blob: c3650ea0b2463fbf184aeb80fabc4819d194917f [file] [log] [blame]
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +00001/*
2 * jdct.h
3 *
4 * Copyright (C) 1994-1996, Thomas G. Lane.
5 * This file is part of the Independent JPEG Group's software.
6 * For conditions of distribution and use, see the accompanying README file.
7 *
8 * This include file contains common declarations for the forward and
9 * inverse DCT modules. These declarations are private to the DCT managers
10 * (jcdctmgr.c, jddctmgr.c) and the individual DCT algorithms.
11 * The individual DCT algorithms are kept in separate files to ease
12 * machine-dependent tuning (e.g., assembly coding).
13 */
14
15
16/*
17 * A forward DCT routine is given a pointer to a work area of type DCTELEM[];
18 * the DCT is to be performed in-place in that buffer. Type DCTELEM is int
19 * for 8-bit samples, INT32 for 12-bit samples. (NOTE: Floating-point DCT
20 * implementations use an array of type FAST_FLOAT, instead.)
21 * The DCT inputs are expected to be signed (range +-CENTERJSAMPLE).
22 * The DCT outputs are returned scaled up by a factor of 8; they therefore
23 * have a range of +-8K for 8-bit data, +-128K for 12-bit data. This
24 * convention improves accuracy in integer implementations and saves some
25 * work in floating-point ones.
26 * Quantization of the output coefficients is done by jcdctmgr.c.
27 */
28
29#if BITS_IN_JSAMPLE == 8
30typedef int DCTELEM; /* 16 or 32 bits is fine */
31#else
32typedef INT32 DCTELEM; /* must have 32 bits */
33#endif
34
Constantin Kaplinskya2adc8d2006-05-25 05:01:55 +000035
36/*
37 * An inverse DCT routine is given a pointer to the input JBLOCK and a pointer
38 * to an output sample array. The routine must dequantize the input data as
39 * well as perform the IDCT; for dequantization, it uses the multiplier table
40 * pointed to by compptr->dct_table. The output data is to be placed into the
41 * sample array starting at a specified column. (Any row offset needed will
42 * be applied to the array pointer before it is passed to the IDCT code.)
43 * Note that the number of samples emitted by the IDCT routine is
44 * DCT_scaled_size * DCT_scaled_size.
45 */
46
47/* typedef inverse_DCT_method_ptr is declared in jpegint.h */
48
49/*
50 * Each IDCT routine has its own ideas about the best dct_table element type.
51 */
52
53typedef MULTIPLIER ISLOW_MULT_TYPE; /* short or int, whichever is faster */
54#if BITS_IN_JSAMPLE == 8
55typedef MULTIPLIER IFAST_MULT_TYPE; /* 16 bits is OK, use short if faster */
56#define IFAST_SCALE_BITS 2 /* fractional bits in scale factors */
57#else
58typedef INT32 IFAST_MULT_TYPE; /* need 32 bits for scaled quantizers */
59#define IFAST_SCALE_BITS 13 /* fractional bits in scale factors */
60#endif
61typedef FAST_FLOAT FLOAT_MULT_TYPE; /* preferred floating type */
62
63
64/*
65 * Each IDCT routine is responsible for range-limiting its results and
66 * converting them to unsigned form (0..MAXJSAMPLE). The raw outputs could
67 * be quite far out of range if the input data is corrupt, so a bulletproof
68 * range-limiting step is required. We use a mask-and-table-lookup method
69 * to do the combined operations quickly. See the comments with
70 * prepare_range_limit_table (in jdmaster.c) for more info.
71 */
72
73#define IDCT_range_limit(cinfo) ((cinfo)->sample_range_limit + CENTERJSAMPLE)
74
75#define RANGE_MASK (MAXJSAMPLE * 4 + 3) /* 2 bits wider than legal samples */
76
77
78/* Short forms of external names for systems with brain-damaged linkers. */
79
80#ifdef NEED_SHORT_EXTERNAL_NAMES
81#define jpeg_fdct_islow jFDislow
82#define jpeg_fdct_ifast jFDifast
83#define jpeg_fdct_float jFDfloat
84#define jpeg_idct_islow jRDislow
85#define jpeg_idct_ifast jRDifast
86#define jpeg_idct_float jRDfloat
87#define jpeg_idct_4x4 jRD4x4
88#define jpeg_idct_2x2 jRD2x2
89#define jpeg_idct_1x1 jRD1x1
90#endif /* NEED_SHORT_EXTERNAL_NAMES */
91
92/* Extern declarations for the forward and inverse DCT routines. */
93
94EXTERN(void) jpeg_fdct_islow JPP((DCTELEM * data));
95EXTERN(void) jpeg_fdct_ifast JPP((DCTELEM * data));
96EXTERN(void) jpeg_fdct_float JPP((FAST_FLOAT * data));
97
98EXTERN(void) jpeg_idct_islow
99 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
100 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
101EXTERN(void) jpeg_idct_ifast
102 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
103 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
104EXTERN(void) jpeg_idct_float
105 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
106 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
107EXTERN(void) jpeg_idct_4x4
108 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
109 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
110EXTERN(void) jpeg_idct_2x2
111 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
112 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
113EXTERN(void) jpeg_idct_1x1
114 JPP((j_decompress_ptr cinfo, jpeg_component_info * compptr,
115 JCOEFPTR coef_block, JSAMPARRAY output_buf, JDIMENSION output_col));
116
117
118/*
119 * Macros for handling fixed-point arithmetic; these are used by many
120 * but not all of the DCT/IDCT modules.
121 *
122 * All values are expected to be of type INT32.
123 * Fractional constants are scaled left by CONST_BITS bits.
124 * CONST_BITS is defined within each module using these macros,
125 * and may differ from one module to the next.
126 */
127
128#define ONE ((INT32) 1)
129#define CONST_SCALE (ONE << CONST_BITS)
130
131/* Convert a positive real constant to an integer scaled by CONST_SCALE.
132 * Caution: some C compilers fail to reduce "FIX(constant)" at compile time,
133 * thus causing a lot of useless floating-point operations at run time.
134 */
135
136#define FIX(x) ((INT32) ((x) * CONST_SCALE + 0.5))
137
138/* Descale and correctly round an INT32 value that's scaled by N bits.
139 * We assume RIGHT_SHIFT rounds towards minus infinity, so adding
140 * the fudge factor is correct for either sign of X.
141 */
142
143#define DESCALE(x,n) RIGHT_SHIFT((x) + (ONE << ((n)-1)), n)
144
145/* Multiply an INT32 variable by an INT32 constant to yield an INT32 result.
146 * This macro is used only when the two inputs will actually be no more than
147 * 16 bits wide, so that a 16x16->32 bit multiply can be used instead of a
148 * full 32x32 multiply. This provides a useful speedup on many machines.
149 * Unfortunately there is no way to specify a 16x16->32 multiply portably
150 * in C, but some C compilers will do the right thing if you provide the
151 * correct combination of casts.
152 */
153
154#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
155#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT16) (const)))
156#endif
157#ifdef SHORTxLCONST_32 /* known to work with Microsoft C 6.0 */
158#define MULTIPLY16C16(var,const) (((INT16) (var)) * ((INT32) (const)))
159#endif
160
161#ifndef MULTIPLY16C16 /* default definition */
162#define MULTIPLY16C16(var,const) ((var) * (const))
163#endif
164
165/* Same except both inputs are variables. */
166
167#ifdef SHORTxSHORT_32 /* may work if 'int' is 32 bits */
168#define MULTIPLY16V16(var1,var2) (((INT16) (var1)) * ((INT16) (var2)))
169#endif
170
171#ifndef MULTIPLY16V16 /* default definition */
172#define MULTIPLY16V16(var1,var2) ((var1) * (var2))
173#endif