blob: a82140bb98b54c1a1e05f8403aa55c2e09a8c7bf [file] [log] [blame]
Elliott Hughesab528072018-07-24 00:01:52 +00001/*-
Elliott Hughesbac0ebb2021-01-26 14:17:20 -08002 * SPDX-License-Identifier: BSD-3-Clause
Elliott Hughesab528072018-07-24 00:01:52 +00003 *
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08004 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
Elliott Hughesbac0ebb2021-01-26 14:17:20 -080015 * 3. Neither the name of the University nor the names of its contributors
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080016 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080032/* Table-driven natural logarithm.
33 *
34 * This code was derived, with minor modifications, from:
35 * Peter Tang, "Table-Driven Implementation of the
36 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
37 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
38 *
Elliott Hughes99ef4472022-01-12 17:51:20 -080039 * Calculates log(2^m*F*(1+f/F)), |f/F| <= 1/256,
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080040 * where F = j/128 for j an integer in [0, 128].
41 *
42 * log(2^m) = log2_hi*m + log2_tail*m
Elliott Hughes99ef4472022-01-12 17:51:20 -080043 * The leading term is exact, because m is an integer,
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080044 * m has at most 10 digits (for subnormal numbers),
45 * and log2_hi has 11 trailing zero bits.
46 *
Elliott Hughes99ef4472022-01-12 17:51:20 -080047 * log(F) = logF_hi[j] + logF_lo[j] is in table below.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080048 * logF_hi[] + 512 is exact.
49 *
50 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
Elliott Hughes99ef4472022-01-12 17:51:20 -080051 *
52 * The leading term is calculated to extra precision in two
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080053 * parts, the larger of which adds exactly to the dominant
54 * m and F terms.
Elliott Hughes99ef4472022-01-12 17:51:20 -080055 *
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080056 * There are two cases:
Elliott Hughes99ef4472022-01-12 17:51:20 -080057 * 1. When m and j are non-zero (m | j), use absolute
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080058 * precision for the leading term.
Elliott Hughes99ef4472022-01-12 17:51:20 -080059 * 2. When m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080060 * In this case, use a relative precision of 24 bits.
61 * (This is done differently in the original paper)
62 *
63 * Special cases:
64 * 0 return signalling -Inf
65 * neg return signalling NaN
66 * +Inf return +Inf
Elliott Hughes99ef4472022-01-12 17:51:20 -080067 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080068
69#define N 128
70
Elliott Hughes99ef4472022-01-12 17:51:20 -080071/*
72 * Coefficients in the polynomial approximation of log(1+f/F).
73 * Domain of x is [0,1./256] with 2**(-64.187) precision.
74 */
75static const double
76 A1 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */
77 A2 = 1.2499999999943598e-02, /* 0x3f899999, 0x99991a98 */
78 A3 = 2.2321527525957776e-03; /* 0x3f624929, 0xe24e70be */
79
80/*
81 * Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080082 * Used for generation of extend precision logarithms.
83 * The constant 35184372088832 is 2^45, so the divide is exact.
84 * It ensures correct reading of logF_head, even for inaccurate
85 * decimal-to-binary conversion routines. (Everybody gets the
86 * right answer for integers less than 2^53.)
87 * Values for log(F) were generated using error < 10^-57 absolute
88 * with the bc -l package.
Elliott Hughes99ef4472022-01-12 17:51:20 -080089 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080090static double logF_head[N+1] = {
91 0.,
92 .007782140442060381246,
93 .015504186535963526694,
94 .023167059281547608406,
95 .030771658666765233647,
96 .038318864302141264488,
97 .045809536031242714670,
98 .053244514518837604555,
99 .060624621816486978786,
100 .067950661908525944454,
101 .075223421237524235039,
102 .082443669210988446138,
103 .089612158689760690322,
104 .096729626458454731618,
105 .103796793681567578460,
106 .110814366340264314203,
107 .117783035656430001836,
108 .124703478501032805070,
109 .131576357788617315236,
110 .138402322859292326029,
111 .145182009844575077295,
112 .151916042025732167530,
113 .158605030176659056451,
114 .165249572895390883786,
115 .171850256926518341060,
116 .178407657472689606947,
117 .184922338493834104156,
118 .191394852999565046047,
119 .197825743329758552135,
120 .204215541428766300668,
121 .210564769107350002741,
122 .216873938300523150246,
123 .223143551314024080056,
124 .229374101064877322642,
125 .235566071312860003672,
126 .241719936886966024758,
127 .247836163904594286577,
128 .253915209980732470285,
129 .259957524436686071567,
130 .265963548496984003577,
131 .271933715484010463114,
132 .277868451003087102435,
133 .283768173130738432519,
134 .289633292582948342896,
135 .295464212893421063199,
136 .301261330578199704177,
137 .307025035294827830512,
138 .312755710004239517729,
139 .318453731118097493890,
140 .324119468654316733591,
141 .329753286372579168528,
142 .335355541920762334484,
143 .340926586970454081892,
144 .346466767346100823488,
145 .351976423156884266063,
146 .357455888922231679316,
147 .362905493689140712376,
148 .368325561158599157352,
149 .373716409793814818840,
150 .379078352934811846353,
151 .384411698910298582632,
152 .389716751140440464951,
153 .394993808240542421117,
154 .400243164127459749579,
155 .405465108107819105498,
156 .410659924985338875558,
157 .415827895143593195825,
158 .420969294644237379543,
159 .426084395310681429691,
160 .431173464818130014464,
161 .436236766774527495726,
162 .441274560805140936281,
163 .446287102628048160113,
164 .451274644139630254358,
165 .456237433481874177232,
166 .461175715122408291790,
167 .466089729924533457960,
168 .470979715219073113985,
169 .475845904869856894947,
170 .480688529345570714212,
171 .485507815781602403149,
172 .490303988045525329653,
173 .495077266798034543171,
174 .499827869556611403822,
175 .504556010751912253908,
176 .509261901790523552335,
177 .513945751101346104405,
178 .518607764208354637958,
179 .523248143765158602036,
180 .527867089620485785417,
181 .532464798869114019908,
182 .537041465897345915436,
183 .541597282432121573947,
184 .546132437597407260909,
185 .550647117952394182793,
186 .555141507540611200965,
187 .559615787935399566777,
188 .564070138285387656651,
189 .568504735352689749561,
190 .572919753562018740922,
191 .577315365035246941260,
192 .581691739635061821900,
193 .586049045003164792433,
194 .590387446602107957005,
195 .594707107746216934174,
196 .599008189645246602594,
197 .603290851438941899687,
198 .607555250224322662688,
199 .611801541106615331955,
200 .616029877215623855590,
201 .620240409751204424537,
202 .624433288012369303032,
203 .628608659422752680256,
204 .632766669570628437213,
205 .636907462236194987781,
206 .641031179420679109171,
207 .645137961373620782978,
208 .649227946625615004450,
209 .653301272011958644725,
210 .657358072709030238911,
211 .661398482245203922502,
212 .665422632544505177065,
213 .669430653942981734871,
214 .673422675212350441142,
215 .677398823590920073911,
216 .681359224807238206267,
217 .685304003098281100392,
218 .689233281238557538017,
219 .693147180560117703862
220};
221
222static double logF_tail[N+1] = {
223 0.,
224 -.00000000000000543229938420049,
225 .00000000000000172745674997061,
226 -.00000000000001323017818229233,
227 -.00000000000001154527628289872,
228 -.00000000000000466529469958300,
229 .00000000000005148849572685810,
230 -.00000000000002532168943117445,
231 -.00000000000005213620639136504,
232 -.00000000000001819506003016881,
233 .00000000000006329065958724544,
234 .00000000000008614512936087814,
235 -.00000000000007355770219435028,
236 .00000000000009638067658552277,
237 .00000000000007598636597194141,
238 .00000000000002579999128306990,
239 -.00000000000004654729747598444,
240 -.00000000000007556920687451336,
241 .00000000000010195735223708472,
242 -.00000000000017319034406422306,
243 -.00000000000007718001336828098,
244 .00000000000010980754099855238,
245 -.00000000000002047235780046195,
246 -.00000000000008372091099235912,
247 .00000000000014088127937111135,
248 .00000000000012869017157588257,
249 .00000000000017788850778198106,
250 .00000000000006440856150696891,
251 .00000000000016132822667240822,
252 -.00000000000007540916511956188,
253 -.00000000000000036507188831790,
254 .00000000000009120937249914984,
255 .00000000000018567570959796010,
256 -.00000000000003149265065191483,
257 -.00000000000009309459495196889,
258 .00000000000017914338601329117,
259 -.00000000000001302979717330866,
260 .00000000000023097385217586939,
261 .00000000000023999540484211737,
262 .00000000000015393776174455408,
263 -.00000000000036870428315837678,
264 .00000000000036920375082080089,
265 -.00000000000009383417223663699,
266 .00000000000009433398189512690,
267 .00000000000041481318704258568,
268 -.00000000000003792316480209314,
269 .00000000000008403156304792424,
270 -.00000000000034262934348285429,
271 .00000000000043712191957429145,
272 -.00000000000010475750058776541,
273 -.00000000000011118671389559323,
274 .00000000000037549577257259853,
275 .00000000000013912841212197565,
276 .00000000000010775743037572640,
277 .00000000000029391859187648000,
278 -.00000000000042790509060060774,
279 .00000000000022774076114039555,
280 .00000000000010849569622967912,
281 -.00000000000023073801945705758,
282 .00000000000015761203773969435,
283 .00000000000003345710269544082,
284 -.00000000000041525158063436123,
285 .00000000000032655698896907146,
286 -.00000000000044704265010452446,
287 .00000000000034527647952039772,
288 -.00000000000007048962392109746,
289 .00000000000011776978751369214,
290 -.00000000000010774341461609578,
291 .00000000000021863343293215910,
292 .00000000000024132639491333131,
293 .00000000000039057462209830700,
294 -.00000000000026570679203560751,
295 .00000000000037135141919592021,
296 -.00000000000017166921336082431,
297 -.00000000000028658285157914353,
298 -.00000000000023812542263446809,
299 .00000000000006576659768580062,
300 -.00000000000028210143846181267,
301 .00000000000010701931762114254,
302 .00000000000018119346366441110,
303 .00000000000009840465278232627,
304 -.00000000000033149150282752542,
305 -.00000000000018302857356041668,
306 -.00000000000016207400156744949,
307 .00000000000048303314949553201,
308 -.00000000000071560553172382115,
309 .00000000000088821239518571855,
310 -.00000000000030900580513238244,
311 -.00000000000061076551972851496,
312 .00000000000035659969663347830,
313 .00000000000035782396591276383,
314 -.00000000000046226087001544578,
315 .00000000000062279762917225156,
316 .00000000000072838947272065741,
317 .00000000000026809646615211673,
318 -.00000000000010960825046059278,
319 .00000000000002311949383800537,
320 -.00000000000058469058005299247,
321 -.00000000000002103748251144494,
322 -.00000000000023323182945587408,
323 -.00000000000042333694288141916,
324 -.00000000000043933937969737844,
325 .00000000000041341647073835565,
326 .00000000000006841763641591466,
327 .00000000000047585534004430641,
328 .00000000000083679678674757695,
329 -.00000000000085763734646658640,
330 .00000000000021913281229340092,
331 -.00000000000062242842536431148,
332 -.00000000000010983594325438430,
333 .00000000000065310431377633651,
334 -.00000000000047580199021710769,
335 -.00000000000037854251265457040,
336 .00000000000040939233218678664,
337 .00000000000087424383914858291,
338 .00000000000025218188456842882,
339 -.00000000000003608131360422557,
340 -.00000000000050518555924280902,
341 .00000000000078699403323355317,
342 -.00000000000067020876961949060,
343 .00000000000016108575753932458,
344 .00000000000058527188436251509,
345 -.00000000000035246757297904791,
346 -.00000000000018372084495629058,
347 .00000000000088606689813494916,
348 .00000000000066486268071468700,
349 .00000000000063831615170646519,
350 .00000000000025144230728376072,
351 -.00000000000017239444525614834
352};
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800353/*
354 * Extra precision variant, returning struct {double a, b;};
Elliott Hughes99ef4472022-01-12 17:51:20 -0800355 * log(x) = a+b to 63 bits, with 'a' rounded to 24 bits.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800356 */
Elliott Hughes99ef4472022-01-12 17:51:20 -0800357static struct Double
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800358__log__D(double x)
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800359{
360 int m, j;
Elliott Hughes99ef4472022-01-12 17:51:20 -0800361 double F, f, g, q, u, v, u1, u2;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800362 struct Double r;
363
Elliott Hughes99ef4472022-01-12 17:51:20 -0800364 /*
365 * Argument reduction: 1 <= g < 2; x/2^m = g;
366 * y = F*(1 + f/F) for |f| <= 2^-8
367 */
368 g = frexp(x, &m);
369 g *= 2;
370 m--;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800371 if (m == -1022) {
Elliott Hughes99ef4472022-01-12 17:51:20 -0800372 j = ilogb(g);
373 m += j;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800374 g = ldexp(g, -j);
375 }
Elliott Hughes99ef4472022-01-12 17:51:20 -0800376 j = N * (g - 1) + 0.5;
377 F = (1. / N) * j + 1;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800378 f = g - F;
379
Elliott Hughes99ef4472022-01-12 17:51:20 -0800380 g = 1 / (2 * F + f);
381 u = 2 * f * g;
382 v = u * u;
383 q = u * v * (A1 + v * (A2 + v * A3));
384 if (m | j) {
385 u1 = u + 513;
386 u1 -= 513;
387 } else {
388 u1 = (float)u;
389 }
390 u2 = (2 * (f - F * u1) - u1 * f) * g;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800391
Elliott Hughes99ef4472022-01-12 17:51:20 -0800392 u1 += m * logF_head[N] + logF_head[j];
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800393
Elliott Hughes99ef4472022-01-12 17:51:20 -0800394 u2 += logF_tail[j];
395 u2 += q;
396 u2 += logF_tail[N] * m;
397 r.a = (float)(u1 + u2); /* Only difference is here. */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800398 r.b = (u1 - r.a) + u2;
399 return (r);
400}