blob: 14bdf045e014fdff5e56a9c10146afd5ec0aa3b4 [file] [log] [blame]
Joel Galensonca0efb12020-10-01 14:32:30 -07001// Copyright 2020, The Android Open Source Project
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
Janis Danisevskis9d90b812020-11-25 21:02:11 -080015//! This module implements safe wrappers for some crypto operations required by
16//! Keystore 2.0.
17
18mod error;
Janis Danisevskisa16ddf32021-10-20 09:40:02 -070019pub mod zvec;
Janis Danisevskis9d90b812020-11-25 21:02:11 -080020pub use error::Error;
21use keystore2_crypto_bindgen::{
David Drysdalec97eb9e2022-01-26 13:03:48 -080022 extractSubjectFromCertificate, generateKeyFromPassword, hmacSha256, randomBytes,
23 AES_gcm_decrypt, AES_gcm_encrypt, ECDHComputeKey, ECKEYGenerateKey, ECKEYMarshalPrivateKey,
Paul Crowley7bb5edd2021-03-20 20:26:43 -070024 ECKEYParsePrivateKey, ECPOINTOct2Point, ECPOINTPoint2Oct, EC_KEY_free, EC_KEY_get0_public_key,
25 EC_POINT_free, HKDFExpand, HKDFExtract, EC_KEY, EC_MAX_BYTES, EC_POINT, EVP_MAX_MD_SIZE,
Janis Danisevskis9d90b812020-11-25 21:02:11 -080026};
Shawn Willden8fde4c22021-02-14 13:58:22 -070027use std::convert::TryFrom;
Joel Galenson05914582021-01-08 09:30:41 -080028use std::convert::TryInto;
29use std::marker::PhantomData;
Janis Danisevskis9d90b812020-11-25 21:02:11 -080030pub use zvec::ZVec;
31
32/// Length of the expected initialization vector.
Paul Crowley9a7f5a52021-04-23 16:12:08 -070033pub const GCM_IV_LENGTH: usize = 12;
Janis Danisevskis9d90b812020-11-25 21:02:11 -080034/// Length of the expected AEAD TAG.
35pub const TAG_LENGTH: usize = 16;
36/// Length of an AES 256 key in bytes.
37pub const AES_256_KEY_LENGTH: usize = 32;
38/// Length of an AES 128 key in bytes.
39pub const AES_128_KEY_LENGTH: usize = 16;
40/// Length of the expected salt for key from password generation.
41pub const SALT_LENGTH: usize = 16;
David Drysdalec97eb9e2022-01-26 13:03:48 -080042/// Length of an HMAC-SHA256 tag in bytes.
43pub const HMAC_SHA256_LEN: usize = 32;
Janis Danisevskis9d90b812020-11-25 21:02:11 -080044
Paul Crowley9a7f5a52021-04-23 16:12:08 -070045/// Older versions of keystore produced IVs with four extra
46/// ignored zero bytes at the end; recognise and trim those.
47pub const LEGACY_IV_LENGTH: usize = 16;
Janis Danisevskis9d90b812020-11-25 21:02:11 -080048
49/// Generate an AES256 key, essentially 32 random bytes from the underlying
50/// boringssl library discretely stuffed into a ZVec.
51pub fn generate_aes256_key() -> Result<ZVec, Error> {
52 // Safety: key has the same length as the requested number of random bytes.
53 let mut key = ZVec::new(AES_256_KEY_LENGTH)?;
Joel Galenson05914582021-01-08 09:30:41 -080054 if unsafe { randomBytes(key.as_mut_ptr(), AES_256_KEY_LENGTH) } {
Janis Danisevskis9d90b812020-11-25 21:02:11 -080055 Ok(key)
56 } else {
57 Err(Error::RandomNumberGenerationFailed)
58 }
59}
60
61/// Generate a salt.
62pub fn generate_salt() -> Result<Vec<u8>, Error> {
David Drysdale0e45a612021-02-25 17:24:36 +000063 generate_random_data(SALT_LENGTH)
64}
65
66/// Generate random data of the given size.
67pub fn generate_random_data(size: usize) -> Result<Vec<u8>, Error> {
68 // Safety: data has the same length as the requested number of random bytes.
69 let mut data = vec![0; size];
70 if unsafe { randomBytes(data.as_mut_ptr(), size) } {
71 Ok(data)
Janis Danisevskis9d90b812020-11-25 21:02:11 -080072 } else {
73 Err(Error::RandomNumberGenerationFailed)
74 }
75}
76
David Drysdalec97eb9e2022-01-26 13:03:48 -080077/// Perform HMAC-SHA256.
78pub fn hmac_sha256(key: &[u8], msg: &[u8]) -> Result<Vec<u8>, Error> {
79 let mut tag = vec![0; HMAC_SHA256_LEN];
80 // Safety: The first two pairs of arguments must point to const buffers with
81 // size given by the second arg of the pair. The final pair of arguments
82 // must point to an output buffer with size given by the second arg of the
83 // pair.
84 match unsafe {
85 hmacSha256(key.as_ptr(), key.len(), msg.as_ptr(), msg.len(), tag.as_mut_ptr(), tag.len())
86 } {
87 true => Ok(tag),
88 false => Err(Error::HmacSha256Failed),
89 }
90}
91
Janis Danisevskis9d90b812020-11-25 21:02:11 -080092/// Uses AES GCM to decipher a message given an initialization vector, aead tag, and key.
93/// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based
94/// on the key length.
95/// This function returns the plaintext message in a ZVec because it is assumed that
96/// it contains sensitive information that should be zeroed from memory before its buffer is
97/// freed. Input key is taken as a slice for flexibility, but it is recommended that it is held
98/// in a ZVec as well.
99pub fn aes_gcm_decrypt(data: &[u8], iv: &[u8], tag: &[u8], key: &[u8]) -> Result<ZVec, Error> {
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700100 // Old versions of aes_gcm_encrypt produced 16 byte IVs, but the last four bytes were ignored
101 // so trim these to the correct size.
102 let iv = match iv.len() {
103 GCM_IV_LENGTH => iv,
104 LEGACY_IV_LENGTH => &iv[..GCM_IV_LENGTH],
105 _ => return Err(Error::InvalidIvLength),
106 };
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800107 if tag.len() != TAG_LENGTH {
108 return Err(Error::InvalidAeadTagLength);
109 }
110
111 match key.len() {
112 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
113 _ => return Err(Error::InvalidKeyLength),
114 }
115
116 let mut result = ZVec::new(data.len())?;
117
118 // Safety: The first two arguments must point to buffers with a size given by the third
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700119 // argument. We pass the length of the key buffer along with the key.
120 // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800121 match unsafe {
122 AES_gcm_decrypt(
123 data.as_ptr(),
124 result.as_mut_ptr(),
Joel Galenson05914582021-01-08 09:30:41 -0800125 data.len(),
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800126 key.as_ptr(),
Joel Galenson05914582021-01-08 09:30:41 -0800127 key.len(),
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800128 iv.as_ptr(),
129 tag.as_ptr(),
130 )
131 } {
132 true => Ok(result),
133 false => Err(Error::DecryptionFailed),
134 }
135}
136
137/// Uses AES GCM to encrypt a message given a key.
138/// This function accepts 128 and 256-bit keys and uses AES128 and AES256 respectively based on
139/// the key length. The function generates an initialization vector. The return value is a tuple
140/// of `(ciphertext, iv, tag)`.
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700141pub fn aes_gcm_encrypt(plaintext: &[u8], key: &[u8]) -> Result<(Vec<u8>, Vec<u8>, Vec<u8>), Error> {
142 let mut iv = vec![0; GCM_IV_LENGTH];
143 // Safety: iv is GCM_IV_LENGTH bytes long.
Joel Galenson05914582021-01-08 09:30:41 -0800144 if !unsafe { randomBytes(iv.as_mut_ptr(), GCM_IV_LENGTH) } {
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800145 return Err(Error::RandomNumberGenerationFailed);
146 }
147
148 match key.len() {
149 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
150 _ => return Err(Error::InvalidKeyLength),
151 }
152
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700153 let mut ciphertext: Vec<u8> = vec![0; plaintext.len()];
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800154 let mut tag: Vec<u8> = vec![0; TAG_LENGTH];
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700155 // Safety: The first two arguments must point to buffers with a size given by the third
156 // argument. We pass the length of the key buffer along with the key.
157 // The `iv` buffer must be 12 bytes and the `tag` buffer 16, which we check above.
158 if unsafe {
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800159 AES_gcm_encrypt(
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700160 plaintext.as_ptr(),
161 ciphertext.as_mut_ptr(),
162 plaintext.len(),
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800163 key.as_ptr(),
Joel Galenson05914582021-01-08 09:30:41 -0800164 key.len(),
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800165 iv.as_ptr(),
166 tag.as_mut_ptr(),
167 )
168 } {
Paul Crowley9a7f5a52021-04-23 16:12:08 -0700169 Ok((ciphertext, iv, tag))
170 } else {
171 Err(Error::EncryptionFailed)
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800172 }
173}
174
Paul Crowleyf61fee72021-03-17 14:38:44 -0700175/// Represents a "password" that can be used to key the PBKDF2 algorithm.
176pub enum Password<'a> {
177 /// Borrow an existing byte array
178 Ref(&'a [u8]),
179 /// Use an owned ZVec to store the key
180 Owned(ZVec),
181}
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800182
Paul Crowleyf61fee72021-03-17 14:38:44 -0700183impl<'a> From<&'a [u8]> for Password<'a> {
184 fn from(pw: &'a [u8]) -> Self {
185 Self::Ref(pw)
186 }
187}
188
189impl<'a> Password<'a> {
190 fn get_key(&'a self) -> &'a [u8] {
191 match self {
192 Self::Ref(b) => b,
193 Self::Owned(z) => &*z,
194 }
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800195 }
196
Paul Crowleyf61fee72021-03-17 14:38:44 -0700197 /// Generate a key from the given password and salt.
198 /// The salt must be exactly 16 bytes long.
199 /// Two key sizes are accepted: 16 and 32 bytes.
200 pub fn derive_key(&self, salt: Option<&[u8]>, key_length: usize) -> Result<ZVec, Error> {
201 let pw = self.get_key();
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800202
Paul Crowleyf61fee72021-03-17 14:38:44 -0700203 let salt: *const u8 = match salt {
204 Some(s) => {
205 if s.len() != SALT_LENGTH {
206 return Err(Error::InvalidSaltLength);
207 }
208 s.as_ptr()
209 }
210 None => std::ptr::null(),
211 };
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800212
Paul Crowleyf61fee72021-03-17 14:38:44 -0700213 match key_length {
214 AES_128_KEY_LENGTH | AES_256_KEY_LENGTH => {}
215 _ => return Err(Error::InvalidKeyLength),
216 }
217
218 let mut result = ZVec::new(key_length)?;
219
220 unsafe {
221 generateKeyFromPassword(
222 result.as_mut_ptr(),
223 result.len(),
224 pw.as_ptr() as *const std::os::raw::c_char,
225 pw.len(),
226 salt,
227 )
228 };
229
230 Ok(result)
231 }
232
233 /// Try to make another Password object with the same data.
234 pub fn try_clone(&self) -> Result<Password<'static>, Error> {
235 Ok(Password::Owned(ZVec::try_from(self.get_key())?))
236 }
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800237}
Joel Galenson46d6fd02020-11-19 17:58:33 -0800238
Joel Galenson05914582021-01-08 09:30:41 -0800239/// Calls the boringssl HKDF_extract function.
240pub fn hkdf_extract(secret: &[u8], salt: &[u8]) -> Result<ZVec, Error> {
241 let max_size: usize = EVP_MAX_MD_SIZE.try_into().unwrap();
242 let mut buf = ZVec::new(max_size)?;
243 let mut out_len = 0;
244 // Safety: HKDF_extract writes at most EVP_MAX_MD_SIZE bytes.
245 // Secret and salt point to valid buffers.
246 let result = unsafe {
247 HKDFExtract(
248 buf.as_mut_ptr(),
249 &mut out_len,
250 secret.as_ptr(),
251 secret.len(),
252 salt.as_ptr(),
253 salt.len(),
254 )
255 };
256 if !result {
257 return Err(Error::HKDFExtractFailed);
258 }
259 // According to the boringssl API, this should never happen.
260 if out_len > max_size {
261 return Err(Error::HKDFExtractFailed);
262 }
263 // HKDF_extract may write fewer than the maximum number of bytes, so we
264 // truncate the buffer.
265 buf.reduce_len(out_len);
266 Ok(buf)
267}
268
269/// Calls the boringssl HKDF_expand function.
270pub fn hkdf_expand(out_len: usize, prk: &[u8], info: &[u8]) -> Result<ZVec, Error> {
271 let mut buf = ZVec::new(out_len)?;
272 // Safety: HKDF_expand writes out_len bytes to the buffer.
273 // prk and info are valid buffers.
274 let result = unsafe {
275 HKDFExpand(buf.as_mut_ptr(), out_len, prk.as_ptr(), prk.len(), info.as_ptr(), info.len())
276 };
277 if !result {
278 return Err(Error::HKDFExpandFailed);
279 }
280 Ok(buf)
281}
282
283/// A wrapper around the boringssl EC_KEY type that frees it on drop.
284pub struct ECKey(*mut EC_KEY);
285
286impl Drop for ECKey {
287 fn drop(&mut self) {
288 // Safety: We only create ECKey objects for valid EC_KEYs
289 // and they are the sole owners of those keys.
290 unsafe { EC_KEY_free(self.0) };
291 }
292}
293
294// Wrappers around the boringssl EC_POINT type.
295// The EC_POINT can either be owned (and therefore mutable) or a pointer to an
296// EC_POINT owned by someone else (and thus immutable). The former are freed
297// on drop.
298
299/// An owned EC_POINT object.
300pub struct OwnedECPoint(*mut EC_POINT);
301
302/// A pointer to an EC_POINT object.
303pub struct BorrowedECPoint<'a> {
304 data: *const EC_POINT,
305 phantom: PhantomData<&'a EC_POINT>,
306}
307
308impl OwnedECPoint {
309 /// Get the wrapped EC_POINT object.
310 pub fn get_point(&self) -> &EC_POINT {
311 // Safety: We only create OwnedECPoint objects for valid EC_POINTs.
312 unsafe { self.0.as_ref().unwrap() }
313 }
314}
315
316impl<'a> BorrowedECPoint<'a> {
317 /// Get the wrapped EC_POINT object.
318 pub fn get_point(&self) -> &EC_POINT {
319 // Safety: We only create BorrowedECPoint objects for valid EC_POINTs.
320 unsafe { self.data.as_ref().unwrap() }
321 }
322}
323
324impl Drop for OwnedECPoint {
325 fn drop(&mut self) {
326 // Safety: We only create OwnedECPoint objects for valid
327 // EC_POINTs and they are the sole owners of those points.
328 unsafe { EC_POINT_free(self.0) };
329 }
330}
331
332/// Calls the boringssl ECDH_compute_key function.
333pub fn ecdh_compute_key(pub_key: &EC_POINT, priv_key: &ECKey) -> Result<ZVec, Error> {
334 let mut buf = ZVec::new(EC_MAX_BYTES)?;
335 // Safety: Our ECDHComputeKey wrapper passes EC_MAX_BYES to ECDH_compute_key, which
336 // writes at most that many bytes to the output.
337 // The two keys are valid objects.
338 let result =
339 unsafe { ECDHComputeKey(buf.as_mut_ptr() as *mut std::ffi::c_void, pub_key, priv_key.0) };
340 if result == -1 {
341 return Err(Error::ECDHComputeKeyFailed);
342 }
343 let out_len = result.try_into().unwrap();
344 // According to the boringssl API, this should never happen.
345 if out_len > buf.len() {
346 return Err(Error::ECDHComputeKeyFailed);
347 }
348 // ECDH_compute_key may write fewer than the maximum number of bytes, so we
349 // truncate the buffer.
350 buf.reduce_len(out_len);
351 Ok(buf)
352}
353
354/// Calls the boringssl EC_KEY_generate_key function.
355pub fn ec_key_generate_key() -> Result<ECKey, Error> {
356 // Safety: Creates a new key on its own.
357 let key = unsafe { ECKEYGenerateKey() };
358 if key.is_null() {
359 return Err(Error::ECKEYGenerateKeyFailed);
360 }
361 Ok(ECKey(key))
362}
363
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700364/// Calls the boringssl EC_KEY_marshal_private_key function.
365pub fn ec_key_marshal_private_key(key: &ECKey) -> Result<ZVec, Error> {
Paul Crowley52f017f2021-06-22 08:16:01 -0700366 let len = 73; // Empirically observed length of private key
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700367 let mut buf = ZVec::new(len)?;
368 // Safety: the key is valid.
369 // This will not write past the specified length of the buffer; if the
370 // len above is too short, it returns 0.
371 let written_len =
372 unsafe { ECKEYMarshalPrivateKey(key.0, buf.as_mut_ptr(), buf.len()) } as usize;
373 if written_len == len {
374 Ok(buf)
375 } else {
376 Err(Error::ECKEYMarshalPrivateKeyFailed)
Joel Galenson05914582021-01-08 09:30:41 -0800377 }
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700378}
379
380/// Calls the boringssl EC_KEY_parse_private_key function.
381pub fn ec_key_parse_private_key(buf: &[u8]) -> Result<ECKey, Error> {
382 // Safety: this will not read past the specified length of the buffer.
383 // It fails if less than the whole buffer is consumed.
384 let key = unsafe { ECKEYParsePrivateKey(buf.as_ptr(), buf.len()) };
385 if key.is_null() {
386 Err(Error::ECKEYParsePrivateKeyFailed)
387 } else {
388 Ok(ECKey(key))
389 }
Joel Galenson05914582021-01-08 09:30:41 -0800390}
391
392/// Calls the boringssl EC_KEY_get0_public_key function.
393pub fn ec_key_get0_public_key(key: &ECKey) -> BorrowedECPoint {
394 // Safety: The key is valid.
395 // This returns a pointer to a key, so we create an immutable variant.
396 BorrowedECPoint { data: unsafe { EC_KEY_get0_public_key(key.0) }, phantom: PhantomData }
397}
398
399/// Calls the boringssl EC_POINT_point2oct.
400pub fn ec_point_point_to_oct(point: &EC_POINT) -> Result<Vec<u8>, Error> {
Paul Crowley52f017f2021-06-22 08:16:01 -0700401 // We fix the length to 133 (1 + 2 * field_elem_size), as we get an error if it's too small.
402 let len = 133;
Joel Galenson05914582021-01-08 09:30:41 -0800403 let mut buf = vec![0; len];
404 // Safety: EC_POINT_point2oct writes at most len bytes. The point is valid.
405 let result = unsafe { ECPOINTPoint2Oct(point, buf.as_mut_ptr(), len) };
406 if result == 0 {
407 return Err(Error::ECPoint2OctFailed);
408 }
409 // According to the boringssl API, this should never happen.
410 if result > len {
411 return Err(Error::ECPoint2OctFailed);
412 }
413 buf.resize(result, 0);
414 Ok(buf)
415}
416
417/// Calls the boringssl EC_POINT_oct2point function.
418pub fn ec_point_oct_to_point(buf: &[u8]) -> Result<OwnedECPoint, Error> {
419 // Safety: The buffer is valid.
420 let result = unsafe { ECPOINTOct2Point(buf.as_ptr(), buf.len()) };
421 if result.is_null() {
422 return Err(Error::ECPoint2OctFailed);
423 }
424 // Our C wrapper creates a new EC_POINT, so we mark this mutable and free
425 // it on drop.
426 Ok(OwnedECPoint(result))
427}
428
Shawn Willden34120872021-02-24 21:56:30 -0700429/// Uses BoringSSL to extract the DER-encoded subject from a DER-encoded X.509 certificate.
430pub fn parse_subject_from_certificate(cert_buf: &[u8]) -> Result<Vec<u8>, Error> {
Shawn Willden8fde4c22021-02-14 13:58:22 -0700431 // Try with a 200-byte output buffer, should be enough in all but bizarre cases.
432 let mut retval = vec![0; 200];
Shawn Willden34120872021-02-24 21:56:30 -0700433
434 // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf and
435 // writes at most retval.len() bytes to retval.
Shawn Willden8fde4c22021-02-14 13:58:22 -0700436 let mut size = unsafe {
437 extractSubjectFromCertificate(
438 cert_buf.as_ptr(),
439 cert_buf.len(),
440 retval.as_mut_ptr(),
441 retval.len(),
442 )
443 };
444
445 if size == 0 {
446 return Err(Error::ExtractSubjectFailed);
447 }
448
449 if size < 0 {
450 // Our buffer wasn't big enough. Make one that is just the right size and try again.
Shawn Willden34120872021-02-24 21:56:30 -0700451 let negated_size = usize::try_from(-size).map_err(|_e| Error::ExtractSubjectFailed)?;
452 retval = vec![0; negated_size];
Shawn Willden8fde4c22021-02-14 13:58:22 -0700453
Shawn Willden34120872021-02-24 21:56:30 -0700454 // Safety: extractSubjectFromCertificate reads at most cert_buf.len() bytes from cert_buf
455 // and writes at most retval.len() bytes to retval.
Shawn Willden8fde4c22021-02-14 13:58:22 -0700456 size = unsafe {
457 extractSubjectFromCertificate(
458 cert_buf.as_ptr(),
459 cert_buf.len(),
460 retval.as_mut_ptr(),
461 retval.len(),
462 )
463 };
464
465 if size <= 0 {
466 return Err(Error::ExtractSubjectFailed);
467 }
468 }
469
470 // Reduce buffer size to the amount written.
Shawn Willden34120872021-02-24 21:56:30 -0700471 let safe_size = usize::try_from(size).map_err(|_e| Error::ExtractSubjectFailed)?;
472 retval.truncate(safe_size);
Shawn Willden8fde4c22021-02-14 13:58:22 -0700473
474 Ok(retval)
475}
476
Joel Galensonca0efb12020-10-01 14:32:30 -0700477#[cfg(test)]
478mod tests {
479
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800480 use super::*;
Joel Galensonca0efb12020-10-01 14:32:30 -0700481 use keystore2_crypto_bindgen::{
482 generateKeyFromPassword, AES_gcm_decrypt, AES_gcm_encrypt, CreateKeyId,
483 };
484
485 #[test]
Janis Danisevskis9d90b812020-11-25 21:02:11 -0800486 fn test_wrapper_roundtrip() {
487 let key = generate_aes256_key().unwrap();
488 let message = b"totally awesome message";
489 let (cipher_text, iv, tag) = aes_gcm_encrypt(message, &key).unwrap();
490 let message2 = aes_gcm_decrypt(&cipher_text, &iv, &tag, &key).unwrap();
491 assert_eq!(message[..], message2[..])
492 }
493
494 #[test]
Joel Galensonca0efb12020-10-01 14:32:30 -0700495 fn test_encrypt_decrypt() {
496 let input = vec![0; 16];
497 let mut out = vec![0; 16];
498 let mut out2 = vec![0; 16];
499 let key = vec![0; 16];
500 let iv = vec![0; 12];
501 let mut tag = vec![0; 16];
502 unsafe {
503 let res = AES_gcm_encrypt(
504 input.as_ptr(),
505 out.as_mut_ptr(),
506 16,
507 key.as_ptr(),
508 16,
509 iv.as_ptr(),
510 tag.as_mut_ptr(),
511 );
512 assert!(res);
513 assert_ne!(out, input);
514 assert_ne!(tag, input);
515 let res = AES_gcm_decrypt(
516 out.as_ptr(),
517 out2.as_mut_ptr(),
518 16,
519 key.as_ptr(),
520 16,
521 iv.as_ptr(),
522 tag.as_ptr(),
523 );
524 assert!(res);
525 assert_eq!(out2, input);
526 }
527 }
528
529 #[test]
530 fn test_create_key_id() {
531 let blob = vec![0; 16];
532 let mut out: u64 = 0;
533 unsafe {
534 let res = CreateKeyId(blob.as_ptr(), 16, &mut out);
535 assert!(res);
536 assert_ne!(out, 0);
537 }
538 }
539
540 #[test]
541 fn test_generate_key_from_password() {
542 let mut key = vec![0; 16];
543 let pw = vec![0; 16];
544 let mut salt = vec![0; 16];
545 unsafe {
546 generateKeyFromPassword(key.as_mut_ptr(), 16, pw.as_ptr(), 16, salt.as_mut_ptr());
547 }
548 assert_ne!(key, vec![0; 16]);
549 }
Joel Galenson05914582021-01-08 09:30:41 -0800550
551 #[test]
552 fn test_hkdf() {
553 let result = hkdf_extract(&[0; 16], &[0; 16]);
554 assert!(result.is_ok());
555 for out_len in 4..=8 {
556 let result = hkdf_expand(out_len, &[0; 16], &[0; 16]);
557 assert!(result.is_ok());
558 assert_eq!(result.unwrap().len(), out_len);
559 }
560 }
561
562 #[test]
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700563 fn test_ec() -> Result<(), Error> {
564 let priv0 = ec_key_generate_key()?;
565 assert!(!priv0.0.is_null());
566 let pub0 = ec_key_get0_public_key(&priv0);
Joel Galenson05914582021-01-08 09:30:41 -0800567
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700568 let priv1 = ec_key_generate_key()?;
569 let pub1 = ec_key_get0_public_key(&priv1);
Joel Galenson05914582021-01-08 09:30:41 -0800570
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700571 let priv0s = ec_key_marshal_private_key(&priv0)?;
572 let pub0s = ec_point_point_to_oct(pub0.get_point())?;
573 let pub1s = ec_point_point_to_oct(pub1.get_point())?;
Joel Galenson05914582021-01-08 09:30:41 -0800574
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700575 let priv0 = ec_key_parse_private_key(&priv0s)?;
576 let pub0 = ec_point_oct_to_point(&pub0s)?;
577 let pub1 = ec_point_oct_to_point(&pub1s)?;
Joel Galenson05914582021-01-08 09:30:41 -0800578
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700579 let left_key = ecdh_compute_key(pub0.get_point(), &priv1)?;
580 let right_key = ecdh_compute_key(pub1.get_point(), &priv0)?;
Joel Galenson05914582021-01-08 09:30:41 -0800581
Paul Crowley7bb5edd2021-03-20 20:26:43 -0700582 assert_eq!(left_key, right_key);
583 Ok(())
Joel Galenson05914582021-01-08 09:30:41 -0800584 }
David Drysdalec97eb9e2022-01-26 13:03:48 -0800585
586 #[test]
587 fn test_hmac_sha256() {
588 let key = b"This is the key";
589 let msg1 = b"This is a message";
590 let msg2 = b"This is another message";
591 let tag1a = hmac_sha256(key, msg1).unwrap();
592 assert_eq!(tag1a.len(), HMAC_SHA256_LEN);
593 let tag1b = hmac_sha256(key, msg1).unwrap();
594 assert_eq!(tag1a, tag1b);
595 let tag2 = hmac_sha256(key, msg2).unwrap();
596 assert_eq!(tag2.len(), HMAC_SHA256_LEN);
597 assert_ne!(tag1a, tag2);
598 }
Joel Galensonca0efb12020-10-01 14:32:30 -0700599}