|  | // | 
|  | // Copyright (C) 2012 The Android Open Source Project | 
|  | // | 
|  | // Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | // you may not use this file except in compliance with the License. | 
|  | // You may obtain a copy of the License at | 
|  | // | 
|  | //      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | // | 
|  | // Unless required by applicable law or agreed to in writing, software | 
|  | // distributed under the License is distributed on an "AS IS" BASIS, | 
|  | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | // See the License for the specific language governing permissions and | 
|  | // limitations under the License. | 
|  | // | 
|  |  | 
|  | #include "update_engine/payload_consumer/delta_performer.h" | 
|  |  | 
|  | #include <endian.h> | 
|  | #include <errno.h> | 
|  | #include <linux/fs.h> | 
|  |  | 
|  | #include <algorithm> | 
|  | #include <cstring> | 
|  | #include <memory> | 
|  | #include <string> | 
|  | #include <vector> | 
|  |  | 
|  | #include <applypatch/imgpatch.h> | 
|  | #include <base/files/file_util.h> | 
|  | #include <base/format_macros.h> | 
|  | #include <base/strings/string_number_conversions.h> | 
|  | #include <base/strings/string_util.h> | 
|  | #include <base/strings/stringprintf.h> | 
|  | #include <brillo/data_encoding.h> | 
|  | #include <brillo/make_unique_ptr.h> | 
|  | #include <bspatch.h> | 
|  | #include <google/protobuf/repeated_field.h> | 
|  |  | 
|  | #include "update_engine/common/constants.h" | 
|  | #include "update_engine/common/hardware_interface.h" | 
|  | #include "update_engine/common/prefs_interface.h" | 
|  | #include "update_engine/common/subprocess.h" | 
|  | #include "update_engine/common/terminator.h" | 
|  | #include "update_engine/payload_consumer/bzip_extent_writer.h" | 
|  | #include "update_engine/payload_consumer/download_action.h" | 
|  | #include "update_engine/payload_consumer/extent_writer.h" | 
|  | #if USE_MTD | 
|  | #include "update_engine/payload_consumer/mtd_file_descriptor.h" | 
|  | #endif | 
|  | #include "update_engine/payload_consumer/payload_constants.h" | 
|  | #include "update_engine/payload_consumer/payload_verifier.h" | 
|  | #include "update_engine/payload_consumer/xz_extent_writer.h" | 
|  |  | 
|  | using google::protobuf::RepeatedPtrField; | 
|  | using std::min; | 
|  | using std::string; | 
|  | using std::vector; | 
|  |  | 
|  | namespace chromeos_update_engine { | 
|  |  | 
|  | const uint64_t DeltaPerformer::kDeltaVersionOffset = sizeof(kDeltaMagic); | 
|  | const uint64_t DeltaPerformer::kDeltaVersionSize = 8; | 
|  | const uint64_t DeltaPerformer::kDeltaManifestSizeOffset = | 
|  | kDeltaVersionOffset + kDeltaVersionSize; | 
|  | const uint64_t DeltaPerformer::kDeltaManifestSizeSize = 8; | 
|  | const uint64_t DeltaPerformer::kDeltaMetadataSignatureSizeSize = 4; | 
|  | const uint64_t DeltaPerformer::kMaxPayloadHeaderSize = 24; | 
|  | const uint64_t DeltaPerformer::kSupportedMajorPayloadVersion = 2; | 
|  | const uint32_t DeltaPerformer::kSupportedMinorPayloadVersion = 3; | 
|  |  | 
|  | const unsigned DeltaPerformer::kProgressLogMaxChunks = 10; | 
|  | const unsigned DeltaPerformer::kProgressLogTimeoutSeconds = 30; | 
|  | const unsigned DeltaPerformer::kProgressDownloadWeight = 50; | 
|  | const unsigned DeltaPerformer::kProgressOperationsWeight = 50; | 
|  |  | 
|  | namespace { | 
|  | const int kUpdateStateOperationInvalid = -1; | 
|  | const int kMaxResumedUpdateFailures = 10; | 
|  | #if USE_MTD | 
|  | const int kUbiVolumeAttachTimeout = 5 * 60; | 
|  | #endif | 
|  |  | 
|  | FileDescriptorPtr CreateFileDescriptor(const char* path) { | 
|  | FileDescriptorPtr ret; | 
|  | #if USE_MTD | 
|  | if (strstr(path, "/dev/ubi") == path) { | 
|  | if (!UbiFileDescriptor::IsUbi(path)) { | 
|  | // The volume might not have been attached at boot time. | 
|  | int volume_no; | 
|  | if (utils::SplitPartitionName(path, nullptr, &volume_no)) { | 
|  | utils::TryAttachingUbiVolume(volume_no, kUbiVolumeAttachTimeout); | 
|  | } | 
|  | } | 
|  | if (UbiFileDescriptor::IsUbi(path)) { | 
|  | LOG(INFO) << path << " is a UBI device."; | 
|  | ret.reset(new UbiFileDescriptor); | 
|  | } | 
|  | } else if (MtdFileDescriptor::IsMtd(path)) { | 
|  | LOG(INFO) << path << " is an MTD device."; | 
|  | ret.reset(new MtdFileDescriptor); | 
|  | } else { | 
|  | LOG(INFO) << path << " is not an MTD nor a UBI device."; | 
|  | #endif | 
|  | ret.reset(new EintrSafeFileDescriptor); | 
|  | #if USE_MTD | 
|  | } | 
|  | #endif | 
|  | return ret; | 
|  | } | 
|  |  | 
|  | // Opens path for read/write. On success returns an open FileDescriptor | 
|  | // and sets *err to 0. On failure, sets *err to errno and returns nullptr. | 
|  | FileDescriptorPtr OpenFile(const char* path, int mode, int* err) { | 
|  | // Try to mark the block device read-only based on the mode. Ignore any | 
|  | // failure since this won't work when passing regular files. | 
|  | utils::SetBlockDeviceReadOnly(path, (mode & O_ACCMODE) == O_RDONLY); | 
|  |  | 
|  | FileDescriptorPtr fd = CreateFileDescriptor(path); | 
|  | #if USE_MTD | 
|  | // On NAND devices, we can either read, or write, but not both. So here we | 
|  | // use O_WRONLY. | 
|  | if (UbiFileDescriptor::IsUbi(path) || MtdFileDescriptor::IsMtd(path)) { | 
|  | mode = O_WRONLY; | 
|  | } | 
|  | #endif | 
|  | if (!fd->Open(path, mode, 000)) { | 
|  | *err = errno; | 
|  | PLOG(ERROR) << "Unable to open file " << path; | 
|  | return nullptr; | 
|  | } | 
|  | *err = 0; | 
|  | return fd; | 
|  | } | 
|  |  | 
|  | // Discard the tail of the block device referenced by |fd|, from the offset | 
|  | // |data_size| until the end of the block device. Returns whether the data was | 
|  | // discarded. | 
|  | bool DiscardPartitionTail(const FileDescriptorPtr& fd, uint64_t data_size) { | 
|  | uint64_t part_size = fd->BlockDevSize(); | 
|  | if (!part_size || part_size <= data_size) | 
|  | return false; | 
|  |  | 
|  | struct blkioctl_request { | 
|  | int number; | 
|  | const char* name; | 
|  | }; | 
|  | const vector<blkioctl_request> blkioctl_requests = { | 
|  | {BLKSECDISCARD, "BLKSECDISCARD"}, | 
|  | {BLKDISCARD, "BLKDISCARD"}, | 
|  | #ifdef BLKZEROOUT | 
|  | {BLKZEROOUT, "BLKZEROOUT"}, | 
|  | #endif | 
|  | }; | 
|  | for (const auto& req : blkioctl_requests) { | 
|  | int error = 0; | 
|  | if (fd->BlkIoctl(req.number, data_size, part_size - data_size, &error) && | 
|  | error == 0) { | 
|  | return true; | 
|  | } | 
|  | LOG(WARNING) << "Error discarding the last " | 
|  | << (part_size - data_size) / 1024 << " KiB using ioctl(" | 
|  | << req.name << ")"; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  |  | 
|  | // Computes the ratio of |part| and |total|, scaled to |norm|, using integer | 
|  | // arithmetic. | 
|  | static uint64_t IntRatio(uint64_t part, uint64_t total, uint64_t norm) { | 
|  | return part * norm / total; | 
|  | } | 
|  |  | 
|  | void DeltaPerformer::LogProgress(const char* message_prefix) { | 
|  | // Format operations total count and percentage. | 
|  | string total_operations_str("?"); | 
|  | string completed_percentage_str(""); | 
|  | if (num_total_operations_) { | 
|  | total_operations_str = std::to_string(num_total_operations_); | 
|  | // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. | 
|  | completed_percentage_str = | 
|  | base::StringPrintf(" (%" PRIu64 "%%)", | 
|  | IntRatio(next_operation_num_, num_total_operations_, | 
|  | 100)); | 
|  | } | 
|  |  | 
|  | // Format download total count and percentage. | 
|  | size_t payload_size = install_plan_->payload_size; | 
|  | string payload_size_str("?"); | 
|  | string downloaded_percentage_str(""); | 
|  | if (payload_size) { | 
|  | payload_size_str = std::to_string(payload_size); | 
|  | // Upcasting to 64-bit to avoid overflow, back to size_t for formatting. | 
|  | downloaded_percentage_str = | 
|  | base::StringPrintf(" (%" PRIu64 "%%)", | 
|  | IntRatio(total_bytes_received_, payload_size, 100)); | 
|  | } | 
|  |  | 
|  | LOG(INFO) << (message_prefix ? message_prefix : "") << next_operation_num_ | 
|  | << "/" << total_operations_str << " operations" | 
|  | << completed_percentage_str << ", " << total_bytes_received_ | 
|  | << "/" << payload_size_str << " bytes downloaded" | 
|  | << downloaded_percentage_str << ", overall progress " | 
|  | << overall_progress_ << "%"; | 
|  | } | 
|  |  | 
|  | void DeltaPerformer::UpdateOverallProgress(bool force_log, | 
|  | const char* message_prefix) { | 
|  | // Compute our download and overall progress. | 
|  | unsigned new_overall_progress = 0; | 
|  | static_assert(kProgressDownloadWeight + kProgressOperationsWeight == 100, | 
|  | "Progress weights don't add up"); | 
|  | // Only consider download progress if its total size is known; otherwise | 
|  | // adjust the operations weight to compensate for the absence of download | 
|  | // progress. Also, make sure to cap the download portion at | 
|  | // kProgressDownloadWeight, in case we end up downloading more than we | 
|  | // initially expected (this indicates a problem, but could generally happen). | 
|  | // TODO(garnold) the correction of operations weight when we do not have the | 
|  | // total payload size, as well as the conditional guard below, should both be | 
|  | // eliminated once we ensure that the payload_size in the install plan is | 
|  | // always given and is non-zero. This currently isn't the case during unit | 
|  | // tests (see chromium-os:37969). | 
|  | size_t payload_size = install_plan_->payload_size; | 
|  | unsigned actual_operations_weight = kProgressOperationsWeight; | 
|  | if (payload_size) | 
|  | new_overall_progress += min( | 
|  | static_cast<unsigned>(IntRatio(total_bytes_received_, payload_size, | 
|  | kProgressDownloadWeight)), | 
|  | kProgressDownloadWeight); | 
|  | else | 
|  | actual_operations_weight += kProgressDownloadWeight; | 
|  |  | 
|  | // Only add completed operations if their total number is known; we definitely | 
|  | // expect an update to have at least one operation, so the expectation is that | 
|  | // this will eventually reach |actual_operations_weight|. | 
|  | if (num_total_operations_) | 
|  | new_overall_progress += IntRatio(next_operation_num_, num_total_operations_, | 
|  | actual_operations_weight); | 
|  |  | 
|  | // Progress ratio cannot recede, unless our assumptions about the total | 
|  | // payload size, total number of operations, or the monotonicity of progress | 
|  | // is breached. | 
|  | if (new_overall_progress < overall_progress_) { | 
|  | LOG(WARNING) << "progress counter receded from " << overall_progress_ | 
|  | << "% down to " << new_overall_progress << "%; this is a bug"; | 
|  | force_log = true; | 
|  | } | 
|  | overall_progress_ = new_overall_progress; | 
|  |  | 
|  | // Update chunk index, log as needed: if forced by called, or we completed a | 
|  | // progress chunk, or a timeout has expired. | 
|  | base::Time curr_time = base::Time::Now(); | 
|  | unsigned curr_progress_chunk = | 
|  | overall_progress_ * kProgressLogMaxChunks / 100; | 
|  | if (force_log || curr_progress_chunk > last_progress_chunk_ || | 
|  | curr_time > forced_progress_log_time_) { | 
|  | forced_progress_log_time_ = curr_time + forced_progress_log_wait_; | 
|  | LogProgress(message_prefix); | 
|  | } | 
|  | last_progress_chunk_ = curr_progress_chunk; | 
|  | } | 
|  |  | 
|  |  | 
|  | size_t DeltaPerformer::CopyDataToBuffer(const char** bytes_p, size_t* count_p, | 
|  | size_t max) { | 
|  | const size_t count = *count_p; | 
|  | if (!count) | 
|  | return 0;  // Special case shortcut. | 
|  | size_t read_len = min(count, max - buffer_.size()); | 
|  | const char* bytes_start = *bytes_p; | 
|  | const char* bytes_end = bytes_start + read_len; | 
|  | buffer_.insert(buffer_.end(), bytes_start, bytes_end); | 
|  | *bytes_p = bytes_end; | 
|  | *count_p = count - read_len; | 
|  | return read_len; | 
|  | } | 
|  |  | 
|  |  | 
|  | bool DeltaPerformer::HandleOpResult(bool op_result, const char* op_type_name, | 
|  | ErrorCode* error) { | 
|  | if (op_result) | 
|  | return true; | 
|  |  | 
|  | size_t partition_first_op_num = | 
|  | current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0; | 
|  | LOG(ERROR) << "Failed to perform " << op_type_name << " operation " | 
|  | << next_operation_num_ << ", which is the operation " | 
|  | << next_operation_num_ - partition_first_op_num | 
|  | << " in partition \"" | 
|  | << partitions_[current_partition_].partition_name() << "\""; | 
|  | if (*error == ErrorCode::kSuccess) | 
|  | *error = ErrorCode::kDownloadOperationExecutionError; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | int DeltaPerformer::Close() { | 
|  | int err = -CloseCurrentPartition(); | 
|  | LOG_IF(ERROR, !payload_hash_calculator_.Finalize() || | 
|  | !signed_hash_calculator_.Finalize()) | 
|  | << "Unable to finalize the hash."; | 
|  | if (!buffer_.empty()) { | 
|  | LOG(INFO) << "Discarding " << buffer_.size() << " unused downloaded bytes"; | 
|  | if (err >= 0) | 
|  | err = 1; | 
|  | } | 
|  | return -err; | 
|  | } | 
|  |  | 
|  | int DeltaPerformer::CloseCurrentPartition() { | 
|  | int err = 0; | 
|  | if (source_fd_ && !source_fd_->Close()) { | 
|  | err = errno; | 
|  | PLOG(ERROR) << "Error closing source partition"; | 
|  | if (!err) | 
|  | err = 1; | 
|  | } | 
|  | source_fd_.reset(); | 
|  | source_path_.clear(); | 
|  |  | 
|  | if (target_fd_ && !target_fd_->Close()) { | 
|  | err = errno; | 
|  | PLOG(ERROR) << "Error closing target partition"; | 
|  | if (!err) | 
|  | err = 1; | 
|  | } | 
|  | target_fd_.reset(); | 
|  | target_path_.clear(); | 
|  | return -err; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::OpenCurrentPartition() { | 
|  | if (current_partition_ >= partitions_.size()) | 
|  | return false; | 
|  |  | 
|  | const PartitionUpdate& partition = partitions_[current_partition_]; | 
|  | // Open source fds if we have a delta payload with minor version >= 2. | 
|  | if (install_plan_->payload_type == InstallPayloadType::kDelta && | 
|  | GetMinorVersion() != kInPlaceMinorPayloadVersion) { | 
|  | source_path_ = install_plan_->partitions[current_partition_].source_path; | 
|  | int err; | 
|  | source_fd_ = OpenFile(source_path_.c_str(), O_RDONLY, &err); | 
|  | if (!source_fd_) { | 
|  | LOG(ERROR) << "Unable to open source partition " | 
|  | << partition.partition_name() << " on slot " | 
|  | << BootControlInterface::SlotName(install_plan_->source_slot) | 
|  | << ", file " << source_path_; | 
|  | return false; | 
|  | } | 
|  | } | 
|  |  | 
|  | target_path_ = install_plan_->partitions[current_partition_].target_path; | 
|  | int err; | 
|  | target_fd_ = OpenFile(target_path_.c_str(), O_RDWR, &err); | 
|  | if (!target_fd_) { | 
|  | LOG(ERROR) << "Unable to open target partition " | 
|  | << partition.partition_name() << " on slot " | 
|  | << BootControlInterface::SlotName(install_plan_->target_slot) | 
|  | << ", file " << target_path_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Applying " << partition.operations().size() | 
|  | << " operations to partition \"" << partition.partition_name() | 
|  | << "\""; | 
|  |  | 
|  | // Discard the end of the partition, but ignore failures. | 
|  | DiscardPartitionTail( | 
|  | target_fd_, install_plan_->partitions[current_partition_].target_size); | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | void LogPartitionInfoHash(const PartitionInfo& info, const string& tag) { | 
|  | string sha256 = brillo::data_encoding::Base64Encode(info.hash()); | 
|  | LOG(INFO) << "PartitionInfo " << tag << " sha256: " << sha256 | 
|  | << " size: " << info.size(); | 
|  | } | 
|  |  | 
|  | void LogPartitionInfo(const vector<PartitionUpdate>& partitions) { | 
|  | for (const PartitionUpdate& partition : partitions) { | 
|  | LogPartitionInfoHash(partition.old_partition_info(), | 
|  | "old " + partition.partition_name()); | 
|  | LogPartitionInfoHash(partition.new_partition_info(), | 
|  | "new " + partition.partition_name()); | 
|  | } | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool DeltaPerformer::GetMetadataSignatureSizeOffset( | 
|  | uint64_t* out_offset) const { | 
|  | if (GetMajorVersion() == kBrilloMajorPayloadVersion) { | 
|  | *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; | 
|  | return true; | 
|  | } | 
|  | return false; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::GetManifestOffset(uint64_t* out_offset) const { | 
|  | // Actual manifest begins right after the manifest size field or | 
|  | // metadata signature size field if major version >= 2. | 
|  | if (major_payload_version_ == kChromeOSMajorPayloadVersion) { | 
|  | *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize; | 
|  | return true; | 
|  | } | 
|  | if (major_payload_version_ == kBrilloMajorPayloadVersion) { | 
|  | *out_offset = kDeltaManifestSizeOffset + kDeltaManifestSizeSize + | 
|  | kDeltaMetadataSignatureSizeSize; | 
|  | return true; | 
|  | } | 
|  | LOG(ERROR) << "Unknown major payload version: " << major_payload_version_; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | uint64_t DeltaPerformer::GetMetadataSize() const { | 
|  | return metadata_size_; | 
|  | } | 
|  |  | 
|  | uint64_t DeltaPerformer::GetMajorVersion() const { | 
|  | return major_payload_version_; | 
|  | } | 
|  |  | 
|  | uint32_t DeltaPerformer::GetMinorVersion() const { | 
|  | if (manifest_.has_minor_version()) { | 
|  | return manifest_.minor_version(); | 
|  | } else { | 
|  | return install_plan_->payload_type == InstallPayloadType::kDelta | 
|  | ? kSupportedMinorPayloadVersion | 
|  | : kFullPayloadMinorVersion; | 
|  | } | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::GetManifest(DeltaArchiveManifest* out_manifest_p) const { | 
|  | if (!manifest_parsed_) | 
|  | return false; | 
|  | *out_manifest_p = manifest_; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::IsHeaderParsed() const { | 
|  | return metadata_size_ != 0; | 
|  | } | 
|  |  | 
|  | DeltaPerformer::MetadataParseResult DeltaPerformer::ParsePayloadMetadata( | 
|  | const brillo::Blob& payload, ErrorCode* error) { | 
|  | *error = ErrorCode::kSuccess; | 
|  | uint64_t manifest_offset; | 
|  |  | 
|  | if (!IsHeaderParsed()) { | 
|  | // Ensure we have data to cover the major payload version. | 
|  | if (payload.size() < kDeltaManifestSizeOffset) | 
|  | return kMetadataParseInsufficientData; | 
|  |  | 
|  | // Validate the magic string. | 
|  | if (memcmp(payload.data(), kDeltaMagic, sizeof(kDeltaMagic)) != 0) { | 
|  | LOG(ERROR) << "Bad payload format -- invalid delta magic."; | 
|  | *error = ErrorCode::kDownloadInvalidMetadataMagicString; | 
|  | return kMetadataParseError; | 
|  | } | 
|  |  | 
|  | // Extract the payload version from the metadata. | 
|  | static_assert(sizeof(major_payload_version_) == kDeltaVersionSize, | 
|  | "Major payload version size mismatch"); | 
|  | memcpy(&major_payload_version_, | 
|  | &payload[kDeltaVersionOffset], | 
|  | kDeltaVersionSize); | 
|  | // switch big endian to host | 
|  | major_payload_version_ = be64toh(major_payload_version_); | 
|  |  | 
|  | if (major_payload_version_ != supported_major_version_ && | 
|  | major_payload_version_ != kChromeOSMajorPayloadVersion) { | 
|  | LOG(ERROR) << "Bad payload format -- unsupported payload version: " | 
|  | << major_payload_version_; | 
|  | *error = ErrorCode::kUnsupportedMajorPayloadVersion; | 
|  | return kMetadataParseError; | 
|  | } | 
|  |  | 
|  | // Get the manifest offset now that we have payload version. | 
|  | if (!GetManifestOffset(&manifest_offset)) { | 
|  | *error = ErrorCode::kUnsupportedMajorPayloadVersion; | 
|  | return kMetadataParseError; | 
|  | } | 
|  | // Check again with the manifest offset. | 
|  | if (payload.size() < manifest_offset) | 
|  | return kMetadataParseInsufficientData; | 
|  |  | 
|  | // Next, parse the manifest size. | 
|  | static_assert(sizeof(manifest_size_) == kDeltaManifestSizeSize, | 
|  | "manifest_size size mismatch"); | 
|  | memcpy(&manifest_size_, | 
|  | &payload[kDeltaManifestSizeOffset], | 
|  | kDeltaManifestSizeSize); | 
|  | manifest_size_ = be64toh(manifest_size_);  // switch big endian to host | 
|  |  | 
|  | if (GetMajorVersion() == kBrilloMajorPayloadVersion) { | 
|  | // Parse the metadata signature size. | 
|  | static_assert(sizeof(metadata_signature_size_) == | 
|  | kDeltaMetadataSignatureSizeSize, | 
|  | "metadata_signature_size size mismatch"); | 
|  | uint64_t metadata_signature_size_offset; | 
|  | if (!GetMetadataSignatureSizeOffset(&metadata_signature_size_offset)) { | 
|  | *error = ErrorCode::kError; | 
|  | return kMetadataParseError; | 
|  | } | 
|  | memcpy(&metadata_signature_size_, | 
|  | &payload[metadata_signature_size_offset], | 
|  | kDeltaMetadataSignatureSizeSize); | 
|  | metadata_signature_size_ = be32toh(metadata_signature_size_); | 
|  | } | 
|  |  | 
|  | // If the metadata size is present in install plan, check for it immediately | 
|  | // even before waiting for that many number of bytes to be downloaded in the | 
|  | // payload. This will prevent any attack which relies on us downloading data | 
|  | // beyond the expected metadata size. | 
|  | metadata_size_ = manifest_offset + manifest_size_; | 
|  | if (install_plan_->hash_checks_mandatory) { | 
|  | if (install_plan_->metadata_size != metadata_size_) { | 
|  | LOG(ERROR) << "Mandatory metadata size in Omaha response (" | 
|  | << install_plan_->metadata_size | 
|  | << ") is missing/incorrect, actual = " << metadata_size_; | 
|  | *error = ErrorCode::kDownloadInvalidMetadataSize; | 
|  | return kMetadataParseError; | 
|  | } | 
|  | } | 
|  | } | 
|  |  | 
|  | // Now that we have validated the metadata size, we should wait for the full | 
|  | // metadata and its signature (if exist) to be read in before we can parse it. | 
|  | if (payload.size() < metadata_size_ + metadata_signature_size_) | 
|  | return kMetadataParseInsufficientData; | 
|  |  | 
|  | // Log whether we validated the size or simply trusting what's in the payload | 
|  | // here. This is logged here (after we received the full metadata data) so | 
|  | // that we just log once (instead of logging n times) if it takes n | 
|  | // DeltaPerformer::Write calls to download the full manifest. | 
|  | if (install_plan_->metadata_size == metadata_size_) { | 
|  | LOG(INFO) << "Manifest size in payload matches expected value from Omaha"; | 
|  | } else { | 
|  | // For mandatory-cases, we'd have already returned a kMetadataParseError | 
|  | // above. We'll be here only for non-mandatory cases. Just send a UMA stat. | 
|  | LOG(WARNING) << "Ignoring missing/incorrect metadata size (" | 
|  | << install_plan_->metadata_size | 
|  | << ") in Omaha response as validation is not mandatory. " | 
|  | << "Trusting metadata size in payload = " << metadata_size_; | 
|  | } | 
|  |  | 
|  | // We have the full metadata in |payload|. Verify its integrity | 
|  | // and authenticity based on the information we have in Omaha response. | 
|  | *error = ValidateMetadataSignature(payload); | 
|  | if (*error != ErrorCode::kSuccess) { | 
|  | if (install_plan_->hash_checks_mandatory) { | 
|  | // The autoupdate_CatchBadSignatures test checks for this string | 
|  | // in log-files. Keep in sync. | 
|  | LOG(ERROR) << "Mandatory metadata signature validation failed"; | 
|  | return kMetadataParseError; | 
|  | } | 
|  |  | 
|  | // For non-mandatory cases, just send a UMA stat. | 
|  | LOG(WARNING) << "Ignoring metadata signature validation failures"; | 
|  | *error = ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | if (!GetManifestOffset(&manifest_offset)) { | 
|  | *error = ErrorCode::kUnsupportedMajorPayloadVersion; | 
|  | return kMetadataParseError; | 
|  | } | 
|  | // The payload metadata is deemed valid, it's safe to parse the protobuf. | 
|  | if (!manifest_.ParseFromArray(&payload[manifest_offset], manifest_size_)) { | 
|  | LOG(ERROR) << "Unable to parse manifest in update file."; | 
|  | *error = ErrorCode::kDownloadManifestParseError; | 
|  | return kMetadataParseError; | 
|  | } | 
|  |  | 
|  | manifest_parsed_ = true; | 
|  | return kMetadataParseSuccess; | 
|  | } | 
|  |  | 
|  | // Wrapper around write. Returns true if all requested bytes | 
|  | // were written, or false on any error, regardless of progress | 
|  | // and stores an action exit code in |error|. | 
|  | bool DeltaPerformer::Write(const void* bytes, size_t count, ErrorCode *error) { | 
|  | *error = ErrorCode::kSuccess; | 
|  |  | 
|  | const char* c_bytes = reinterpret_cast<const char*>(bytes); | 
|  |  | 
|  | // Update the total byte downloaded count and the progress logs. | 
|  | total_bytes_received_ += count; | 
|  | UpdateOverallProgress(false, "Completed "); | 
|  |  | 
|  | while (!manifest_valid_) { | 
|  | // Read data up to the needed limit; this is either maximium payload header | 
|  | // size, or the full metadata size (once it becomes known). | 
|  | const bool do_read_header = !IsHeaderParsed(); | 
|  | CopyDataToBuffer(&c_bytes, &count, | 
|  | (do_read_header ? kMaxPayloadHeaderSize : | 
|  | metadata_size_ + metadata_signature_size_)); | 
|  |  | 
|  | MetadataParseResult result = ParsePayloadMetadata(buffer_, error); | 
|  | if (result == kMetadataParseError) | 
|  | return false; | 
|  | if (result == kMetadataParseInsufficientData) { | 
|  | // If we just processed the header, make an attempt on the manifest. | 
|  | if (do_read_header && IsHeaderParsed()) | 
|  | continue; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Checks the integrity of the payload manifest. | 
|  | if ((*error = ValidateManifest()) != ErrorCode::kSuccess) | 
|  | return false; | 
|  | manifest_valid_ = true; | 
|  |  | 
|  | // Clear the download buffer. | 
|  | DiscardBuffer(false, metadata_size_); | 
|  |  | 
|  | // This populates |partitions_| and the |install_plan.partitions| with the | 
|  | // list of partitions from the manifest. | 
|  | if (!ParseManifestPartitions(error)) | 
|  | return false; | 
|  |  | 
|  | num_total_operations_ = 0; | 
|  | for (const auto& partition : partitions_) { | 
|  | num_total_operations_ += partition.operations_size(); | 
|  | acc_num_operations_.push_back(num_total_operations_); | 
|  | } | 
|  |  | 
|  | LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestMetadataSize, | 
|  | metadata_size_)) | 
|  | << "Unable to save the manifest metadata size."; | 
|  | LOG_IF(WARNING, !prefs_->SetInt64(kPrefsManifestSignatureSize, | 
|  | metadata_signature_size_)) | 
|  | << "Unable to save the manifest signature size."; | 
|  |  | 
|  | if (!PrimeUpdateState()) { | 
|  | *error = ErrorCode::kDownloadStateInitializationError; | 
|  | LOG(ERROR) << "Unable to prime the update state."; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (!OpenCurrentPartition()) { | 
|  | *error = ErrorCode::kInstallDeviceOpenError; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | if (next_operation_num_ > 0) | 
|  | UpdateOverallProgress(true, "Resuming after "); | 
|  | LOG(INFO) << "Starting to apply update payload operations"; | 
|  | } | 
|  |  | 
|  | while (next_operation_num_ < num_total_operations_) { | 
|  | // Check if we should cancel the current attempt for any reason. | 
|  | // In this case, *error will have already been populated with the reason | 
|  | // why we're canceling. | 
|  | if (download_delegate_ && download_delegate_->ShouldCancel(error)) | 
|  | return false; | 
|  |  | 
|  | // We know there are more operations to perform because we didn't reach the | 
|  | // |num_total_operations_| limit yet. | 
|  | while (next_operation_num_ >= acc_num_operations_[current_partition_]) { | 
|  | CloseCurrentPartition(); | 
|  | current_partition_++; | 
|  | if (!OpenCurrentPartition()) { | 
|  | *error = ErrorCode::kInstallDeviceOpenError; | 
|  | return false; | 
|  | } | 
|  | } | 
|  | const size_t partition_operation_num = next_operation_num_ - ( | 
|  | current_partition_ ? acc_num_operations_[current_partition_ - 1] : 0); | 
|  |  | 
|  | const InstallOperation& op = | 
|  | partitions_[current_partition_].operations(partition_operation_num); | 
|  |  | 
|  | CopyDataToBuffer(&c_bytes, &count, op.data_length()); | 
|  |  | 
|  | // Check whether we received all of the next operation's data payload. | 
|  | if (!CanPerformInstallOperation(op)) | 
|  | return true; | 
|  |  | 
|  | // Validate the operation only if the metadata signature is present. | 
|  | // Otherwise, keep the old behavior. This serves as a knob to disable | 
|  | // the validation logic in case we find some regression after rollout. | 
|  | // NOTE: If hash checks are mandatory and if metadata_signature is empty, | 
|  | // we would have already failed in ParsePayloadMetadata method and thus not | 
|  | // even be here. So no need to handle that case again here. | 
|  | if (!install_plan_->metadata_signature.empty()) { | 
|  | // Note: Validate must be called only if CanPerformInstallOperation is | 
|  | // called. Otherwise, we might be failing operations before even if there | 
|  | // isn't sufficient data to compute the proper hash. | 
|  | *error = ValidateOperationHash(op); | 
|  | if (*error != ErrorCode::kSuccess) { | 
|  | if (install_plan_->hash_checks_mandatory) { | 
|  | LOG(ERROR) << "Mandatory operation hash check failed"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | // For non-mandatory cases, just send a UMA stat. | 
|  | LOG(WARNING) << "Ignoring operation validation errors"; | 
|  | *error = ErrorCode::kSuccess; | 
|  | } | 
|  | } | 
|  |  | 
|  | // Makes sure we unblock exit when this operation completes. | 
|  | ScopedTerminatorExitUnblocker exit_unblocker = | 
|  | ScopedTerminatorExitUnblocker();  // Avoids a compiler unused var bug. | 
|  |  | 
|  | bool op_result; | 
|  | switch (op.type()) { | 
|  | case InstallOperation::REPLACE: | 
|  | case InstallOperation::REPLACE_BZ: | 
|  | case InstallOperation::REPLACE_XZ: | 
|  | op_result = PerformReplaceOperation(op); | 
|  | break; | 
|  | case InstallOperation::ZERO: | 
|  | case InstallOperation::DISCARD: | 
|  | op_result = PerformZeroOrDiscardOperation(op); | 
|  | break; | 
|  | case InstallOperation::MOVE: | 
|  | op_result = PerformMoveOperation(op); | 
|  | break; | 
|  | case InstallOperation::BSDIFF: | 
|  | op_result = PerformBsdiffOperation(op); | 
|  | break; | 
|  | case InstallOperation::SOURCE_COPY: | 
|  | op_result = PerformSourceCopyOperation(op, error); | 
|  | break; | 
|  | case InstallOperation::SOURCE_BSDIFF: | 
|  | op_result = PerformSourceBsdiffOperation(op, error); | 
|  | break; | 
|  | case InstallOperation::IMGDIFF: | 
|  | op_result = PerformImgdiffOperation(op, error); | 
|  | break; | 
|  | default: | 
|  | op_result = false; | 
|  | } | 
|  | if (!HandleOpResult(op_result, InstallOperationTypeName(op.type()), error)) | 
|  | return false; | 
|  |  | 
|  | next_operation_num_++; | 
|  | UpdateOverallProgress(false, "Completed "); | 
|  | CheckpointUpdateProgress(); | 
|  | } | 
|  |  | 
|  | // In major version 2, we don't add dummy operation to the payload. | 
|  | // If we already extracted the signature we should skip this step. | 
|  | if (major_payload_version_ == kBrilloMajorPayloadVersion && | 
|  | manifest_.has_signatures_offset() && manifest_.has_signatures_size() && | 
|  | signatures_message_data_.empty()) { | 
|  | if (manifest_.signatures_offset() != buffer_offset_) { | 
|  | LOG(ERROR) << "Payload signatures offset points to blob offset " | 
|  | << manifest_.signatures_offset() | 
|  | << " but signatures are expected at offset " | 
|  | << buffer_offset_; | 
|  | *error = ErrorCode::kDownloadPayloadVerificationError; | 
|  | return false; | 
|  | } | 
|  | CopyDataToBuffer(&c_bytes, &count, manifest_.signatures_size()); | 
|  | // Needs more data to cover entire signature. | 
|  | if (buffer_.size() < manifest_.signatures_size()) | 
|  | return true; | 
|  | if (!ExtractSignatureMessage()) { | 
|  | LOG(ERROR) << "Extract payload signature failed."; | 
|  | *error = ErrorCode::kDownloadPayloadVerificationError; | 
|  | return false; | 
|  | } | 
|  | DiscardBuffer(true, 0); | 
|  | // Since we extracted the SignatureMessage we need to advance the | 
|  | // checkpoint, otherwise we would reload the signature and try to extract | 
|  | // it again. | 
|  | CheckpointUpdateProgress(); | 
|  | } | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::IsManifestValid() { | 
|  | return manifest_valid_; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::ParseManifestPartitions(ErrorCode* error) { | 
|  | if (major_payload_version_ == kBrilloMajorPayloadVersion) { | 
|  | partitions_.clear(); | 
|  | for (const PartitionUpdate& partition : manifest_.partitions()) { | 
|  | partitions_.push_back(partition); | 
|  | } | 
|  | manifest_.clear_partitions(); | 
|  | } else if (major_payload_version_ == kChromeOSMajorPayloadVersion) { | 
|  | LOG(INFO) << "Converting update information from old format."; | 
|  | PartitionUpdate root_part; | 
|  | root_part.set_partition_name(kLegacyPartitionNameRoot); | 
|  | #ifdef __ANDROID__ | 
|  | LOG(WARNING) << "Legacy payload major version provided to an Android " | 
|  | "build. Assuming no post-install. Please use major version " | 
|  | "2 or newer."; | 
|  | root_part.set_run_postinstall(false); | 
|  | #else | 
|  | root_part.set_run_postinstall(true); | 
|  | #endif  // __ANDROID__ | 
|  | if (manifest_.has_old_rootfs_info()) { | 
|  | *root_part.mutable_old_partition_info() = manifest_.old_rootfs_info(); | 
|  | manifest_.clear_old_rootfs_info(); | 
|  | } | 
|  | if (manifest_.has_new_rootfs_info()) { | 
|  | *root_part.mutable_new_partition_info() = manifest_.new_rootfs_info(); | 
|  | manifest_.clear_new_rootfs_info(); | 
|  | } | 
|  | *root_part.mutable_operations() = manifest_.install_operations(); | 
|  | manifest_.clear_install_operations(); | 
|  | partitions_.push_back(std::move(root_part)); | 
|  |  | 
|  | PartitionUpdate kern_part; | 
|  | kern_part.set_partition_name(kLegacyPartitionNameKernel); | 
|  | kern_part.set_run_postinstall(false); | 
|  | if (manifest_.has_old_kernel_info()) { | 
|  | *kern_part.mutable_old_partition_info() = manifest_.old_kernel_info(); | 
|  | manifest_.clear_old_kernel_info(); | 
|  | } | 
|  | if (manifest_.has_new_kernel_info()) { | 
|  | *kern_part.mutable_new_partition_info() = manifest_.new_kernel_info(); | 
|  | manifest_.clear_new_kernel_info(); | 
|  | } | 
|  | *kern_part.mutable_operations() = manifest_.kernel_install_operations(); | 
|  | manifest_.clear_kernel_install_operations(); | 
|  | partitions_.push_back(std::move(kern_part)); | 
|  | } | 
|  |  | 
|  | // Fill in the InstallPlan::partitions based on the partitions from the | 
|  | // payload. | 
|  | install_plan_->partitions.clear(); | 
|  | for (const auto& partition : partitions_) { | 
|  | InstallPlan::Partition install_part; | 
|  | install_part.name = partition.partition_name(); | 
|  | install_part.run_postinstall = | 
|  | partition.has_run_postinstall() && partition.run_postinstall(); | 
|  | if (install_part.run_postinstall) { | 
|  | install_part.postinstall_path = | 
|  | (partition.has_postinstall_path() ? partition.postinstall_path() | 
|  | : kPostinstallDefaultScript); | 
|  | install_part.filesystem_type = partition.filesystem_type(); | 
|  | install_part.postinstall_optional = partition.postinstall_optional(); | 
|  | } | 
|  |  | 
|  | if (partition.has_old_partition_info()) { | 
|  | const PartitionInfo& info = partition.old_partition_info(); | 
|  | install_part.source_size = info.size(); | 
|  | install_part.source_hash.assign(info.hash().begin(), info.hash().end()); | 
|  | } | 
|  |  | 
|  | if (!partition.has_new_partition_info()) { | 
|  | LOG(ERROR) << "Unable to get new partition hash info on partition " | 
|  | << install_part.name << "."; | 
|  | *error = ErrorCode::kDownloadNewPartitionInfoError; | 
|  | return false; | 
|  | } | 
|  | const PartitionInfo& info = partition.new_partition_info(); | 
|  | install_part.target_size = info.size(); | 
|  | install_part.target_hash.assign(info.hash().begin(), info.hash().end()); | 
|  |  | 
|  | install_plan_->partitions.push_back(install_part); | 
|  | } | 
|  |  | 
|  | if (!install_plan_->LoadPartitionsFromSlots(boot_control_)) { | 
|  | LOG(ERROR) << "Unable to determine all the partition devices."; | 
|  | *error = ErrorCode::kInstallDeviceOpenError; | 
|  | return false; | 
|  | } | 
|  | LogPartitionInfo(partitions_); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::CanPerformInstallOperation( | 
|  | const chromeos_update_engine::InstallOperation& operation) { | 
|  | // If we don't have a data blob we can apply it right away. | 
|  | if (!operation.has_data_offset() && !operation.has_data_length()) | 
|  | return true; | 
|  |  | 
|  | // See if we have the entire data blob in the buffer | 
|  | if (operation.data_offset() < buffer_offset_) { | 
|  | LOG(ERROR) << "we threw away data it seems?"; | 
|  | return false; | 
|  | } | 
|  |  | 
|  | return (operation.data_offset() + operation.data_length() <= | 
|  | buffer_offset_ + buffer_.size()); | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformReplaceOperation( | 
|  | const InstallOperation& operation) { | 
|  | CHECK(operation.type() == InstallOperation::REPLACE || | 
|  | operation.type() == InstallOperation::REPLACE_BZ || | 
|  | operation.type() == InstallOperation::REPLACE_XZ); | 
|  |  | 
|  | // Since we delete data off the beginning of the buffer as we use it, | 
|  | // the data we need should be exactly at the beginning of the buffer. | 
|  | TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); | 
|  | TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); | 
|  |  | 
|  | // Extract the signature message if it's in this operation. | 
|  | if (ExtractSignatureMessageFromOperation(operation)) { | 
|  | // If this is dummy replace operation, we ignore it after extracting the | 
|  | // signature. | 
|  | DiscardBuffer(true, 0); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | // Setup the ExtentWriter stack based on the operation type. | 
|  | std::unique_ptr<ExtentWriter> writer = | 
|  | brillo::make_unique_ptr(new ZeroPadExtentWriter( | 
|  | brillo::make_unique_ptr(new DirectExtentWriter()))); | 
|  |  | 
|  | if (operation.type() == InstallOperation::REPLACE_BZ) { | 
|  | writer.reset(new BzipExtentWriter(std::move(writer))); | 
|  | } else if (operation.type() == InstallOperation::REPLACE_XZ) { | 
|  | writer.reset(new XzExtentWriter(std::move(writer))); | 
|  | } | 
|  |  | 
|  | // Create a vector of extents to pass to the ExtentWriter. | 
|  | vector<Extent> extents; | 
|  | for (int i = 0; i < operation.dst_extents_size(); i++) { | 
|  | extents.push_back(operation.dst_extents(i)); | 
|  | } | 
|  |  | 
|  | TEST_AND_RETURN_FALSE(writer->Init(target_fd_, extents, block_size_)); | 
|  | TEST_AND_RETURN_FALSE(writer->Write(buffer_.data(), operation.data_length())); | 
|  | TEST_AND_RETURN_FALSE(writer->End()); | 
|  |  | 
|  | // Update buffer | 
|  | DiscardBuffer(true, buffer_.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformZeroOrDiscardOperation( | 
|  | const InstallOperation& operation) { | 
|  | CHECK(operation.type() == InstallOperation::DISCARD || | 
|  | operation.type() == InstallOperation::ZERO); | 
|  |  | 
|  | // These operations have no blob. | 
|  | TEST_AND_RETURN_FALSE(!operation.has_data_offset()); | 
|  | TEST_AND_RETURN_FALSE(!operation.has_data_length()); | 
|  |  | 
|  | #ifdef BLKZEROOUT | 
|  | bool attempt_ioctl = true; | 
|  | int request = | 
|  | (operation.type() == InstallOperation::ZERO ? BLKZEROOUT : BLKDISCARD); | 
|  | #else  // !defined(BLKZEROOUT) | 
|  | bool attempt_ioctl = false; | 
|  | int request = 0; | 
|  | #endif  // !defined(BLKZEROOUT) | 
|  |  | 
|  | brillo::Blob zeros; | 
|  | for (const Extent& extent : operation.dst_extents()) { | 
|  | const uint64_t start = extent.start_block() * block_size_; | 
|  | const uint64_t length = extent.num_blocks() * block_size_; | 
|  | if (attempt_ioctl) { | 
|  | int result = 0; | 
|  | if (target_fd_->BlkIoctl(request, start, length, &result) && result == 0) | 
|  | continue; | 
|  | attempt_ioctl = false; | 
|  | zeros.resize(16 * block_size_); | 
|  | } | 
|  | // In case of failure, we fall back to writing 0 to the selected region. | 
|  | for (uint64_t offset = 0; offset < length; offset += zeros.size()) { | 
|  | uint64_t chunk_length = min(length - offset, | 
|  | static_cast<uint64_t>(zeros.size())); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | utils::PWriteAll(target_fd_, zeros.data(), chunk_length, start + offset)); | 
|  | } | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformMoveOperation(const InstallOperation& operation) { | 
|  | // Calculate buffer size. Note, this function doesn't do a sliding | 
|  | // window to copy in case the source and destination blocks overlap. | 
|  | // If we wanted to do a sliding window, we could program the server | 
|  | // to generate deltas that effectively did a sliding window. | 
|  |  | 
|  | uint64_t blocks_to_read = 0; | 
|  | for (int i = 0; i < operation.src_extents_size(); i++) | 
|  | blocks_to_read += operation.src_extents(i).num_blocks(); | 
|  |  | 
|  | uint64_t blocks_to_write = 0; | 
|  | for (int i = 0; i < operation.dst_extents_size(); i++) | 
|  | blocks_to_write += operation.dst_extents(i).num_blocks(); | 
|  |  | 
|  | DCHECK_EQ(blocks_to_write, blocks_to_read); | 
|  | brillo::Blob buf(blocks_to_write * block_size_); | 
|  |  | 
|  | // Read in bytes. | 
|  | ssize_t bytes_read = 0; | 
|  | for (int i = 0; i < operation.src_extents_size(); i++) { | 
|  | ssize_t bytes_read_this_iteration = 0; | 
|  | const Extent& extent = operation.src_extents(i); | 
|  | const size_t bytes = extent.num_blocks() * block_size_; | 
|  | TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); | 
|  | TEST_AND_RETURN_FALSE(utils::PReadAll(target_fd_, | 
|  | &buf[bytes_read], | 
|  | bytes, | 
|  | extent.start_block() * block_size_, | 
|  | &bytes_read_this_iteration)); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | bytes_read_this_iteration == static_cast<ssize_t>(bytes)); | 
|  | bytes_read += bytes_read_this_iteration; | 
|  | } | 
|  |  | 
|  | // Write bytes out. | 
|  | ssize_t bytes_written = 0; | 
|  | for (int i = 0; i < operation.dst_extents_size(); i++) { | 
|  | const Extent& extent = operation.dst_extents(i); | 
|  | const size_t bytes = extent.num_blocks() * block_size_; | 
|  | TEST_AND_RETURN_FALSE(extent.start_block() != kSparseHole); | 
|  | TEST_AND_RETURN_FALSE(utils::PWriteAll(target_fd_, | 
|  | &buf[bytes_written], | 
|  | bytes, | 
|  | extent.start_block() * block_size_)); | 
|  | bytes_written += bytes; | 
|  | } | 
|  | DCHECK_EQ(bytes_written, bytes_read); | 
|  | DCHECK_EQ(bytes_written, static_cast<ssize_t>(buf.size())); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | namespace { | 
|  |  | 
|  | // Takes |extents| and fills an empty vector |blocks| with a block index for | 
|  | // each block in |extents|. For example, [(3, 2), (8, 1)] would give [3, 4, 8]. | 
|  | void ExtentsToBlocks(const RepeatedPtrField<Extent>& extents, | 
|  | vector<uint64_t>* blocks) { | 
|  | for (const Extent& ext : extents) { | 
|  | for (uint64_t j = 0; j < ext.num_blocks(); j++) | 
|  | blocks->push_back(ext.start_block() + j); | 
|  | } | 
|  | } | 
|  |  | 
|  | // Takes |extents| and returns the number of blocks in those extents. | 
|  | uint64_t GetBlockCount(const RepeatedPtrField<Extent>& extents) { | 
|  | uint64_t sum = 0; | 
|  | for (const Extent& ext : extents) { | 
|  | sum += ext.num_blocks(); | 
|  | } | 
|  | return sum; | 
|  | } | 
|  |  | 
|  | // Compare |calculated_hash| with source hash in |operation|, return false and | 
|  | // dump hash and set |error| if don't match. | 
|  | bool ValidateSourceHash(const brillo::Blob& calculated_hash, | 
|  | const InstallOperation& operation, | 
|  | ErrorCode* error) { | 
|  | brillo::Blob expected_source_hash(operation.src_sha256_hash().begin(), | 
|  | operation.src_sha256_hash().end()); | 
|  | if (calculated_hash != expected_source_hash) { | 
|  | LOG(ERROR) << "The hash of the source data on disk for this operation " | 
|  | << "doesn't match the expected value. This could mean that the " | 
|  | << "delta update payload was targeted for another version, or " | 
|  | << "that the source partition was modified after it was " | 
|  | << "installed, for example, by mounting a filesystem."; | 
|  | LOG(ERROR) << "Expected:   sha256|hex = " | 
|  | << base::HexEncode(expected_source_hash.data(), | 
|  | expected_source_hash.size()); | 
|  | LOG(ERROR) << "Calculated: sha256|hex = " | 
|  | << base::HexEncode(calculated_hash.data(), | 
|  | calculated_hash.size()); | 
|  |  | 
|  | vector<string> source_extents; | 
|  | for (const Extent& ext : operation.src_extents()) { | 
|  | source_extents.push_back( | 
|  | base::StringPrintf("%" PRIu64 ":%" PRIu64, | 
|  | static_cast<uint64_t>(ext.start_block()), | 
|  | static_cast<uint64_t>(ext.num_blocks()))); | 
|  | } | 
|  | LOG(ERROR) << "Operation source (offset:size) in blocks: " | 
|  | << base::JoinString(source_extents, ","); | 
|  |  | 
|  | *error = ErrorCode::kDownloadStateInitializationError; | 
|  | return false; | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace | 
|  |  | 
|  | bool DeltaPerformer::PerformSourceCopyOperation( | 
|  | const InstallOperation& operation, ErrorCode* error) { | 
|  | if (operation.has_src_length()) | 
|  | TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); | 
|  | if (operation.has_dst_length()) | 
|  | TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); | 
|  |  | 
|  | uint64_t blocks_to_read = GetBlockCount(operation.src_extents()); | 
|  | uint64_t blocks_to_write = GetBlockCount(operation.dst_extents()); | 
|  | TEST_AND_RETURN_FALSE(blocks_to_write ==  blocks_to_read); | 
|  |  | 
|  | // Create vectors of all the individual src/dst blocks. | 
|  | vector<uint64_t> src_blocks; | 
|  | vector<uint64_t> dst_blocks; | 
|  | ExtentsToBlocks(operation.src_extents(), &src_blocks); | 
|  | ExtentsToBlocks(operation.dst_extents(), &dst_blocks); | 
|  | DCHECK_EQ(src_blocks.size(), blocks_to_read); | 
|  | DCHECK_EQ(src_blocks.size(), dst_blocks.size()); | 
|  |  | 
|  | brillo::Blob buf(block_size_); | 
|  | ssize_t bytes_read = 0; | 
|  | HashCalculator source_hasher; | 
|  | // Read/write one block at a time. | 
|  | for (uint64_t i = 0; i < blocks_to_read; i++) { | 
|  | ssize_t bytes_read_this_iteration = 0; | 
|  | uint64_t src_block = src_blocks[i]; | 
|  | uint64_t dst_block = dst_blocks[i]; | 
|  |  | 
|  | // Read in bytes. | 
|  | TEST_AND_RETURN_FALSE( | 
|  | utils::PReadAll(source_fd_, | 
|  | buf.data(), | 
|  | block_size_, | 
|  | src_block * block_size_, | 
|  | &bytes_read_this_iteration)); | 
|  |  | 
|  | // Write bytes out. | 
|  | TEST_AND_RETURN_FALSE( | 
|  | utils::PWriteAll(target_fd_, | 
|  | buf.data(), | 
|  | block_size_, | 
|  | dst_block * block_size_)); | 
|  |  | 
|  | bytes_read += bytes_read_this_iteration; | 
|  | TEST_AND_RETURN_FALSE(bytes_read_this_iteration == | 
|  | static_cast<ssize_t>(block_size_)); | 
|  |  | 
|  | if (operation.has_src_sha256_hash()) | 
|  | TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), buf.size())); | 
|  | } | 
|  |  | 
|  | if (operation.has_src_sha256_hash()) { | 
|  | TEST_AND_RETURN_FALSE(source_hasher.Finalize()); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | ValidateSourceHash(source_hasher.raw_hash(), operation, error)); | 
|  | } | 
|  |  | 
|  | DCHECK_EQ(bytes_read, static_cast<ssize_t>(blocks_to_read * block_size_)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::ExtentsToBsdiffPositionsString( | 
|  | const RepeatedPtrField<Extent>& extents, | 
|  | uint64_t block_size, | 
|  | uint64_t full_length, | 
|  | string* positions_string) { | 
|  | string ret; | 
|  | uint64_t length = 0; | 
|  | for (const Extent& extent : extents) { | 
|  | int64_t start = extent.start_block() * block_size; | 
|  | uint64_t this_length = | 
|  | min(full_length - length, | 
|  | static_cast<uint64_t>(extent.num_blocks()) * block_size); | 
|  | ret += base::StringPrintf("%" PRIi64 ":%" PRIu64 ",", start, this_length); | 
|  | length += this_length; | 
|  | } | 
|  | TEST_AND_RETURN_FALSE(length == full_length); | 
|  | if (!ret.empty()) | 
|  | ret.resize(ret.size() - 1);  // Strip trailing comma off | 
|  | *positions_string = ret; | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformBsdiffOperation(const InstallOperation& operation) { | 
|  | // Since we delete data off the beginning of the buffer as we use it, | 
|  | // the data we need should be exactly at the beginning of the buffer. | 
|  | TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); | 
|  | TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); | 
|  |  | 
|  | string input_positions; | 
|  | TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), | 
|  | block_size_, | 
|  | operation.src_length(), | 
|  | &input_positions)); | 
|  | string output_positions; | 
|  | TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), | 
|  | block_size_, | 
|  | operation.dst_length(), | 
|  | &output_positions)); | 
|  |  | 
|  | TEST_AND_RETURN_FALSE(bsdiff::bspatch(target_path_.c_str(), | 
|  | target_path_.c_str(), | 
|  | buffer_.data(), | 
|  | buffer_.size(), | 
|  | input_positions.c_str(), | 
|  | output_positions.c_str()) == 0); | 
|  | DiscardBuffer(true, buffer_.size()); | 
|  |  | 
|  | if (operation.dst_length() % block_size_) { | 
|  | // Zero out rest of final block. | 
|  | // TODO(adlr): build this into bspatch; it's more efficient that way. | 
|  | const Extent& last_extent = | 
|  | operation.dst_extents(operation.dst_extents_size() - 1); | 
|  | const uint64_t end_byte = | 
|  | (last_extent.start_block() + last_extent.num_blocks()) * block_size_; | 
|  | const uint64_t begin_byte = | 
|  | end_byte - (block_size_ - operation.dst_length() % block_size_); | 
|  | brillo::Blob zeros(end_byte - begin_byte); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | utils::PWriteAll(target_fd_, zeros.data(), end_byte - begin_byte, begin_byte)); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformSourceBsdiffOperation( | 
|  | const InstallOperation& operation, ErrorCode* error) { | 
|  | // Since we delete data off the beginning of the buffer as we use it, | 
|  | // the data we need should be exactly at the beginning of the buffer. | 
|  | TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); | 
|  | TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); | 
|  | if (operation.has_src_length()) | 
|  | TEST_AND_RETURN_FALSE(operation.src_length() % block_size_ == 0); | 
|  | if (operation.has_dst_length()) | 
|  | TEST_AND_RETURN_FALSE(operation.dst_length() % block_size_ == 0); | 
|  |  | 
|  | if (operation.has_src_sha256_hash()) { | 
|  | HashCalculator source_hasher; | 
|  | const uint64_t kMaxBlocksToRead = 512;  // 2MB if block size is 4KB | 
|  | brillo::Blob buf(kMaxBlocksToRead * block_size_); | 
|  | for (const Extent& extent : operation.src_extents()) { | 
|  | for (uint64_t i = 0; i < extent.num_blocks(); i += kMaxBlocksToRead) { | 
|  | uint64_t blocks_to_read = min( | 
|  | kMaxBlocksToRead, static_cast<uint64_t>(extent.num_blocks()) - i); | 
|  | ssize_t bytes_to_read = blocks_to_read * block_size_; | 
|  | ssize_t bytes_read_this_iteration = 0; | 
|  | TEST_AND_RETURN_FALSE( | 
|  | utils::PReadAll(source_fd_, buf.data(), bytes_to_read, | 
|  | (extent.start_block() + i) * block_size_, | 
|  | &bytes_read_this_iteration)); | 
|  | TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); | 
|  | TEST_AND_RETURN_FALSE(source_hasher.Update(buf.data(), bytes_to_read)); | 
|  | } | 
|  | } | 
|  | TEST_AND_RETURN_FALSE(source_hasher.Finalize()); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | ValidateSourceHash(source_hasher.raw_hash(), operation, error)); | 
|  | } | 
|  |  | 
|  | string input_positions; | 
|  | TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.src_extents(), | 
|  | block_size_, | 
|  | operation.src_length(), | 
|  | &input_positions)); | 
|  | string output_positions; | 
|  | TEST_AND_RETURN_FALSE(ExtentsToBsdiffPositionsString(operation.dst_extents(), | 
|  | block_size_, | 
|  | operation.dst_length(), | 
|  | &output_positions)); | 
|  |  | 
|  | TEST_AND_RETURN_FALSE(bsdiff::bspatch(source_path_.c_str(), | 
|  | target_path_.c_str(), | 
|  | buffer_.data(), | 
|  | buffer_.size(), | 
|  | input_positions.c_str(), | 
|  | output_positions.c_str()) == 0); | 
|  | DiscardBuffer(true, buffer_.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PerformImgdiffOperation(const InstallOperation& operation, | 
|  | ErrorCode* error) { | 
|  | // Since we delete data off the beginning of the buffer as we use it, | 
|  | // the data we need should be exactly at the beginning of the buffer. | 
|  | TEST_AND_RETURN_FALSE(buffer_offset_ == operation.data_offset()); | 
|  | TEST_AND_RETURN_FALSE(buffer_.size() >= operation.data_length()); | 
|  |  | 
|  | uint64_t src_blocks = GetBlockCount(operation.src_extents()); | 
|  | brillo::Blob src_data(src_blocks * block_size_); | 
|  |  | 
|  | ssize_t bytes_read = 0; | 
|  | for (const Extent& extent : operation.src_extents()) { | 
|  | ssize_t bytes_read_this_iteration = 0; | 
|  | ssize_t bytes_to_read = extent.num_blocks() * block_size_; | 
|  | TEST_AND_RETURN_FALSE(utils::PReadAll(source_fd_, | 
|  | &src_data[bytes_read], | 
|  | bytes_to_read, | 
|  | extent.start_block() * block_size_, | 
|  | &bytes_read_this_iteration)); | 
|  | TEST_AND_RETURN_FALSE(bytes_read_this_iteration == bytes_to_read); | 
|  | bytes_read += bytes_read_this_iteration; | 
|  | } | 
|  |  | 
|  | if (operation.has_src_sha256_hash()) { | 
|  | brillo::Blob src_hash; | 
|  | TEST_AND_RETURN_FALSE(HashCalculator::RawHashOfData(src_data, &src_hash)); | 
|  | TEST_AND_RETURN_FALSE(ValidateSourceHash(src_hash, operation, error)); | 
|  | } | 
|  |  | 
|  | vector<Extent> target_extents(operation.dst_extents().begin(), | 
|  | operation.dst_extents().end()); | 
|  | DirectExtentWriter writer; | 
|  | TEST_AND_RETURN_FALSE(writer.Init(target_fd_, target_extents, block_size_)); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | ApplyImagePatch(src_data.data(), | 
|  | src_data.size(), | 
|  | buffer_.data(), | 
|  | operation.data_length(), | 
|  | [](const unsigned char* data, ssize_t len, void* token) { | 
|  | return reinterpret_cast<ExtentWriter*>(token) | 
|  | ->Write(data, len) | 
|  | ? len | 
|  | : 0; | 
|  | }, | 
|  | &writer) == 0); | 
|  | TEST_AND_RETURN_FALSE(writer.End()); | 
|  |  | 
|  | DiscardBuffer(true, buffer_.size()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::ExtractSignatureMessageFromOperation( | 
|  | const InstallOperation& operation) { | 
|  | if (operation.type() != InstallOperation::REPLACE || | 
|  | !manifest_.has_signatures_offset() || | 
|  | manifest_.signatures_offset() != operation.data_offset()) { | 
|  | return false; | 
|  | } | 
|  | TEST_AND_RETURN_FALSE(manifest_.has_signatures_size() && | 
|  | manifest_.signatures_size() == operation.data_length()); | 
|  | TEST_AND_RETURN_FALSE(ExtractSignatureMessage()); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::ExtractSignatureMessage() { | 
|  | TEST_AND_RETURN_FALSE(signatures_message_data_.empty()); | 
|  | TEST_AND_RETURN_FALSE(buffer_offset_ == manifest_.signatures_offset()); | 
|  | TEST_AND_RETURN_FALSE(buffer_.size() >= manifest_.signatures_size()); | 
|  | signatures_message_data_.assign( | 
|  | buffer_.begin(), | 
|  | buffer_.begin() + manifest_.signatures_size()); | 
|  |  | 
|  | // Save the signature blob because if the update is interrupted after the | 
|  | // download phase we don't go through this path anymore. Some alternatives to | 
|  | // consider: | 
|  | // | 
|  | // 1. On resume, re-download the signature blob from the server and re-verify | 
|  | // it. | 
|  | // | 
|  | // 2. Verify the signature as soon as it's received and don't checkpoint the | 
|  | // blob and the signed sha-256 context. | 
|  | LOG_IF(WARNING, !prefs_->SetString(kPrefsUpdateStateSignatureBlob, | 
|  | string(signatures_message_data_.begin(), | 
|  | signatures_message_data_.end()))) | 
|  | << "Unable to store the signature blob."; | 
|  |  | 
|  | LOG(INFO) << "Extracted signature data of size " | 
|  | << manifest_.signatures_size() << " at " | 
|  | << manifest_.signatures_offset(); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::GetPublicKeyFromResponse(base::FilePath *out_tmp_key) { | 
|  | if (hardware_->IsOfficialBuild() || | 
|  | utils::FileExists(public_key_path_.c_str()) || | 
|  | install_plan_->public_key_rsa.empty()) | 
|  | return false; | 
|  |  | 
|  | if (!utils::DecodeAndStoreBase64String(install_plan_->public_key_rsa, | 
|  | out_tmp_key)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | ErrorCode DeltaPerformer::ValidateMetadataSignature( | 
|  | const brillo::Blob& payload) { | 
|  | if (payload.size() < metadata_size_ + metadata_signature_size_) | 
|  | return ErrorCode::kDownloadMetadataSignatureError; | 
|  |  | 
|  | brillo::Blob metadata_signature_blob, metadata_signature_protobuf_blob; | 
|  | if (!install_plan_->metadata_signature.empty()) { | 
|  | // Convert base64-encoded signature to raw bytes. | 
|  | if (!brillo::data_encoding::Base64Decode( | 
|  | install_plan_->metadata_signature, &metadata_signature_blob)) { | 
|  | LOG(ERROR) << "Unable to decode base64 metadata signature: " | 
|  | << install_plan_->metadata_signature; | 
|  | return ErrorCode::kDownloadMetadataSignatureError; | 
|  | } | 
|  | } else if (major_payload_version_ == kBrilloMajorPayloadVersion) { | 
|  | metadata_signature_protobuf_blob.assign(payload.begin() + metadata_size_, | 
|  | payload.begin() + metadata_size_ + | 
|  | metadata_signature_size_); | 
|  | } | 
|  |  | 
|  | if (metadata_signature_blob.empty() && | 
|  | metadata_signature_protobuf_blob.empty()) { | 
|  | if (install_plan_->hash_checks_mandatory) { | 
|  | LOG(ERROR) << "Missing mandatory metadata signature in both Omaha " | 
|  | << "response and payload."; | 
|  | return ErrorCode::kDownloadMetadataSignatureMissingError; | 
|  | } | 
|  |  | 
|  | LOG(WARNING) << "Cannot validate metadata as the signature is empty"; | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | // See if we should use the public RSA key in the Omaha response. | 
|  | base::FilePath path_to_public_key(public_key_path_); | 
|  | base::FilePath tmp_key; | 
|  | if (GetPublicKeyFromResponse(&tmp_key)) | 
|  | path_to_public_key = tmp_key; | 
|  | ScopedPathUnlinker tmp_key_remover(tmp_key.value()); | 
|  | if (tmp_key.empty()) | 
|  | tmp_key_remover.set_should_remove(false); | 
|  |  | 
|  | LOG(INFO) << "Verifying metadata hash signature using public key: " | 
|  | << path_to_public_key.value(); | 
|  |  | 
|  | HashCalculator metadata_hasher; | 
|  | metadata_hasher.Update(payload.data(), metadata_size_); | 
|  | if (!metadata_hasher.Finalize()) { | 
|  | LOG(ERROR) << "Unable to compute actual hash of manifest"; | 
|  | return ErrorCode::kDownloadMetadataSignatureVerificationError; | 
|  | } | 
|  |  | 
|  | brillo::Blob calculated_metadata_hash = metadata_hasher.raw_hash(); | 
|  | PayloadVerifier::PadRSA2048SHA256Hash(&calculated_metadata_hash); | 
|  | if (calculated_metadata_hash.empty()) { | 
|  | LOG(ERROR) << "Computed actual hash of metadata is empty."; | 
|  | return ErrorCode::kDownloadMetadataSignatureVerificationError; | 
|  | } | 
|  |  | 
|  | if (!metadata_signature_blob.empty()) { | 
|  | brillo::Blob expected_metadata_hash; | 
|  | if (!PayloadVerifier::GetRawHashFromSignature(metadata_signature_blob, | 
|  | path_to_public_key.value(), | 
|  | &expected_metadata_hash)) { | 
|  | LOG(ERROR) << "Unable to compute expected hash from metadata signature"; | 
|  | return ErrorCode::kDownloadMetadataSignatureError; | 
|  | } | 
|  | if (calculated_metadata_hash != expected_metadata_hash) { | 
|  | LOG(ERROR) << "Manifest hash verification failed. Expected hash = "; | 
|  | utils::HexDumpVector(expected_metadata_hash); | 
|  | LOG(ERROR) << "Calculated hash = "; | 
|  | utils::HexDumpVector(calculated_metadata_hash); | 
|  | return ErrorCode::kDownloadMetadataSignatureMismatch; | 
|  | } | 
|  | } else { | 
|  | if (!PayloadVerifier::VerifySignature(metadata_signature_protobuf_blob, | 
|  | path_to_public_key.value(), | 
|  | calculated_metadata_hash)) { | 
|  | LOG(ERROR) << "Manifest hash verification failed."; | 
|  | return ErrorCode::kDownloadMetadataSignatureMismatch; | 
|  | } | 
|  | } | 
|  |  | 
|  | // The autoupdate_CatchBadSignatures test checks for this string in | 
|  | // log-files. Keep in sync. | 
|  | LOG(INFO) << "Metadata hash signature matches value in Omaha response."; | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | ErrorCode DeltaPerformer::ValidateManifest() { | 
|  | // Perform assorted checks to sanity check the manifest, make sure it | 
|  | // matches data from other sources, and that it is a supported version. | 
|  |  | 
|  | bool has_old_fields = | 
|  | (manifest_.has_old_kernel_info() || manifest_.has_old_rootfs_info()); | 
|  | for (const PartitionUpdate& partition : manifest_.partitions()) { | 
|  | has_old_fields = has_old_fields || partition.has_old_partition_info(); | 
|  | } | 
|  |  | 
|  | // The presence of an old partition hash is the sole indicator for a delta | 
|  | // update. | 
|  | InstallPayloadType actual_payload_type = | 
|  | has_old_fields ? InstallPayloadType::kDelta : InstallPayloadType::kFull; | 
|  |  | 
|  | if (install_plan_->payload_type == InstallPayloadType::kUnknown) { | 
|  | LOG(INFO) << "Detected a '" | 
|  | << InstallPayloadTypeToString(actual_payload_type) | 
|  | << "' payload."; | 
|  | install_plan_->payload_type = actual_payload_type; | 
|  | } else if (install_plan_->payload_type != actual_payload_type) { | 
|  | LOG(ERROR) << "InstallPlan expected a '" | 
|  | << InstallPayloadTypeToString(install_plan_->payload_type) | 
|  | << "' payload but the downloaded manifest contains a '" | 
|  | << InstallPayloadTypeToString(actual_payload_type) | 
|  | << "' payload."; | 
|  | return ErrorCode::kPayloadMismatchedType; | 
|  | } | 
|  |  | 
|  | // Check that the minor version is compatible. | 
|  | if (actual_payload_type == InstallPayloadType::kFull) { | 
|  | if (manifest_.minor_version() != kFullPayloadMinorVersion) { | 
|  | LOG(ERROR) << "Manifest contains minor version " | 
|  | << manifest_.minor_version() | 
|  | << ", but all full payloads should have version " | 
|  | << kFullPayloadMinorVersion << "."; | 
|  | return ErrorCode::kUnsupportedMinorPayloadVersion; | 
|  | } | 
|  | } else { | 
|  | if (manifest_.minor_version() != supported_minor_version_) { | 
|  | LOG(ERROR) << "Manifest contains minor version " | 
|  | << manifest_.minor_version() | 
|  | << " not the supported " | 
|  | << supported_minor_version_; | 
|  | return ErrorCode::kUnsupportedMinorPayloadVersion; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (major_payload_version_ != kChromeOSMajorPayloadVersion) { | 
|  | if (manifest_.has_old_rootfs_info() || | 
|  | manifest_.has_new_rootfs_info() || | 
|  | manifest_.has_old_kernel_info() || | 
|  | manifest_.has_new_kernel_info() || | 
|  | manifest_.install_operations_size() != 0 || | 
|  | manifest_.kernel_install_operations_size() != 0) { | 
|  | LOG(ERROR) << "Manifest contains deprecated field only supported in " | 
|  | << "major payload version 1, but the payload major version is " | 
|  | << major_payload_version_; | 
|  | return ErrorCode::kPayloadMismatchedType; | 
|  | } | 
|  | } | 
|  |  | 
|  | // TODO(garnold) we should be adding more and more manifest checks, such as | 
|  | // partition boundaries etc (see chromium-os:37661). | 
|  |  | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | ErrorCode DeltaPerformer::ValidateOperationHash( | 
|  | const InstallOperation& operation) { | 
|  | if (!operation.data_sha256_hash().size()) { | 
|  | if (!operation.data_length()) { | 
|  | // Operations that do not have any data blob won't have any operation hash | 
|  | // either. So, these operations are always considered validated since the | 
|  | // metadata that contains all the non-data-blob portions of the operation | 
|  | // has already been validated. This is true for both HTTP and HTTPS cases. | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | // No hash is present for an operation that has data blobs. This shouldn't | 
|  | // happen normally for any client that has this code, because the | 
|  | // corresponding update should have been produced with the operation | 
|  | // hashes. So if it happens it means either we've turned operation hash | 
|  | // generation off in DeltaDiffGenerator or it's a regression of some sort. | 
|  | // One caveat though: The last operation is a dummy signature operation | 
|  | // that doesn't have a hash at the time the manifest is created. So we | 
|  | // should not complaint about that operation. This operation can be | 
|  | // recognized by the fact that it's offset is mentioned in the manifest. | 
|  | if (manifest_.signatures_offset() && | 
|  | manifest_.signatures_offset() == operation.data_offset()) { | 
|  | LOG(INFO) << "Skipping hash verification for signature operation " | 
|  | << next_operation_num_ + 1; | 
|  | } else { | 
|  | if (install_plan_->hash_checks_mandatory) { | 
|  | LOG(ERROR) << "Missing mandatory operation hash for operation " | 
|  | << next_operation_num_ + 1; | 
|  | return ErrorCode::kDownloadOperationHashMissingError; | 
|  | } | 
|  |  | 
|  | LOG(WARNING) << "Cannot validate operation " << next_operation_num_ + 1 | 
|  | << " as there's no operation hash in manifest"; | 
|  | } | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | brillo::Blob expected_op_hash; | 
|  | expected_op_hash.assign(operation.data_sha256_hash().data(), | 
|  | (operation.data_sha256_hash().data() + | 
|  | operation.data_sha256_hash().size())); | 
|  |  | 
|  | HashCalculator operation_hasher; | 
|  | operation_hasher.Update(buffer_.data(), operation.data_length()); | 
|  | if (!operation_hasher.Finalize()) { | 
|  | LOG(ERROR) << "Unable to compute actual hash of operation " | 
|  | << next_operation_num_; | 
|  | return ErrorCode::kDownloadOperationHashVerificationError; | 
|  | } | 
|  |  | 
|  | brillo::Blob calculated_op_hash = operation_hasher.raw_hash(); | 
|  | if (calculated_op_hash != expected_op_hash) { | 
|  | LOG(ERROR) << "Hash verification failed for operation " | 
|  | << next_operation_num_ << ". Expected hash = "; | 
|  | utils::HexDumpVector(expected_op_hash); | 
|  | LOG(ERROR) << "Calculated hash over " << operation.data_length() | 
|  | << " bytes at offset: " << operation.data_offset() << " = "; | 
|  | utils::HexDumpVector(calculated_op_hash); | 
|  | return ErrorCode::kDownloadOperationHashMismatch; | 
|  | } | 
|  |  | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | #define TEST_AND_RETURN_VAL(_retval, _condition)                \ | 
|  | do {                                                          \ | 
|  | if (!(_condition)) {                                        \ | 
|  | LOG(ERROR) << "VerifyPayload failure: " << #_condition;   \ | 
|  | return _retval;                                           \ | 
|  | }                                                           \ | 
|  | } while (0); | 
|  |  | 
|  | ErrorCode DeltaPerformer::VerifyPayload( | 
|  | const string& update_check_response_hash, | 
|  | const uint64_t update_check_response_size) { | 
|  |  | 
|  | // See if we should use the public RSA key in the Omaha response. | 
|  | base::FilePath path_to_public_key(public_key_path_); | 
|  | base::FilePath tmp_key; | 
|  | if (GetPublicKeyFromResponse(&tmp_key)) | 
|  | path_to_public_key = tmp_key; | 
|  | ScopedPathUnlinker tmp_key_remover(tmp_key.value()); | 
|  | if (tmp_key.empty()) | 
|  | tmp_key_remover.set_should_remove(false); | 
|  |  | 
|  | LOG(INFO) << "Verifying payload using public key: " | 
|  | << path_to_public_key.value(); | 
|  |  | 
|  | // Verifies the download size. | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kPayloadSizeMismatchError, | 
|  | update_check_response_size == | 
|  | metadata_size_ + metadata_signature_size_ + | 
|  | buffer_offset_); | 
|  |  | 
|  | // Verifies the payload hash. | 
|  | const string& payload_hash_data = payload_hash_calculator_.hash(); | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadVerificationError, | 
|  | !payload_hash_data.empty()); | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kPayloadHashMismatchError, | 
|  | payload_hash_data == update_check_response_hash); | 
|  |  | 
|  | // Verifies the signed payload hash. | 
|  | if (!utils::FileExists(path_to_public_key.value().c_str())) { | 
|  | LOG(WARNING) << "Not verifying signed delta payload -- missing public key."; | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kSignedDeltaPayloadExpectedError, | 
|  | !signatures_message_data_.empty()); | 
|  | brillo::Blob hash_data = signed_hash_calculator_.raw_hash(); | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, | 
|  | PayloadVerifier::PadRSA2048SHA256Hash(&hash_data)); | 
|  | TEST_AND_RETURN_VAL(ErrorCode::kDownloadPayloadPubKeyVerificationError, | 
|  | !hash_data.empty()); | 
|  |  | 
|  | if (!PayloadVerifier::VerifySignature( | 
|  | signatures_message_data_, path_to_public_key.value(), hash_data)) { | 
|  | // The autoupdate_CatchBadSignatures test checks for this string | 
|  | // in log-files. Keep in sync. | 
|  | LOG(ERROR) << "Public key verification failed, thus update failed."; | 
|  | return ErrorCode::kDownloadPayloadPubKeyVerificationError; | 
|  | } | 
|  |  | 
|  | LOG(INFO) << "Payload hash matches value in payload."; | 
|  |  | 
|  | // At this point, we are guaranteed to have downloaded a full payload, i.e | 
|  | // the one whose size matches the size mentioned in Omaha response. If any | 
|  | // errors happen after this, it's likely a problem with the payload itself or | 
|  | // the state of the system and not a problem with the URL or network.  So, | 
|  | // indicate that to the download delegate so that AU can backoff | 
|  | // appropriately. | 
|  | if (download_delegate_) | 
|  | download_delegate_->DownloadComplete(); | 
|  |  | 
|  | return ErrorCode::kSuccess; | 
|  | } | 
|  |  | 
|  | void DeltaPerformer::DiscardBuffer(bool do_advance_offset, | 
|  | size_t signed_hash_buffer_size) { | 
|  | // Update the buffer offset. | 
|  | if (do_advance_offset) | 
|  | buffer_offset_ += buffer_.size(); | 
|  |  | 
|  | // Hash the content. | 
|  | payload_hash_calculator_.Update(buffer_.data(), buffer_.size()); | 
|  | signed_hash_calculator_.Update(buffer_.data(), signed_hash_buffer_size); | 
|  |  | 
|  | // Swap content with an empty vector to ensure that all memory is released. | 
|  | brillo::Blob().swap(buffer_); | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::CanResumeUpdate(PrefsInterface* prefs, | 
|  | const string& update_check_response_hash) { | 
|  | int64_t next_operation = kUpdateStateOperationInvalid; | 
|  | if (!(prefs->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) && | 
|  | next_operation != kUpdateStateOperationInvalid && | 
|  | next_operation > 0)) | 
|  | return false; | 
|  |  | 
|  | string interrupted_hash; | 
|  | if (!(prefs->GetString(kPrefsUpdateCheckResponseHash, &interrupted_hash) && | 
|  | !interrupted_hash.empty() && | 
|  | interrupted_hash == update_check_response_hash)) | 
|  | return false; | 
|  |  | 
|  | int64_t resumed_update_failures; | 
|  | // Note that storing this value is optional, but if it is there it should not | 
|  | // be more than the limit. | 
|  | if (prefs->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures) && | 
|  | resumed_update_failures > kMaxResumedUpdateFailures) | 
|  | return false; | 
|  |  | 
|  | // Sanity check the rest. | 
|  | int64_t next_data_offset = -1; | 
|  | if (!(prefs->GetInt64(kPrefsUpdateStateNextDataOffset, &next_data_offset) && | 
|  | next_data_offset >= 0)) | 
|  | return false; | 
|  |  | 
|  | string sha256_context; | 
|  | if (!(prefs->GetString(kPrefsUpdateStateSHA256Context, &sha256_context) && | 
|  | !sha256_context.empty())) | 
|  | return false; | 
|  |  | 
|  | int64_t manifest_metadata_size = 0; | 
|  | if (!(prefs->GetInt64(kPrefsManifestMetadataSize, &manifest_metadata_size) && | 
|  | manifest_metadata_size > 0)) | 
|  | return false; | 
|  |  | 
|  | int64_t manifest_signature_size = 0; | 
|  | if (!(prefs->GetInt64(kPrefsManifestSignatureSize, | 
|  | &manifest_signature_size) && | 
|  | manifest_signature_size >= 0)) | 
|  | return false; | 
|  |  | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::ResetUpdateProgress(PrefsInterface* prefs, bool quick) { | 
|  | TEST_AND_RETURN_FALSE(prefs->SetInt64(kPrefsUpdateStateNextOperation, | 
|  | kUpdateStateOperationInvalid)); | 
|  | if (!quick) { | 
|  | prefs->SetString(kPrefsUpdateCheckResponseHash, ""); | 
|  | prefs->SetInt64(kPrefsUpdateStateNextDataOffset, -1); | 
|  | prefs->SetInt64(kPrefsUpdateStateNextDataLength, 0); | 
|  | prefs->SetString(kPrefsUpdateStateSHA256Context, ""); | 
|  | prefs->SetString(kPrefsUpdateStateSignedSHA256Context, ""); | 
|  | prefs->SetString(kPrefsUpdateStateSignatureBlob, ""); | 
|  | prefs->SetInt64(kPrefsManifestMetadataSize, -1); | 
|  | prefs->SetInt64(kPrefsManifestSignatureSize, -1); | 
|  | prefs->SetInt64(kPrefsResumedUpdateFailures, 0); | 
|  | } | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::CheckpointUpdateProgress() { | 
|  | Terminator::set_exit_blocked(true); | 
|  | if (last_updated_buffer_offset_ != buffer_offset_) { | 
|  | // Resets the progress in case we die in the middle of the state update. | 
|  | ResetUpdateProgress(prefs_, true); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | prefs_->SetString(kPrefsUpdateStateSHA256Context, | 
|  | payload_hash_calculator_.GetContext())); | 
|  | TEST_AND_RETURN_FALSE( | 
|  | prefs_->SetString(kPrefsUpdateStateSignedSHA256Context, | 
|  | signed_hash_calculator_.GetContext())); | 
|  | TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataOffset, | 
|  | buffer_offset_)); | 
|  | last_updated_buffer_offset_ = buffer_offset_; | 
|  |  | 
|  | if (next_operation_num_ < num_total_operations_) { | 
|  | size_t partition_index = current_partition_; | 
|  | while (next_operation_num_ >= acc_num_operations_[partition_index]) | 
|  | partition_index++; | 
|  | const size_t partition_operation_num = next_operation_num_ - ( | 
|  | partition_index ? acc_num_operations_[partition_index - 1] : 0); | 
|  | const InstallOperation& op = | 
|  | partitions_[partition_index].operations(partition_operation_num); | 
|  | TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, | 
|  | op.data_length())); | 
|  | } else { | 
|  | TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextDataLength, | 
|  | 0)); | 
|  | } | 
|  | } | 
|  | TEST_AND_RETURN_FALSE(prefs_->SetInt64(kPrefsUpdateStateNextOperation, | 
|  | next_operation_num_)); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | bool DeltaPerformer::PrimeUpdateState() { | 
|  | CHECK(manifest_valid_); | 
|  | block_size_ = manifest_.block_size(); | 
|  |  | 
|  | int64_t next_operation = kUpdateStateOperationInvalid; | 
|  | if (!prefs_->GetInt64(kPrefsUpdateStateNextOperation, &next_operation) || | 
|  | next_operation == kUpdateStateOperationInvalid || | 
|  | next_operation <= 0) { | 
|  | // Initiating a new update, no more state needs to be initialized. | 
|  | return true; | 
|  | } | 
|  | next_operation_num_ = next_operation; | 
|  |  | 
|  | // Resuming an update -- load the rest of the update state. | 
|  | int64_t next_data_offset = -1; | 
|  | TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsUpdateStateNextDataOffset, | 
|  | &next_data_offset) && | 
|  | next_data_offset >= 0); | 
|  | buffer_offset_ = next_data_offset; | 
|  |  | 
|  | // The signed hash context and the signature blob may be empty if the | 
|  | // interrupted update didn't reach the signature. | 
|  | string signed_hash_context; | 
|  | if (prefs_->GetString(kPrefsUpdateStateSignedSHA256Context, | 
|  | &signed_hash_context)) { | 
|  | TEST_AND_RETURN_FALSE( | 
|  | signed_hash_calculator_.SetContext(signed_hash_context)); | 
|  | } | 
|  |  | 
|  | string signature_blob; | 
|  | if (prefs_->GetString(kPrefsUpdateStateSignatureBlob, &signature_blob)) { | 
|  | signatures_message_data_.assign(signature_blob.begin(), | 
|  | signature_blob.end()); | 
|  | } | 
|  |  | 
|  | string hash_context; | 
|  | TEST_AND_RETURN_FALSE(prefs_->GetString(kPrefsUpdateStateSHA256Context, | 
|  | &hash_context) && | 
|  | payload_hash_calculator_.SetContext(hash_context)); | 
|  |  | 
|  | int64_t manifest_metadata_size = 0; | 
|  | TEST_AND_RETURN_FALSE(prefs_->GetInt64(kPrefsManifestMetadataSize, | 
|  | &manifest_metadata_size) && | 
|  | manifest_metadata_size > 0); | 
|  | metadata_size_ = manifest_metadata_size; | 
|  |  | 
|  | int64_t manifest_signature_size = 0; | 
|  | TEST_AND_RETURN_FALSE( | 
|  | prefs_->GetInt64(kPrefsManifestSignatureSize, &manifest_signature_size) && | 
|  | manifest_signature_size >= 0); | 
|  | metadata_signature_size_ = manifest_signature_size; | 
|  |  | 
|  | // Advance the download progress to reflect what doesn't need to be | 
|  | // re-downloaded. | 
|  | total_bytes_received_ += buffer_offset_; | 
|  |  | 
|  | // Speculatively count the resume as a failure. | 
|  | int64_t resumed_update_failures; | 
|  | if (prefs_->GetInt64(kPrefsResumedUpdateFailures, &resumed_update_failures)) { | 
|  | resumed_update_failures++; | 
|  | } else { | 
|  | resumed_update_failures = 1; | 
|  | } | 
|  | prefs_->SetInt64(kPrefsResumedUpdateFailures, resumed_update_failures); | 
|  | return true; | 
|  | } | 
|  |  | 
|  | }  // namespace chromeos_update_engine |