David Drysdale | 2566fb3 | 2024-07-09 14:46:37 +0100 | [diff] [blame] | 1 | // Copyright 2022, The Android Open Source Project |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | //! RKPD tests. |
| 16 | |
| 17 | use super::*; |
| 18 | use android_security_rkp_aidl::aidl::android::security::rkp::IRegistration::BnRegistration; |
| 19 | use std::sync::atomic::{AtomicU32, Ordering}; |
| 20 | use std::sync::{Arc, Mutex}; |
| 21 | |
| 22 | const DEFAULT_RPC_SERVICE_NAME: &str = |
| 23 | "android.hardware.security.keymint.IRemotelyProvisionedComponent/default"; |
| 24 | |
| 25 | struct MockRegistrationValues { |
| 26 | key: RemotelyProvisionedKey, |
| 27 | latency: Option<Duration>, |
| 28 | thread_join_handles: Vec<Option<std::thread::JoinHandle<()>>>, |
| 29 | } |
| 30 | |
| 31 | struct MockRegistration(Arc<Mutex<MockRegistrationValues>>); |
| 32 | |
| 33 | impl MockRegistration { |
| 34 | pub fn new_native_binder( |
| 35 | key: &RemotelyProvisionedKey, |
| 36 | latency: Option<Duration>, |
| 37 | ) -> Strong<dyn IRegistration> { |
| 38 | let result = Self(Arc::new(Mutex::new(MockRegistrationValues { |
| 39 | key: RemotelyProvisionedKey { |
| 40 | keyBlob: key.keyBlob.clone(), |
| 41 | encodedCertChain: key.encodedCertChain.clone(), |
| 42 | }, |
| 43 | latency, |
| 44 | thread_join_handles: Vec::new(), |
| 45 | }))); |
| 46 | BnRegistration::new_binder(result, BinderFeatures::default()) |
| 47 | } |
| 48 | } |
| 49 | |
| 50 | impl Drop for MockRegistration { |
| 51 | fn drop(&mut self) { |
| 52 | let mut values = self.0.lock().unwrap(); |
| 53 | for handle in values.thread_join_handles.iter_mut() { |
| 54 | // These are test threads. So, no need to worry too much about error handling. |
| 55 | handle.take().unwrap().join().unwrap(); |
| 56 | } |
| 57 | } |
| 58 | } |
| 59 | |
| 60 | impl Interface for MockRegistration {} |
| 61 | |
| 62 | impl IRegistration for MockRegistration { |
| 63 | fn getKey(&self, _: i32, cb: &Strong<dyn IGetKeyCallback>) -> binder::Result<()> { |
| 64 | let mut values = self.0.lock().unwrap(); |
| 65 | let key = RemotelyProvisionedKey { |
| 66 | keyBlob: values.key.keyBlob.clone(), |
| 67 | encodedCertChain: values.key.encodedCertChain.clone(), |
| 68 | }; |
| 69 | let latency = values.latency; |
| 70 | let get_key_cb = cb.clone(); |
| 71 | |
| 72 | // Need a separate thread to trigger timeout in the caller. |
| 73 | let join_handle = std::thread::spawn(move || { |
| 74 | if let Some(duration) = latency { |
| 75 | std::thread::sleep(duration); |
| 76 | } |
| 77 | get_key_cb.onSuccess(&key).unwrap(); |
| 78 | }); |
| 79 | values.thread_join_handles.push(Some(join_handle)); |
| 80 | Ok(()) |
| 81 | } |
| 82 | |
| 83 | fn cancelGetKey(&self, _: &Strong<dyn IGetKeyCallback>) -> binder::Result<()> { |
| 84 | Ok(()) |
| 85 | } |
| 86 | |
| 87 | fn storeUpgradedKeyAsync( |
| 88 | &self, |
| 89 | _: &[u8], |
| 90 | _: &[u8], |
| 91 | cb: &Strong<dyn IStoreUpgradedKeyCallback>, |
| 92 | ) -> binder::Result<()> { |
| 93 | // We are primarily concerned with timing out correctly. Storing the key in this mock |
| 94 | // registration isn't particularly interesting, so skip that part. |
| 95 | let values = self.0.lock().unwrap(); |
| 96 | let store_cb = cb.clone(); |
| 97 | let latency = values.latency; |
| 98 | |
| 99 | std::thread::spawn(move || { |
| 100 | if let Some(duration) = latency { |
| 101 | std::thread::sleep(duration); |
| 102 | } |
| 103 | store_cb.onSuccess().unwrap(); |
| 104 | }); |
| 105 | Ok(()) |
| 106 | } |
| 107 | } |
| 108 | |
| 109 | fn get_mock_registration( |
| 110 | key: &RemotelyProvisionedKey, |
| 111 | latency: Option<Duration>, |
| 112 | ) -> Result<binder::Strong<dyn IRegistration>> { |
| 113 | let (tx, rx) = oneshot::channel(); |
| 114 | let cb = GetRegistrationCallback::new_native_binder(tx); |
| 115 | let mock_registration = MockRegistration::new_native_binder(key, latency); |
| 116 | |
| 117 | assert!(cb.onSuccess(&mock_registration).is_ok()); |
| 118 | tokio_rt().block_on(rx).unwrap() |
| 119 | } |
| 120 | |
| 121 | // Using the same key ID makes test cases race with each other. So, we use separate key IDs for |
| 122 | // different test cases. |
| 123 | fn get_next_key_id() -> u32 { |
| 124 | static ID: AtomicU32 = AtomicU32::new(0); |
| 125 | ID.fetch_add(1, Ordering::Relaxed) |
| 126 | } |
| 127 | |
| 128 | #[test] |
| 129 | fn test_get_registration_cb_success() { |
| 130 | let key: RemotelyProvisionedKey = Default::default(); |
| 131 | let registration = get_mock_registration(&key, /*latency=*/ None); |
| 132 | assert!(registration.is_ok()); |
| 133 | } |
| 134 | |
| 135 | #[test] |
| 136 | fn test_get_registration_cb_cancel() { |
| 137 | let (tx, rx) = oneshot::channel(); |
| 138 | let cb = GetRegistrationCallback::new_native_binder(tx); |
| 139 | assert!(cb.onCancel().is_ok()); |
| 140 | |
| 141 | let result = tokio_rt().block_on(rx).unwrap(); |
| 142 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::RequestCancelled); |
| 143 | } |
| 144 | |
| 145 | #[test] |
| 146 | fn test_get_registration_cb_error() { |
| 147 | let (tx, rx) = oneshot::channel(); |
| 148 | let cb = GetRegistrationCallback::new_native_binder(tx); |
| 149 | assert!(cb.onError("error").is_ok()); |
| 150 | |
| 151 | let result = tokio_rt().block_on(rx).unwrap(); |
| 152 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::GetRegistrationFailed); |
| 153 | } |
| 154 | |
| 155 | #[test] |
| 156 | fn test_get_key_cb_success() { |
| 157 | let mock_key = |
| 158 | RemotelyProvisionedKey { keyBlob: vec![1, 2, 3], encodedCertChain: vec![4, 5, 6] }; |
| 159 | let (tx, rx) = oneshot::channel(); |
| 160 | let cb = GetKeyCallback::new_native_binder(tx); |
| 161 | assert!(cb.onSuccess(&mock_key).is_ok()); |
| 162 | |
| 163 | let key = tokio_rt().block_on(rx).unwrap().unwrap(); |
| 164 | assert_eq!(key, mock_key); |
| 165 | } |
| 166 | |
| 167 | #[test] |
| 168 | fn test_get_key_cb_cancel() { |
| 169 | let (tx, rx) = oneshot::channel(); |
| 170 | let cb = GetKeyCallback::new_native_binder(tx); |
| 171 | assert!(cb.onCancel().is_ok()); |
| 172 | |
| 173 | let result = tokio_rt().block_on(rx).unwrap(); |
| 174 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::RequestCancelled); |
| 175 | } |
| 176 | |
| 177 | #[test] |
| 178 | fn test_get_key_cb_error() { |
| 179 | for get_key_error in GetKeyErrorCode::enum_values() { |
| 180 | let (tx, rx) = oneshot::channel(); |
| 181 | let cb = GetKeyCallback::new_native_binder(tx); |
| 182 | assert!(cb.onError(get_key_error, "error").is_ok()); |
| 183 | |
| 184 | let result = tokio_rt().block_on(rx).unwrap(); |
| 185 | assert_eq!( |
| 186 | result.unwrap_err().downcast::<Error>().unwrap(), |
| 187 | Error::GetKeyFailed(get_key_error), |
| 188 | ); |
| 189 | } |
| 190 | } |
| 191 | |
| 192 | #[test] |
| 193 | fn test_store_upgraded_cb_success() { |
| 194 | let (tx, rx) = oneshot::channel(); |
| 195 | let cb = StoreUpgradedKeyCallback::new_native_binder(tx); |
| 196 | assert!(cb.onSuccess().is_ok()); |
| 197 | |
| 198 | tokio_rt().block_on(rx).unwrap().unwrap(); |
| 199 | } |
| 200 | |
| 201 | #[test] |
| 202 | fn test_store_upgraded_key_cb_error() { |
| 203 | let (tx, rx) = oneshot::channel(); |
| 204 | let cb = StoreUpgradedKeyCallback::new_native_binder(tx); |
| 205 | assert!(cb.onError("oh no! it failed").is_ok()); |
| 206 | |
| 207 | let result = tokio_rt().block_on(rx).unwrap(); |
| 208 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::StoreUpgradedKeyFailed); |
| 209 | } |
| 210 | |
| 211 | #[test] |
| 212 | fn test_get_mock_key_success() { |
| 213 | let mock_key = |
| 214 | RemotelyProvisionedKey { keyBlob: vec![1, 2, 3], encodedCertChain: vec![4, 5, 6] }; |
| 215 | let registration = get_mock_registration(&mock_key, /*latency=*/ None).unwrap(); |
| 216 | |
| 217 | let key = tokio_rt() |
| 218 | .block_on(get_rkpd_attestation_key_from_registration_async(®istration, 0)) |
| 219 | .unwrap(); |
| 220 | assert_eq!(key, mock_key); |
| 221 | } |
| 222 | |
| 223 | #[test] |
| 224 | fn test_get_mock_key_timeout() { |
| 225 | let mock_key = |
| 226 | RemotelyProvisionedKey { keyBlob: vec![1, 2, 3], encodedCertChain: vec![4, 5, 6] }; |
| 227 | let latency = RKPD_TIMEOUT + Duration::from_secs(1); |
| 228 | let registration = get_mock_registration(&mock_key, Some(latency)).unwrap(); |
| 229 | |
| 230 | let result = |
| 231 | tokio_rt().block_on(get_rkpd_attestation_key_from_registration_async(®istration, 0)); |
| 232 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::RetryableTimeout); |
| 233 | } |
| 234 | |
| 235 | #[test] |
| 236 | fn test_store_mock_key_success() { |
| 237 | let mock_key = |
| 238 | RemotelyProvisionedKey { keyBlob: vec![1, 2, 3], encodedCertChain: vec![4, 5, 6] }; |
| 239 | let registration = get_mock_registration(&mock_key, /*latency=*/ None).unwrap(); |
| 240 | tokio_rt() |
| 241 | .block_on(store_rkpd_attestation_key_with_registration_async(®istration, &[], &[])) |
| 242 | .unwrap(); |
| 243 | } |
| 244 | |
| 245 | #[test] |
| 246 | fn test_store_mock_key_timeout() { |
| 247 | let mock_key = |
| 248 | RemotelyProvisionedKey { keyBlob: vec![1, 2, 3], encodedCertChain: vec![4, 5, 6] }; |
| 249 | let latency = RKPD_TIMEOUT + Duration::from_secs(1); |
| 250 | let registration = get_mock_registration(&mock_key, Some(latency)).unwrap(); |
| 251 | |
| 252 | let result = tokio_rt().block_on(store_rkpd_attestation_key_with_registration_async( |
| 253 | ®istration, |
| 254 | &[], |
| 255 | &[], |
| 256 | )); |
| 257 | assert_eq!(result.unwrap_err().downcast::<Error>().unwrap(), Error::Timeout); |
| 258 | } |
| 259 | |
| 260 | #[test] |
| 261 | fn test_get_rkpd_attestation_key() { |
| 262 | binder::ProcessState::start_thread_pool(); |
| 263 | let key_id = get_next_key_id(); |
| 264 | let key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 265 | assert!(!key.keyBlob.is_empty()); |
| 266 | assert!(!key.encodedCertChain.is_empty()); |
| 267 | } |
| 268 | |
| 269 | #[test] |
| 270 | fn test_get_rkpd_attestation_key_same_caller() { |
| 271 | binder::ProcessState::start_thread_pool(); |
| 272 | let key_id = get_next_key_id(); |
| 273 | |
| 274 | // Multiple calls should return the same key. |
| 275 | let first_key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 276 | let second_key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 277 | |
| 278 | assert_eq!(first_key.keyBlob, second_key.keyBlob); |
| 279 | assert_eq!(first_key.encodedCertChain, second_key.encodedCertChain); |
| 280 | } |
| 281 | |
| 282 | #[test] |
| 283 | fn test_get_rkpd_attestation_key_different_caller() { |
| 284 | binder::ProcessState::start_thread_pool(); |
| 285 | let first_key_id = get_next_key_id(); |
| 286 | let second_key_id = get_next_key_id(); |
| 287 | |
| 288 | // Different callers should be getting different keys. |
| 289 | let first_key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, first_key_id).unwrap(); |
| 290 | let second_key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, second_key_id).unwrap(); |
| 291 | |
| 292 | assert_ne!(first_key.keyBlob, second_key.keyBlob); |
| 293 | assert_ne!(first_key.encodedCertChain, second_key.encodedCertChain); |
| 294 | } |
| 295 | |
| 296 | #[test] |
| 297 | // Couple of things to note: |
| 298 | // 1. This test must never run with UID of keystore. Otherwise, it can mess up keys stored by |
| 299 | // keystore. |
| 300 | // 2. Storing and reading the stored key is prone to race condition. So, we only do this in one |
| 301 | // test case. |
| 302 | fn test_store_rkpd_attestation_key() { |
| 303 | binder::ProcessState::start_thread_pool(); |
| 304 | let key_id = get_next_key_id(); |
| 305 | let key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 306 | let new_blob: [u8; 8] = rand::random(); |
| 307 | |
| 308 | assert!(store_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, &key.keyBlob, &new_blob).is_ok()); |
| 309 | |
| 310 | let new_key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 311 | |
| 312 | // Restore original key so that we don't leave RKPD with invalid blobs. |
| 313 | assert!(store_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, &new_blob, &key.keyBlob).is_ok()); |
| 314 | assert_eq!(new_key.keyBlob, new_blob); |
| 315 | } |
| 316 | |
| 317 | #[test] |
| 318 | fn test_stress_get_rkpd_attestation_key() { |
| 319 | binder::ProcessState::start_thread_pool(); |
| 320 | let key_id = get_next_key_id(); |
| 321 | let mut threads = vec![]; |
| 322 | const NTHREADS: u32 = 10; |
| 323 | const NCALLS: u32 = 1000; |
| 324 | |
| 325 | for _ in 0..NTHREADS { |
| 326 | threads.push(std::thread::spawn(move || { |
| 327 | for _ in 0..NCALLS { |
| 328 | let key = get_rkpd_attestation_key(DEFAULT_RPC_SERVICE_NAME, key_id).unwrap(); |
| 329 | assert!(!key.keyBlob.is_empty()); |
| 330 | assert!(!key.encodedCertChain.is_empty()); |
| 331 | } |
| 332 | })); |
| 333 | } |
| 334 | |
| 335 | for t in threads { |
| 336 | assert!(t.join().is_ok()); |
| 337 | } |
| 338 | } |