blob: 9d09ac754706f108356a924035c30ef2f6aef0ec [file] [log] [blame]
Elliott Hughesab528072018-07-24 00:01:52 +00001/*-
Elliott Hughesbac0ebb2021-01-26 14:17:20 -08002 * SPDX-License-Identifier: BSD-3-Clause
Elliott Hughesab528072018-07-24 00:01:52 +00003 *
The Android Open Source Project1dc9e472009-03-03 19:28:35 -08004 * Copyright (c) 1992, 1993
5 * The Regents of the University of California. All rights reserved.
6 *
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
Elliott Hughesbac0ebb2021-01-26 14:17:20 -080015 * 3. Neither the name of the University nor the names of its contributors
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080016 * may be used to endorse or promote products derived from this software
17 * without specific prior written permission.
18 *
19 * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22 * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29 * SUCH DAMAGE.
30 */
31
Elliott Hughesa0ee0782013-01-30 19:06:37 -080032/* @(#)log.c 8.2 (Berkeley) 11/30/93 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080033#include <sys/cdefs.h>
Elliott Hughesbac0ebb2021-01-26 14:17:20 -080034__FBSDID("$FreeBSD$");
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080035
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080036/* Table-driven natural logarithm.
37 *
38 * This code was derived, with minor modifications, from:
39 * Peter Tang, "Table-Driven Implementation of the
40 * Logarithm in IEEE Floating-Point arithmetic." ACM Trans.
41 * Math Software, vol 16. no 4, pp 378-400, Dec 1990).
42 *
Elliott Hughes99ef4472022-01-12 17:51:20 -080043 * Calculates log(2^m*F*(1+f/F)), |f/F| <= 1/256,
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080044 * where F = j/128 for j an integer in [0, 128].
45 *
46 * log(2^m) = log2_hi*m + log2_tail*m
Elliott Hughes99ef4472022-01-12 17:51:20 -080047 * The leading term is exact, because m is an integer,
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080048 * m has at most 10 digits (for subnormal numbers),
49 * and log2_hi has 11 trailing zero bits.
50 *
Elliott Hughes99ef4472022-01-12 17:51:20 -080051 * log(F) = logF_hi[j] + logF_lo[j] is in table below.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080052 * logF_hi[] + 512 is exact.
53 *
54 * log(1+f/F) = 2*f/(2*F + f) + 1/12 * (2*f/(2*F + f))**3 + ...
Elliott Hughes99ef4472022-01-12 17:51:20 -080055 *
56 * The leading term is calculated to extra precision in two
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080057 * parts, the larger of which adds exactly to the dominant
58 * m and F terms.
Elliott Hughes99ef4472022-01-12 17:51:20 -080059 *
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080060 * There are two cases:
Elliott Hughes99ef4472022-01-12 17:51:20 -080061 * 1. When m and j are non-zero (m | j), use absolute
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080062 * precision for the leading term.
Elliott Hughes99ef4472022-01-12 17:51:20 -080063 * 2. When m = j = 0, |1-x| < 1/256, and log(x) ~= (x-1).
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080064 * In this case, use a relative precision of 24 bits.
65 * (This is done differently in the original paper)
66 *
67 * Special cases:
68 * 0 return signalling -Inf
69 * neg return signalling NaN
70 * +Inf return +Inf
Elliott Hughes99ef4472022-01-12 17:51:20 -080071 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080072
73#define N 128
74
Elliott Hughes99ef4472022-01-12 17:51:20 -080075/*
76 * Coefficients in the polynomial approximation of log(1+f/F).
77 * Domain of x is [0,1./256] with 2**(-64.187) precision.
78 */
79static const double
80 A1 = 8.3333333333333329e-02, /* 0x3fb55555, 0x55555555 */
81 A2 = 1.2499999999943598e-02, /* 0x3f899999, 0x99991a98 */
82 A3 = 2.2321527525957776e-03; /* 0x3f624929, 0xe24e70be */
83
84/*
85 * Table of log(Fj) = logF_head[j] + logF_tail[j], for Fj = 1+j/128.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080086 * Used for generation of extend precision logarithms.
87 * The constant 35184372088832 is 2^45, so the divide is exact.
88 * It ensures correct reading of logF_head, even for inaccurate
89 * decimal-to-binary conversion routines. (Everybody gets the
90 * right answer for integers less than 2^53.)
91 * Values for log(F) were generated using error < 10^-57 absolute
92 * with the bc -l package.
Elliott Hughes99ef4472022-01-12 17:51:20 -080093 */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -080094static double logF_head[N+1] = {
95 0.,
96 .007782140442060381246,
97 .015504186535963526694,
98 .023167059281547608406,
99 .030771658666765233647,
100 .038318864302141264488,
101 .045809536031242714670,
102 .053244514518837604555,
103 .060624621816486978786,
104 .067950661908525944454,
105 .075223421237524235039,
106 .082443669210988446138,
107 .089612158689760690322,
108 .096729626458454731618,
109 .103796793681567578460,
110 .110814366340264314203,
111 .117783035656430001836,
112 .124703478501032805070,
113 .131576357788617315236,
114 .138402322859292326029,
115 .145182009844575077295,
116 .151916042025732167530,
117 .158605030176659056451,
118 .165249572895390883786,
119 .171850256926518341060,
120 .178407657472689606947,
121 .184922338493834104156,
122 .191394852999565046047,
123 .197825743329758552135,
124 .204215541428766300668,
125 .210564769107350002741,
126 .216873938300523150246,
127 .223143551314024080056,
128 .229374101064877322642,
129 .235566071312860003672,
130 .241719936886966024758,
131 .247836163904594286577,
132 .253915209980732470285,
133 .259957524436686071567,
134 .265963548496984003577,
135 .271933715484010463114,
136 .277868451003087102435,
137 .283768173130738432519,
138 .289633292582948342896,
139 .295464212893421063199,
140 .301261330578199704177,
141 .307025035294827830512,
142 .312755710004239517729,
143 .318453731118097493890,
144 .324119468654316733591,
145 .329753286372579168528,
146 .335355541920762334484,
147 .340926586970454081892,
148 .346466767346100823488,
149 .351976423156884266063,
150 .357455888922231679316,
151 .362905493689140712376,
152 .368325561158599157352,
153 .373716409793814818840,
154 .379078352934811846353,
155 .384411698910298582632,
156 .389716751140440464951,
157 .394993808240542421117,
158 .400243164127459749579,
159 .405465108107819105498,
160 .410659924985338875558,
161 .415827895143593195825,
162 .420969294644237379543,
163 .426084395310681429691,
164 .431173464818130014464,
165 .436236766774527495726,
166 .441274560805140936281,
167 .446287102628048160113,
168 .451274644139630254358,
169 .456237433481874177232,
170 .461175715122408291790,
171 .466089729924533457960,
172 .470979715219073113985,
173 .475845904869856894947,
174 .480688529345570714212,
175 .485507815781602403149,
176 .490303988045525329653,
177 .495077266798034543171,
178 .499827869556611403822,
179 .504556010751912253908,
180 .509261901790523552335,
181 .513945751101346104405,
182 .518607764208354637958,
183 .523248143765158602036,
184 .527867089620485785417,
185 .532464798869114019908,
186 .537041465897345915436,
187 .541597282432121573947,
188 .546132437597407260909,
189 .550647117952394182793,
190 .555141507540611200965,
191 .559615787935399566777,
192 .564070138285387656651,
193 .568504735352689749561,
194 .572919753562018740922,
195 .577315365035246941260,
196 .581691739635061821900,
197 .586049045003164792433,
198 .590387446602107957005,
199 .594707107746216934174,
200 .599008189645246602594,
201 .603290851438941899687,
202 .607555250224322662688,
203 .611801541106615331955,
204 .616029877215623855590,
205 .620240409751204424537,
206 .624433288012369303032,
207 .628608659422752680256,
208 .632766669570628437213,
209 .636907462236194987781,
210 .641031179420679109171,
211 .645137961373620782978,
212 .649227946625615004450,
213 .653301272011958644725,
214 .657358072709030238911,
215 .661398482245203922502,
216 .665422632544505177065,
217 .669430653942981734871,
218 .673422675212350441142,
219 .677398823590920073911,
220 .681359224807238206267,
221 .685304003098281100392,
222 .689233281238557538017,
223 .693147180560117703862
224};
225
226static double logF_tail[N+1] = {
227 0.,
228 -.00000000000000543229938420049,
229 .00000000000000172745674997061,
230 -.00000000000001323017818229233,
231 -.00000000000001154527628289872,
232 -.00000000000000466529469958300,
233 .00000000000005148849572685810,
234 -.00000000000002532168943117445,
235 -.00000000000005213620639136504,
236 -.00000000000001819506003016881,
237 .00000000000006329065958724544,
238 .00000000000008614512936087814,
239 -.00000000000007355770219435028,
240 .00000000000009638067658552277,
241 .00000000000007598636597194141,
242 .00000000000002579999128306990,
243 -.00000000000004654729747598444,
244 -.00000000000007556920687451336,
245 .00000000000010195735223708472,
246 -.00000000000017319034406422306,
247 -.00000000000007718001336828098,
248 .00000000000010980754099855238,
249 -.00000000000002047235780046195,
250 -.00000000000008372091099235912,
251 .00000000000014088127937111135,
252 .00000000000012869017157588257,
253 .00000000000017788850778198106,
254 .00000000000006440856150696891,
255 .00000000000016132822667240822,
256 -.00000000000007540916511956188,
257 -.00000000000000036507188831790,
258 .00000000000009120937249914984,
259 .00000000000018567570959796010,
260 -.00000000000003149265065191483,
261 -.00000000000009309459495196889,
262 .00000000000017914338601329117,
263 -.00000000000001302979717330866,
264 .00000000000023097385217586939,
265 .00000000000023999540484211737,
266 .00000000000015393776174455408,
267 -.00000000000036870428315837678,
268 .00000000000036920375082080089,
269 -.00000000000009383417223663699,
270 .00000000000009433398189512690,
271 .00000000000041481318704258568,
272 -.00000000000003792316480209314,
273 .00000000000008403156304792424,
274 -.00000000000034262934348285429,
275 .00000000000043712191957429145,
276 -.00000000000010475750058776541,
277 -.00000000000011118671389559323,
278 .00000000000037549577257259853,
279 .00000000000013912841212197565,
280 .00000000000010775743037572640,
281 .00000000000029391859187648000,
282 -.00000000000042790509060060774,
283 .00000000000022774076114039555,
284 .00000000000010849569622967912,
285 -.00000000000023073801945705758,
286 .00000000000015761203773969435,
287 .00000000000003345710269544082,
288 -.00000000000041525158063436123,
289 .00000000000032655698896907146,
290 -.00000000000044704265010452446,
291 .00000000000034527647952039772,
292 -.00000000000007048962392109746,
293 .00000000000011776978751369214,
294 -.00000000000010774341461609578,
295 .00000000000021863343293215910,
296 .00000000000024132639491333131,
297 .00000000000039057462209830700,
298 -.00000000000026570679203560751,
299 .00000000000037135141919592021,
300 -.00000000000017166921336082431,
301 -.00000000000028658285157914353,
302 -.00000000000023812542263446809,
303 .00000000000006576659768580062,
304 -.00000000000028210143846181267,
305 .00000000000010701931762114254,
306 .00000000000018119346366441110,
307 .00000000000009840465278232627,
308 -.00000000000033149150282752542,
309 -.00000000000018302857356041668,
310 -.00000000000016207400156744949,
311 .00000000000048303314949553201,
312 -.00000000000071560553172382115,
313 .00000000000088821239518571855,
314 -.00000000000030900580513238244,
315 -.00000000000061076551972851496,
316 .00000000000035659969663347830,
317 .00000000000035782396591276383,
318 -.00000000000046226087001544578,
319 .00000000000062279762917225156,
320 .00000000000072838947272065741,
321 .00000000000026809646615211673,
322 -.00000000000010960825046059278,
323 .00000000000002311949383800537,
324 -.00000000000058469058005299247,
325 -.00000000000002103748251144494,
326 -.00000000000023323182945587408,
327 -.00000000000042333694288141916,
328 -.00000000000043933937969737844,
329 .00000000000041341647073835565,
330 .00000000000006841763641591466,
331 .00000000000047585534004430641,
332 .00000000000083679678674757695,
333 -.00000000000085763734646658640,
334 .00000000000021913281229340092,
335 -.00000000000062242842536431148,
336 -.00000000000010983594325438430,
337 .00000000000065310431377633651,
338 -.00000000000047580199021710769,
339 -.00000000000037854251265457040,
340 .00000000000040939233218678664,
341 .00000000000087424383914858291,
342 .00000000000025218188456842882,
343 -.00000000000003608131360422557,
344 -.00000000000050518555924280902,
345 .00000000000078699403323355317,
346 -.00000000000067020876961949060,
347 .00000000000016108575753932458,
348 .00000000000058527188436251509,
349 -.00000000000035246757297904791,
350 -.00000000000018372084495629058,
351 .00000000000088606689813494916,
352 .00000000000066486268071468700,
353 .00000000000063831615170646519,
354 .00000000000025144230728376072,
355 -.00000000000017239444525614834
356};
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800357/*
358 * Extra precision variant, returning struct {double a, b;};
Elliott Hughes99ef4472022-01-12 17:51:20 -0800359 * log(x) = a+b to 63 bits, with 'a' rounded to 24 bits.
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800360 */
Elliott Hughes99ef4472022-01-12 17:51:20 -0800361static struct Double
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800362__log__D(double x)
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800363{
364 int m, j;
Elliott Hughes99ef4472022-01-12 17:51:20 -0800365 double F, f, g, q, u, v, u1, u2;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800366 struct Double r;
367
Elliott Hughes99ef4472022-01-12 17:51:20 -0800368 /*
369 * Argument reduction: 1 <= g < 2; x/2^m = g;
370 * y = F*(1 + f/F) for |f| <= 2^-8
371 */
372 g = frexp(x, &m);
373 g *= 2;
374 m--;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800375 if (m == -1022) {
Elliott Hughes99ef4472022-01-12 17:51:20 -0800376 j = ilogb(g);
377 m += j;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800378 g = ldexp(g, -j);
379 }
Elliott Hughes99ef4472022-01-12 17:51:20 -0800380 j = N * (g - 1) + 0.5;
381 F = (1. / N) * j + 1;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800382 f = g - F;
383
Elliott Hughes99ef4472022-01-12 17:51:20 -0800384 g = 1 / (2 * F + f);
385 u = 2 * f * g;
386 v = u * u;
387 q = u * v * (A1 + v * (A2 + v * A3));
388 if (m | j) {
389 u1 = u + 513;
390 u1 -= 513;
391 } else {
392 u1 = (float)u;
393 }
394 u2 = (2 * (f - F * u1) - u1 * f) * g;
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800395
Elliott Hughes99ef4472022-01-12 17:51:20 -0800396 u1 += m * logF_head[N] + logF_head[j];
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800397
Elliott Hughes99ef4472022-01-12 17:51:20 -0800398 u2 += logF_tail[j];
399 u2 += q;
400 u2 += logF_tail[N] * m;
401 r.a = (float)(u1 + u2); /* Only difference is here. */
The Android Open Source Project1dc9e472009-03-03 19:28:35 -0800402 r.b = (u1 - r.a) + u2;
403 return (r);
404}