|  | // | 
|  | // Copyright (C) 2014 The Android Open Source Project | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | // | 
|  |  | 
|  | #include "update_engine/payload_consumer/payload_verifier.h" | 
|  |  | 
|  | #include <utility> | 
|  | #include <vector> | 
|  |  | 
|  | #include <base/logging.h> | 
|  | #include <openssl/pem.h> | 
|  |  | 
|  | #include "update_engine/common/constants.h" | 
|  | #include "update_engine/common/hash_calculator.h" | 
|  | #include "update_engine/common/utils.h" | 
|  | #include "update_engine/payload_consumer/certificate_parser_interface.h" | 
|  | #include "update_engine/update_metadata.pb.h" | 
|  |  | 
|  | using std::string; | 
|  |  | 
|  | namespace chromeos_update_engine { | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // The ASN.1 DigestInfo prefix for encoding SHA256 digest. The complete 51-byte | 
|  | // DigestInfo consists of 19-byte SHA256_DIGEST_INFO_PREFIX and 32-byte SHA256 | 
|  | // digest. | 
|  | // | 
|  | // SEQUENCE(2+49) { | 
|  | //   SEQUENCE(2+13) { | 
|  | //     OBJECT(2+9) id-sha256 | 
|  | //     NULL(2+0) | 
|  | //   } | 
|  | //   OCTET STRING(2+32) <actual signature bytes...> | 
|  | // } | 
|  | const uint8_t kSHA256DigestInfoPrefix[] = { | 
|  | 0x30, 0x31, 0x30, 0x0d, 0x06, 0x09, 0x60, 0x86, 0x48, 0x01, | 
|  | 0x65, 0x03, 0x04, 0x02, 0x01, 0x05, 0x00, 0x04, 0x20, | 
|  | }; | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | std::unique_ptr<PayloadVerifier> PayloadVerifier::CreateInstance( | 
|  | const std::string& pem_public_key) { | 
|  | std::unique_ptr<BIO, decltype(&BIO_free)> bp( | 
|  | BIO_new_mem_buf(pem_public_key.data(), pem_public_key.size()), BIO_free); | 
|  | if (!bp) { | 
|  | LOG(ERROR) << "Failed to read " << pem_public_key << " into buffer."; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | auto pub_key = std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>( | 
|  | PEM_read_bio_PUBKEY(bp.get(), nullptr, nullptr, nullptr), EVP_PKEY_free); | 
|  | if (!pub_key) { | 
|  | LOG(ERROR) << "Failed to parse the public key in: " << pem_public_key; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::vector<std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>> keys; | 
|  | keys.emplace_back(std::move(pub_key)); | 
|  | return std::unique_ptr<PayloadVerifier>(new PayloadVerifier(std::move(keys))); | 
|  | } | 
|  |  | 
|  | std::unique_ptr<PayloadVerifier> PayloadVerifier::CreateInstanceFromZipPath( | 
|  | const std::string& certificate_zip_path) { | 
|  | auto parser = CreateCertificateParser(); | 
|  | if (!parser) { | 
|  | LOG(ERROR) << "Failed to create certificate parser from " | 
|  | << certificate_zip_path; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | std::vector<std::unique_ptr<EVP_PKEY, decltype(&EVP_PKEY_free)>> public_keys; | 
|  | if (!parser->ReadPublicKeysFromCertificates(certificate_zip_path, | 
|  | &public_keys) || | 
|  | public_keys.empty()) { | 
|  | LOG(ERROR) << "Failed to parse public keys in: " << certificate_zip_path; | 
|  | return nullptr; | 
|  | } | 
|  |  | 
|  | return std::unique_ptr<PayloadVerifier>( | 
|  | new PayloadVerifier(std::move(public_keys))); | 
|  | } | 
|  |  | 
|  | bool PayloadVerifier::VerifySignature( | 
|  | const string& signature_proto, const brillo::Blob& sha256_hash_data) const { | 
|  | TEST_AND_RETURN_FALSE(!public_keys_.empty()); | 
|  |  | 
|  | Signatures signatures; | 
|  | LOG(INFO) << "signature blob size = " << signature_proto.size(); | 
|  | TEST_AND_RETURN_FALSE(signatures.ParseFromString(signature_proto)); | 
|  |  | 
|  | if (!signatures.signatures_size()) { | 
|  | LOG(ERROR) << "No signatures stored in the blob."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | std::vector<brillo::Blob> tested_hashes; | 
|  | // Tries every signature in the signature blob. | 
|  | for (int i = 0; i < signatures.signatures_size(); i++) { | 
|  | const Signatures::Signature& signature = signatures.signatures(i); | 
|  | brillo::Blob sig_data; | 
|  | if (signature.has_unpadded_signature_size()) { | 
|  | TEST_AND_RETURN_FALSE(signature.unpadded_signature_size() <= | 
|  | signature.data().size()); | 
|  | LOG(INFO) << "Truncating the signature to its unpadded size: " | 
|  | << signature.unpadded_signature_size() << "."; | 
|  | sig_data.assign( | 
|  | signature.data().begin(), | 
|  | signature.data().begin() + signature.unpadded_signature_size()); | 
|  | } else { | 
|  | sig_data.assign(signature.data().begin(), signature.data().end()); | 
|  | } | 
|  |  | 
|  | brillo::Blob sig_hash_data; | 
|  | if (VerifyRawSignature(sig_data, sha256_hash_data, &sig_hash_data)) { | 
|  | LOG(INFO) << "Verified correct signature " << i + 1 << " out of " | 
|  | << signatures.signatures_size() << " signatures."; | 
|  | return true; | 
|  | } | 
|  | if (!sig_hash_data.empty()) { | 
|  | tested_hashes.push_back(sig_hash_data); | 
|  | } | 
|  | } | 
|  | LOG(ERROR) << "None of the " << signatures.signatures_size() | 
|  | << " signatures is correct. Expected hash before padding:"; | 
|  | utils::HexDumpVector(sha256_hash_data); | 
|  | LOG(ERROR) << "But found RSA decrypted hashes:"; | 
|  | for (const auto& sig_hash_data : tested_hashes) { | 
|  | utils::HexDumpVector(sig_hash_data); | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PayloadVerifier::VerifyRawSignature( | 
|  | const brillo::Blob& sig_data, | 
|  | const brillo::Blob& sha256_hash_data, | 
|  | brillo::Blob* decrypted_sig_data) const { | 
|  | TEST_AND_RETURN_FALSE(!public_keys_.empty()); | 
|  |  | 
|  | for (const auto& public_key : public_keys_) { | 
|  | int key_type = EVP_PKEY_id(public_key.get()); | 
|  | if (key_type == EVP_PKEY_RSA) { | 
|  | brillo::Blob sig_hash_data; | 
|  | if (!GetRawHashFromSignature( | 
|  | sig_data, public_key.get(), &sig_hash_data)) { | 
|  | LOG(WARNING) | 
|  | << "Failed to get the raw hash with RSA key. Trying other keys."; | 
|  | continue; | 
|  | } | 
|  |  | 
|  | if (decrypted_sig_data != nullptr) { | 
|  | *decrypted_sig_data = sig_hash_data; | 
|  | } | 
|  |  | 
|  | brillo::Blob padded_hash_data = sha256_hash_data; | 
|  | TEST_AND_RETURN_FALSE( | 
|  | PadRSASHA256Hash(&padded_hash_data, sig_hash_data.size())); | 
|  |  | 
|  | if (padded_hash_data == sig_hash_data) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (key_type == EVP_PKEY_EC) { | 
|  | EC_KEY* ec_key = EVP_PKEY_get0_EC_KEY(public_key.get()); | 
|  | TEST_AND_RETURN_FALSE(ec_key != nullptr); | 
|  | if (ECDSA_verify(0, | 
|  | sha256_hash_data.data(), | 
|  | sha256_hash_data.size(), | 
|  | sig_data.data(), | 
|  | sig_data.size(), | 
|  | ec_key) == 1) { | 
|  | return true; | 
|  | } | 
|  | } | 
|  |  | 
|  | LOG(ERROR) << "Unsupported key type " << key_type; | 
|  | return false; | 
|  | } | 
|  | LOG(INFO) << "Failed to verify the signature with " << public_keys_.size() | 
|  | << " keys."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool PayloadVerifier::GetRawHashFromSignature( | 
|  | const brillo::Blob& sig_data, | 
|  | const EVP_PKEY* public_key, | 
|  | brillo::Blob* out_hash_data) const { | 
|  | // The code below executes the equivalent of: | 
|  | // | 
|  | // openssl rsautl -verify -pubin -inkey <(echo pem_public_key) | 
|  | //   -in |sig_data| -out |out_hash_data| | 
|  | RSA* rsa = EVP_PKEY_get0_RSA(public_key); | 
|  |  | 
|  | TEST_AND_RETURN_FALSE(rsa != nullptr); | 
|  | unsigned int keysize = RSA_size(rsa); | 
|  | if (sig_data.size() > 2 * keysize) { | 
|  | LOG(ERROR) << "Signature size is too big for public key size."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // Decrypts the signature. | 
|  | brillo::Blob hash_data(keysize); | 
|  | int decrypt_size = RSA_public_decrypt( | 
|  | sig_data.size(), sig_data.data(), hash_data.data(), rsa, RSA_NO_PADDING); | 
|  | TEST_AND_RETURN_FALSE(decrypt_size > 0 && | 
|  | decrypt_size <= static_cast<int>(hash_data.size())); | 
|  | hash_data.resize(decrypt_size); | 
|  | out_hash_data->swap(hash_data); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool PayloadVerifier::PadRSASHA256Hash(brillo::Blob* hash, size_t rsa_size) { | 
|  | TEST_AND_RETURN_FALSE(hash->size() == kSHA256Size); | 
|  | TEST_AND_RETURN_FALSE(rsa_size == 256 || rsa_size == 512); | 
|  |  | 
|  | // The following is a standard PKCS1-v1_5 padding for SHA256 signatures, as | 
|  | // defined in RFC3447 section 9.2. It is prepended to the actual signature | 
|  | // (32 bytes) to form a sequence of 256|512 bytes (2048|4096 bits) that is | 
|  | // amenable to RSA signing. The padded hash will look as follows: | 
|  | // | 
|  | //    0x00 0x01 0xff ... 0xff 0x00  ASN1HEADER  SHA256HASH | 
|  | //   |-----------205|461----------||----19----||----32----| | 
|  | size_t padding_string_size = | 
|  | rsa_size - hash->size() - sizeof(kSHA256DigestInfoPrefix) - 3; | 
|  | brillo::Blob padded_result = brillo::CombineBlobs({ | 
|  | {0x00, 0x01}, | 
|  | brillo::Blob(padding_string_size, 0xff), | 
|  | {0x00}, | 
|  | brillo::Blob(kSHA256DigestInfoPrefix, | 
|  | kSHA256DigestInfoPrefix + sizeof(kSHA256DigestInfoPrefix)), | 
|  | *hash, | 
|  | }); | 
|  |  | 
|  | *hash = std::move(padded_result); | 
|  | TEST_AND_RETURN_FALSE(hash->size() == rsa_size); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace chromeos_update_engine |