == 0) { |
| 3056 | #ifdef BN_MP_MONTGOMERY_CALC_NORMALIZATION_C |
| 3057 | /* now we need R mod m */ |
| 3058 | if ((err = mp_montgomery_calc_normalization (&res, P)) != MP_OKAY) { |
| 3059 | goto LBL_RES; |
| 3060 | } |
| 3061 | #else |
| 3062 | err = MP_VAL; |
| 3063 | goto LBL_RES; |
| 3064 | #endif |
| 3065 | |
| 3066 | /* now set M[1] to G * R mod m */ |
| 3067 | if ((err = mp_mulmod (G, &res, P, &M[1])) != MP_OKAY) { |
| 3068 | goto LBL_RES; |
| 3069 | } |
| 3070 | } else { |
| 3071 | mp_set(&res, 1); |
| 3072 | if ((err = mp_mod(G, P, &M[1])) != MP_OKAY) { |
| 3073 | goto LBL_RES; |
| 3074 | } |
| 3075 | } |
| 3076 | |
| 3077 | /* compute the value at M[1<<(winsize-1)] by squaring M[1] (winsize-1) times */ |
| 3078 | if ((err = mp_copy (&M[1], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| 3079 | goto LBL_RES; |
| 3080 | } |
| 3081 | |
| 3082 | for (x = 0; x < (winsize - 1); x++) { |
| 3083 | if ((err = mp_sqr (&M[1 << (winsize - 1)], &M[1 << (winsize - 1)])) != MP_OKAY) { |
| 3084 | goto LBL_RES; |
| 3085 | } |
| 3086 | if ((err = redux (&M[1 << (winsize - 1)], P, mp)) != MP_OKAY) { |
| 3087 | goto LBL_RES; |
| 3088 | } |
| 3089 | } |
| 3090 | |
| 3091 | /* create upper table */ |
| 3092 | for (x = (1 << (winsize - 1)) + 1; x < (1 << winsize); x++) { |
| 3093 | if ((err = mp_mul (&M[x - 1], &M[1], &M[x])) != MP_OKAY) { |
| 3094 | goto LBL_RES; |
| 3095 | } |
| 3096 | if ((err = redux (&M[x], P, mp)) != MP_OKAY) { |
| 3097 | goto LBL_RES; |
| 3098 | } |
| 3099 | } |
| 3100 | |
| 3101 | /* set initial mode and bit cnt */ |
| 3102 | mode = 0; |
| 3103 | bitcnt = 1; |
| 3104 | buf = 0; |
| 3105 | digidx = X->used - 1; |
| 3106 | bitcpy = 0; |
| 3107 | bitbuf = 0; |
| 3108 | |
| 3109 | for (;;) { |
| 3110 | /* grab next digit as required */ |
| 3111 | if (--bitcnt == 0) { |
| 3112 | /* if digidx == -1 we are out of digits so break */ |
| 3113 | if (digidx == -1) { |
| 3114 | break; |
| 3115 | } |
| 3116 | /* read next digit and reset bitcnt */ |
| 3117 | buf = X->dp[digidx--]; |
| 3118 | bitcnt = (int)DIGIT_BIT; |
| 3119 | } |
| 3120 | |
| 3121 | /* grab the next msb from the exponent */ |
| 3122 | y = (mp_digit)(buf >> (DIGIT_BIT - 1)) & 1; |
| 3123 | buf <<= (mp_digit)1; |
| 3124 | |
| 3125 | /* if the bit is zero and mode == 0 then we ignore it |
| 3126 | * These represent the leading zero bits before the first 1 bit |
| 3127 | * in the exponent. Technically this opt is not required but it |
| 3128 | * does lower the # of trivial squaring/reductions used |
| 3129 | */ |
| 3130 | if (mode == 0 && y == 0) { |
| 3131 | continue; |
| 3132 | } |
| 3133 | |
| 3134 | /* if the bit is zero and mode == 1 then we square */ |
| 3135 | if (mode == 1 && y == 0) { |
| 3136 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 3137 | goto LBL_RES; |
| 3138 | } |
| 3139 | if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| 3140 | goto LBL_RES; |
| 3141 | } |
| 3142 | continue; |
| 3143 | } |
| 3144 | |
| 3145 | /* else we add it to the window */ |
| 3146 | bitbuf |= (y << (winsize - ++bitcpy)); |
| 3147 | mode = 2; |
| 3148 | |
| 3149 | if (bitcpy == winsize) { |
| 3150 | /* ok window is filled so square as required and multiply */ |
| 3151 | /* square first */ |
| 3152 | for (x = 0; x < winsize; x++) { |
| 3153 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 3154 | goto LBL_RES; |
| 3155 | } |
| 3156 | if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| 3157 | goto LBL_RES; |
| 3158 | } |
| 3159 | } |
| 3160 | |
| 3161 | /* then multiply */ |
| 3162 | if ((err = mp_mul (&res, &M[bitbuf], &res)) != MP_OKAY) { |
| 3163 | goto LBL_RES; |
| 3164 | } |
| 3165 | if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| 3166 | goto LBL_RES; |
| 3167 | } |
| 3168 | |
| 3169 | /* empty window and reset */ |
| 3170 | bitcpy = 0; |
| 3171 | bitbuf = 0; |
| 3172 | mode = 1; |
| 3173 | } |
| 3174 | } |
| 3175 | |
| 3176 | /* if bits remain then square/multiply */ |
| 3177 | if (mode == 2 && bitcpy > 0) { |
| 3178 | /* square then multiply if the bit is set */ |
| 3179 | for (x = 0; x < bitcpy; x++) { |
| 3180 | if ((err = mp_sqr (&res, &res)) != MP_OKAY) { |
| 3181 | goto LBL_RES; |
| 3182 | } |
| 3183 | if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| 3184 | goto LBL_RES; |
| 3185 | } |
| 3186 | |
| 3187 | /* get next bit of the window */ |
| 3188 | bitbuf <<= 1; |
| 3189 | if ((bitbuf & (1 << winsize)) != 0) { |
| 3190 | /* then multiply */ |
| 3191 | if ((err = mp_mul (&res, &M[1], &res)) != MP_OKAY) { |
| 3192 | goto LBL_RES; |
| 3193 | } |
| 3194 | if ((err = redux (&res, P, mp)) != MP_OKAY) { |
| 3195 | goto LBL_RES; |
| 3196 | } |
| 3197 | } |
| 3198 | } |
| 3199 | } |
| 3200 | |
| 3201 | if (redmode == 0) { |
| 3202 | /* fixup result if Montgomery reduction is used |
| 3203 | * recall that any value in a Montgomery system is |
| 3204 | * actually multiplied by R mod n. So we have |
| 3205 | * to reduce one more time to cancel out the factor |
| 3206 | * of R. |
| 3207 | */ |
| 3208 | if ((err = redux(&res, P, mp)) != MP_OKAY) { |
| 3209 | goto LBL_RES; |
| 3210 | } |
| 3211 | } |
| 3212 | |
| 3213 | /* swap res with Y */ |
| 3214 | mp_exch (&res, Y); |
| 3215 | err = MP_OKAY; |
| 3216 | LBL_RES:mp_clear (&res); |
| 3217 | LBL_M: |
| 3218 | mp_clear(&M[1]); |
| 3219 | for (x = 1<<(winsize-1); x < (1 << winsize); x++) { |
| 3220 | mp_clear (&M[x]); |
| 3221 | } |
| 3222 | return err; |
| 3223 | } |
| 3224 | #endif |
| 3225 | |
| 3226 | |
| 3227 | #ifdef BN_FAST_S_MP_SQR_C |
| 3228 | /* the jist of squaring... |
| 3229 | * you do like mult except the offset of the tmpx [one that |
| 3230 | * starts closer to zero] can't equal the offset of tmpy. |
| 3231 | * So basically you set up iy like before then you min it with |
| 3232 | * (ty-tx) so that it never happens. You double all those |
| 3233 | * you add in the inner loop |
| 3234 | |
| 3235 | After that loop you do the squares and add them in. |
| 3236 | */ |
| 3237 | |
| 3238 | static int fast_s_mp_sqr (mp_int * a, mp_int * b) |
| 3239 | { |
| 3240 | int olduse, res, pa, ix, iz; |
| 3241 | mp_digit W[MP_WARRAY], *tmpx; |
| 3242 | mp_word W1; |
| 3243 | |
| 3244 | /* grow the destination as required */ |
| 3245 | pa = a->used + a->used; |
| 3246 | if (b->alloc < pa) { |
| 3247 | if ((res = mp_grow (b, pa)) != MP_OKAY) { |
| 3248 | return res; |
| 3249 | } |
| 3250 | } |
| 3251 | |
| 3252 | /* number of output digits to produce */ |
| 3253 | W1 = 0; |
| 3254 | for (ix = 0; ix < pa; ix++) { |
| 3255 | int tx, ty, iy; |
| 3256 | mp_word _W; |
| 3257 | mp_digit *tmpy; |
| 3258 | |
| 3259 | /* clear counter */ |
| 3260 | _W = 0; |
| 3261 | |
| 3262 | /* get offsets into the two bignums */ |
| 3263 | ty = MIN(a->used-1, ix); |
| 3264 | tx = ix - ty; |
| 3265 | |
| 3266 | /* setup temp aliases */ |
| 3267 | tmpx = a->dp + tx; |
| 3268 | tmpy = a->dp + ty; |
| 3269 | |
| 3270 | /* this is the number of times the loop will iterrate, essentially |
| 3271 | while (tx++ < a->used && ty-- >= 0) { ... } |
| 3272 | */ |
| 3273 | iy = MIN(a->used-tx, ty+1); |
| 3274 | |
| 3275 | /* now for squaring tx can never equal ty |
| 3276 | * we halve the distance since they approach at a rate of 2x |
| 3277 | * and we have to round because odd cases need to be executed |
| 3278 | */ |
| 3279 | iy = MIN(iy, (ty-tx+1)>>1); |
| 3280 | |
| 3281 | /* execute loop */ |
| 3282 | for (iz = 0; iz < iy; iz++) { |
| 3283 | _W += ((mp_word)*tmpx++)*((mp_word)*tmpy--); |
| 3284 | } |
| 3285 | |
| 3286 | /* double the inner product and add carry */ |
| 3287 | _W = _W + _W + W1; |
| 3288 | |
| 3289 | /* even columns have the square term in them */ |
| 3290 | if ((ix&1) == 0) { |
| 3291 | _W += ((mp_word)a->dp[ix>>1])*((mp_word)a->dp[ix>>1]); |
| 3292 | } |
| 3293 | |
| 3294 | /* store it */ |
| 3295 | W[ix] = (mp_digit)(_W & MP_MASK); |
| 3296 | |
| 3297 | /* make next carry */ |
| 3298 | W1 = _W >> ((mp_word)DIGIT_BIT); |
| 3299 | } |
| 3300 | |
| 3301 | /* setup dest */ |
| 3302 | olduse = b->used; |
| 3303 | b->used = a->used+a->used; |
| 3304 | |
| 3305 | { |
| 3306 | mp_digit *tmpb; |
| 3307 | tmpb = b->dp; |
| 3308 | for (ix = 0; ix < pa; ix++) { |
| 3309 | *tmpb++ = W[ix] & MP_MASK; |
| 3310 | } |
| 3311 | |
| 3312 | /* clear unused digits [that existed in the old copy of c] */ |
| 3313 | for (; ix < olduse; ix++) { |
| 3314 | *tmpb++ = 0; |
| 3315 | } |
| 3316 | } |
| 3317 | mp_clamp (b); |
| 3318 | return MP_OKAY; |
| 3319 | } |
| 3320 | #endif |
| 3321 | |
| 3322 | |
| 3323 | #ifdef BN_MP_MUL_D_C |
| 3324 | /* multiply by a digit */ |
| 3325 | static int |
| 3326 | mp_mul_d (mp_int * a, mp_digit b, mp_int * c) |
| 3327 | { |
| 3328 | mp_digit u, *tmpa, *tmpc; |
| 3329 | mp_word r; |
| 3330 | int ix, res, olduse; |
| 3331 | |
| 3332 | /* make sure c is big enough to hold a*b */ |
| 3333 | if (c->alloc < a->used + 1) { |
| 3334 | if ((res = mp_grow (c, a->used + 1)) != MP_OKAY) { |
| 3335 | return res; |
| 3336 | } |
| 3337 | } |
| 3338 | |
| 3339 | /* get the original destinations used count */ |
| 3340 | olduse = c->used; |
| 3341 | |
| 3342 | /* set the sign */ |
| 3343 | c->sign = a->sign; |
| 3344 | |
| 3345 | /* alias for a->dp [source] */ |
| 3346 | tmpa = a->dp; |
| 3347 | |
| 3348 | /* alias for c->dp [dest] */ |
| 3349 | tmpc = c->dp; |
| 3350 | |
| 3351 | /* zero carry */ |
| 3352 | u = 0; |
| 3353 | |
| 3354 | /* compute columns */ |
| 3355 | for (ix = 0; ix < a->used; ix++) { |
| 3356 | /* compute product and carry sum for this term */ |
| 3357 | r = ((mp_word) u) + ((mp_word)*tmpa++) * ((mp_word)b); |
| 3358 | |
| 3359 | /* mask off higher bits to get a single digit */ |
| 3360 | *tmpc++ = (mp_digit) (r & ((mp_word) MP_MASK)); |
| 3361 | |
| 3362 | /* send carry into next iteration */ |
| 3363 | u = (mp_digit) (r >> ((mp_word) DIGIT_BIT)); |
| 3364 | } |
| 3365 | |
| 3366 | /* store final carry [if any] and increment ix offset */ |
| 3367 | *tmpc++ = u; |
| 3368 | ++ix; |
| 3369 | |
| 3370 | /* now zero digits above the top */ |
| 3371 | while (ix++ < olduse) { |
| 3372 | *tmpc++ = 0; |
| 3373 | } |
| 3374 | |
| 3375 | /* set used count */ |
| 3376 | c->used = a->used + 1; |
| 3377 | mp_clamp(c); |
| 3378 | |
| 3379 | return MP_OKAY; |
| 3380 | } |
| 3381 | #endif |