blob: c83441085454b1059c02a8e06d08265cd23642a2 [file] [log] [blame]
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +00001/*
2 * jdct.h
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This include file contains common declarations for the forward and
9 * inverse DCT modules. These declarations are private to the DCT managers
10 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
11 * The individual DCT algorithms are kept in separate files to ease
12 * machine-dependent tuning (e.g., assembly coding).
13 */
14
15
16/*
17 * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
18 * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
19 * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
20 * implementations use an array of type FAST_FLOAT, instead.)
21 * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
22 * The DCT outputs are returned scaled up by a factor of 8; they therefore
23 * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
24 * convention improves accuracy in integer implementations and saves some
25 * work in floating-point ones.
Pierre Ossman4aa24292009-03-09 13:23:04 +000026 * Quantization of the output coefficients is done by jcdctmgr.c. This
27 * step requires an unsigned type and also one with twice the bits.
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +000028 */
29
30#if BITS_IN_JSAMPLE == 8
31typedef int DCTELEM; /* 16 or 32 bits is fine */
Pierre Ossman4aa24292009-03-09 13:23:04 +000032typedef unsigned int UDCTELEM;
33typedef unsigned long long UDCTELEM2;
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +000034#else
35typedef INT32 DCTELEM; /* must have 32 bits */
Pierre Ossman4aa24292009-03-09 13:23:04 +000036typedef UINT32 UDCTELEM;
37typedef unsigned long long UDCTELEM2;
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +000038#endif
39
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +000040
41/*
42 * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
43 * to an output sample array. The routine must dequantize the input data as
44 * well as perform the IDCT; for dequantization, it uses the multiplier table
45 * pointed to by compptr->dct_table. The output data is to be placed into the
46 * sample array starting at a specified column. (Any row offset needed will
47 * be applied to the array pointer before it is passed to the IDCT code.)
48 * Note that the number of samples emitted by the IDCT routine is
49 * DCT_scaled_size * DCT_scaled_size.
50 */
51
52/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
53
54/*
55 * Each IDCT routine has its own ideas about the best dct_table element type.
56 */
57
58typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
59#if BITS_IN_JSAMPLE == 8
60typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
61#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
62#else
63typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
64#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
65#endif
66typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
67
68
69/*
70 * Each IDCT routine is responsible for range-limiting its results and
71 * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
72 * be quite far out of range if the input data is corrupt, so a bulletproof
73 * range-limiting step is required. We use a mask-and-table-lookup method
74 * to do the combined operations quickly. See the comments with
75 * prepare_range_limit_table (in jdmaster.c) for more info.
76 */
77
78#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
79
80#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
81
82
83/* Short forms of external names for systems with brain-damaged linkers. */
84
85#ifdef NEED_SHORT_EXTERNAL_NAMES
86#define jpeg_fdct_islow jFDislow
87#define jpeg_fdct_ifast jFDifast
88#define jpeg_fdct_float jFDfloat
89#define jpeg_idct_islow jRDislow
90#define jpeg_idct_ifast jRDifast
91#define jpeg_idct_float jRDfloat
92#define jpeg_idct_4x4 jRD4x4
93#define jpeg_idct_2x2 jRD2x2
94#define jpeg_idct_1x1 jRD1x1
95#endif /* NEED_SHORT_EXTERNAL_NAMES */
96
97/* Extern declarations for the forward and inverse DCT routines. */
98
99EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
100EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
101EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
102
103EXTERN(void) jpeg_idct_islow
104 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
105 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
106EXTERN(void) jpeg_idct_ifast
107 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
108 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
109EXTERN(void) jpeg_idct_float
110 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
111 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
112EXTERN(void) jpeg_idct_4x4
113 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
114 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
115EXTERN(void) jpeg_idct_2x2
116 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
117 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
118EXTERN(void) jpeg_idct_1x1
119 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
120 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
121
122
123/*
124 * Macros for handling fixed-point arithmetic; these are used by many
125 * but not all of the DCT/IDCT modules.
126 *
127 * All values are expected to be of type INT32.
128 * Fractional constants are scaled left by CONST_BITS bits.
129 * CONST_BITS is defined within each module using these macros,
130 * and may differ from one module to the next.
131 */
132
133#define ONE ((INT32) 1)
134#define CONST_SCALE (ONE << CONST_BITS)
135
136/* Convert a positive real constant to an integer scaled by CONST_SCALE.
137 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
138 * thus causing a lot of useless floating-point operations at run time.
139 */
140
141#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
142
143/* Descale and correctly round an INT32 value that's scaled by N bits.
144 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
145 * the fudge factor is correct for either sign of X.
146 */
147
148#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
149
150/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
151 * This macro is used only when the two inputs will actually be no more than
152 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
153 * full 32x32 multiply. This provides a useful speedup on many machines.
154 * Unfortunately there is no way to specify a 16x16->32 multiply portably
155 * in C, but some C compilers will do the right thing if you provide the
156 * correct combination of casts.
157 */
158
159#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
160#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
161#endif
162#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
163#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
164#endif
165
166#ifndef MULTIPLY16C16 /* default definition */
167#define MULTIPLY16C16(var,const) ((var) * (const))
168#endif
169
170/* Same except both inputs are variables. */
171
172#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
173#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
174#endif
175
176#ifndef MULTIPLY16V16 /* default definition */
177#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
178#endif