blob: d204ae742a8ca4f67e067396565243f84b08ff65 [file] [log] [blame]
Janis Danisevskisb42fc182020-12-15 08:41:27 -08001// Copyright 2020, The Android Open Source Project
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7// http://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15#![allow(dead_code)]
16
17use crate::{
18 database::EncryptedBy, database::KeyMetaData, database::KeyMetaEntry, database::KeystoreDB,
19 error::Error, error::ResponseCode,
20};
21use android_system_keystore2::aidl::android::system::keystore2::Domain::Domain;
22use anyhow::{Context, Result};
23use keystore2_crypto::{
24 aes_gcm_decrypt, aes_gcm_encrypt, derive_key_from_password, generate_salt, ZVec,
25 AES_256_KEY_LENGTH,
26};
27use std::{
28 collections::HashMap,
29 sync::Arc,
30 sync::{Mutex, Weak},
31};
32
33type UserId = u32;
34
35#[derive(Default)]
36struct UserSuperKeys {
37 /// The per boot key is used for LSKF binding of authentication bound keys. There is one
38 /// key per android user. The key is stored on flash encrypted with a key derived from a
39 /// secret, that is itself derived from the user's lock screen knowledge factor (LSKF).
40 /// When the user unlocks the device for the first time, this key is unlocked, i.e., decrypted,
41 /// and stays memory resident until the device reboots.
42 per_boot: Option<Arc<ZVec>>,
43 /// The screen lock key works like the per boot key with the distinction that it is cleared
44 /// from memory when the screen lock is engaged.
45 /// TODO the life cycle is not fully implemented at this time.
46 screen_lock: Option<Arc<ZVec>>,
47}
48
49#[derive(Default)]
50struct SkmState {
51 user_keys: HashMap<UserId, UserSuperKeys>,
52 key_index: HashMap<i64, Weak<ZVec>>,
53}
54
55#[derive(Default)]
56pub struct SuperKeyManager {
57 data: Mutex<SkmState>,
58}
59
60impl SuperKeyManager {
61 pub fn new() -> Self {
62 Self { data: Mutex::new(Default::default()) }
63 }
64
65 pub fn forget_screen_lock_key_for_user(&self, user: UserId) {
66 let mut data = self.data.lock().unwrap();
67 if let Some(usk) = data.user_keys.get_mut(&user) {
68 usk.screen_lock = None;
69 }
70 }
71
72 pub fn forget_screen_lock_keys(&self) {
73 let mut data = self.data.lock().unwrap();
74 for (_, usk) in data.user_keys.iter_mut() {
75 usk.screen_lock = None;
76 }
77 }
78
79 pub fn forget_all_keys_for_user(&self, user: UserId) {
80 let mut data = self.data.lock().unwrap();
81 data.user_keys.remove(&user);
82 }
83
84 pub fn forget_all_keys(&self) {
85 let mut data = self.data.lock().unwrap();
86 data.user_keys.clear();
87 data.key_index.clear();
88 }
89
90 fn install_per_boot_key_for_user(&self, user: UserId, key_id: i64, key: ZVec) {
91 let mut data = self.data.lock().unwrap();
92 let key = Arc::new(key);
93 data.key_index.insert(key_id, Arc::downgrade(&key));
94 data.user_keys.entry(user).or_default().per_boot = Some(key);
95 }
96
97 fn get_key(&self, key_id: &i64) -> Option<Arc<ZVec>> {
98 self.data.lock().unwrap().key_index.get(key_id).and_then(|k| k.upgrade())
99 }
100
101 pub fn get_per_boot_key_by_user_id(&self, user_id: u32) -> Option<Arc<ZVec>> {
102 let data = self.data.lock().unwrap();
103 data.user_keys.get(&user_id).map(|e| e.per_boot.clone()).flatten()
104 }
105
106 /// This function unlocks the super keys for a given user.
107 /// This means the key is loaded from the database, decrypted and placed in the
108 /// super key cache. If there is no such key a new key is created, encrypted with
109 /// a key derived from the given password and stored in the database.
110 pub fn unlock_user_key(&self, user: UserId, pw: &[u8], db: &mut KeystoreDB) -> Result<()> {
111 let (_, entry) = db
112 .get_or_create_key_with(Domain::APP, user as u64 as i64, &"USER_SUPER_KEY", || {
113 let super_key = keystore2_crypto::generate_aes256_key()
114 .context("In create_new_key: Failed to generate AES 256 key.")?;
115
116 let salt =
117 generate_salt().context("In create_new_key: Failed to generate salt.")?;
118 let derived_key = derive_key_from_password(pw, Some(&salt), AES_256_KEY_LENGTH)
119 .context("In create_new_key: Failed to derive password.")?;
120 let mut metadata = KeyMetaData::new();
121 metadata.add(KeyMetaEntry::EncryptedBy(EncryptedBy::Password));
122 metadata.add(KeyMetaEntry::Salt(salt));
123 let (encrypted_key, iv, tag) = aes_gcm_encrypt(&super_key, &derived_key)
124 .context("In create_new_key: Failed to encrypt new super key.")?;
125 metadata.add(KeyMetaEntry::Iv(iv));
126 metadata.add(KeyMetaEntry::AeadTag(tag));
127 Ok((encrypted_key, metadata))
128 })
129 .context("In unlock_user_key: Failed to get key id.")?;
130
131 let metadata = entry.metadata();
132 let super_key = match (
133 metadata.encrypted_by(),
134 metadata.salt(),
135 metadata.iv(),
136 metadata.aead_tag(),
137 entry.km_blob(),
138 ) {
139 (Some(&EncryptedBy::Password), Some(salt), Some(iv), Some(tag), Some(blob)) => {
140 let key = derive_key_from_password(pw, Some(salt), AES_256_KEY_LENGTH)
141 .context("In unlock_user_key: Failed to generate key from password.")?;
142
143 aes_gcm_decrypt(blob, iv, tag, &key)
144 .context("In unlock_user_key: Failed to decrypt key blob.")?
145 }
146 (enc_by, salt, iv, tag, blob) => {
147 return Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(format!(
148 concat!(
149 "In unlock_user_key: Super key has incomplete metadata.",
150 "Present: encrypted_by: {}, salt: {}, iv: {}, aead_tag: {}, blob: {}."
151 ),
152 enc_by.is_some(),
153 salt.is_some(),
154 iv.is_some(),
155 tag.is_some(),
156 blob.is_some()
157 ));
158 }
159 };
160
161 self.install_per_boot_key_for_user(user, entry.id(), super_key);
162
163 Ok(())
164 }
165
166 /// Unwraps an encrypted key blob given metadata identifying the encryption key.
167 /// The function queries `metadata.encrypted_by()` to determine the encryption key.
168 /// It then check if the required key is memory resident, and if so decrypts the
169 /// blob.
170 pub fn unwrap_key(&self, blob: &[u8], metadata: &KeyMetaData) -> Result<ZVec> {
171 match metadata.encrypted_by() {
172 Some(EncryptedBy::KeyId(key_id)) => match self.get_key(key_id) {
173 Some(key) => {
174 Self::unwrap_key_with_key(blob, metadata, &key).context("In unwrap_key.")
175 }
176 None => Err(Error::Rc(ResponseCode::LOCKED))
177 .context("In unwrap_key: Key is not usable until the user entered their LSKF."),
178 },
179 _ => Err(Error::Rc(ResponseCode::VALUE_CORRUPTED))
180 .context("In unwrap_key: Cannot determined wrapping key."),
181 }
182 }
183
184 /// Unwraps an encrypted key blob given an encryption key.
185 fn unwrap_key_with_key(blob: &[u8], metadata: &KeyMetaData, key: &[u8]) -> Result<ZVec> {
186 match (metadata.iv(), metadata.aead_tag()) {
187 (Some(iv), Some(tag)) => aes_gcm_decrypt(blob, iv, tag, key)
188 .context("In unwrap_key_with_key: Failed to decrypt the key blob."),
189 (iv, tag) => Err(Error::Rc(ResponseCode::VALUE_CORRUPTED)).context(format!(
190 concat!(
191 "In unwrap_key_with_key: Key has incomplete metadata.",
192 "Present: iv: {}, aead_tag: {}."
193 ),
194 iv.is_some(),
195 tag.is_some(),
196 )),
197 }
198 }
199}