Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 1 | /* |
| 2 | * Copyright (C) 2012 The Android Open Source Project |
| 3 | * |
| 4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
| 5 | * you may not use this file except in compliance with the License. |
| 6 | * You may obtain a copy of the License at |
| 7 | * |
| 8 | * http://www.apache.org/licenses/LICENSE-2.0 |
| 9 | * |
| 10 | * Unless required by applicable law or agreed to in writing, software |
| 11 | * distributed under the License is distributed on an "AS IS" BASIS, |
| 12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 13 | * See the License for the specific language governing permissions and |
| 14 | * limitations under the License. |
| 15 | */ |
| 16 | #include <errno.h> |
| 17 | #include <string.h> |
| 18 | #include <stdint.h> |
| 19 | |
Kenny Root | 07438c8 | 2012-11-02 15:41:02 -0700 | [diff] [blame] | 20 | #include <keystore/keystore.h> |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 21 | |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 22 | #include <hardware/hardware.h> |
| 23 | #include <hardware/keymaster.h> |
| 24 | |
| 25 | #include <openssl/evp.h> |
| 26 | #include <openssl/bio.h> |
| 27 | #include <openssl/rsa.h> |
| 28 | #include <openssl/err.h> |
| 29 | #include <openssl/x509.h> |
| 30 | |
Colin Cross | 98c2f8f | 2012-03-28 09:44:09 -0700 | [diff] [blame] | 31 | #include <utils/UniquePtr.h> |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 32 | |
| 33 | // For debugging |
| 34 | //#define LOG_NDEBUG 0 |
| 35 | |
| 36 | #define LOG_TAG "OpenSSLKeyMaster" |
| 37 | #include <cutils/log.h> |
| 38 | |
| 39 | struct BIGNUM_Delete { |
| 40 | void operator()(BIGNUM* p) const { |
| 41 | BN_free(p); |
| 42 | } |
| 43 | }; |
| 44 | typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; |
| 45 | |
| 46 | struct EVP_PKEY_Delete { |
| 47 | void operator()(EVP_PKEY* p) const { |
| 48 | EVP_PKEY_free(p); |
| 49 | } |
| 50 | }; |
| 51 | typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; |
| 52 | |
| 53 | struct PKCS8_PRIV_KEY_INFO_Delete { |
| 54 | void operator()(PKCS8_PRIV_KEY_INFO* p) const { |
| 55 | PKCS8_PRIV_KEY_INFO_free(p); |
| 56 | } |
| 57 | }; |
| 58 | typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; |
| 59 | |
| 60 | struct RSA_Delete { |
| 61 | void operator()(RSA* p) const { |
| 62 | RSA_free(p); |
| 63 | } |
| 64 | }; |
| 65 | typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; |
| 66 | |
| 67 | typedef UniquePtr<keymaster_device_t> Unique_keymaster_device_t; |
| 68 | |
| 69 | /** |
| 70 | * Many OpenSSL APIs take ownership of an argument on success but don't free the argument |
| 71 | * on failure. This means we need to tell our scoped pointers when we've transferred ownership, |
| 72 | * without triggering a warning by not using the result of release(). |
| 73 | */ |
| 74 | #define OWNERSHIP_TRANSFERRED(obj) \ |
| 75 | typeof (obj.release()) _dummy __attribute__((unused)) = obj.release() |
| 76 | |
| 77 | |
| 78 | /* |
| 79 | * Checks this thread's OpenSSL error queue and logs if |
| 80 | * necessary. |
| 81 | */ |
| 82 | static void logOpenSSLError(const char* location) { |
| 83 | int error = ERR_get_error(); |
| 84 | |
| 85 | if (error != 0) { |
| 86 | char message[256]; |
| 87 | ERR_error_string_n(error, message, sizeof(message)); |
| 88 | ALOGE("OpenSSL error in %s %d: %s", location, error, message); |
| 89 | } |
| 90 | |
| 91 | ERR_clear_error(); |
| 92 | ERR_remove_state(0); |
| 93 | } |
| 94 | |
| 95 | static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { |
| 96 | /* Find the length of each size */ |
| 97 | int publicLen = i2d_PublicKey(pkey, NULL); |
| 98 | int privateLen = i2d_PrivateKey(pkey, NULL); |
| 99 | |
| 100 | if (privateLen <= 0 || publicLen <= 0) { |
| 101 | ALOGE("private or public key size was too big"); |
| 102 | return -1; |
| 103 | } |
| 104 | |
| 105 | /* int type + int size + private key data + int size + public key data */ |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 106 | *keyBlobLength = get_softkey_header_size() + sizeof(int) + sizeof(int) + privateLen |
| 107 | + sizeof(int) + publicLen; |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 108 | |
| 109 | UniquePtr<unsigned char[]> derData(new unsigned char[*keyBlobLength]); |
| 110 | if (derData.get() == NULL) { |
| 111 | ALOGE("could not allocate memory for key blob"); |
| 112 | return -1; |
| 113 | } |
| 114 | unsigned char* p = derData.get(); |
| 115 | |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 116 | /* Write the magic value for software keys. */ |
| 117 | p = add_softkey_header(p, *keyBlobLength); |
| 118 | |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 119 | /* Write key type to allocated buffer */ |
| 120 | for (int i = sizeof(int) - 1; i >= 0; i--) { |
| 121 | *p++ = (type >> (8*i)) & 0xFF; |
| 122 | } |
| 123 | |
| 124 | /* Write public key to allocated buffer */ |
| 125 | for (int i = sizeof(int) - 1; i >= 0; i--) { |
| 126 | *p++ = (publicLen >> (8*i)) & 0xFF; |
| 127 | } |
| 128 | if (i2d_PublicKey(pkey, &p) != publicLen) { |
| 129 | logOpenSSLError("wrap_key"); |
| 130 | return -1; |
| 131 | } |
| 132 | |
| 133 | /* Write private key to allocated buffer */ |
| 134 | for (int i = sizeof(int) - 1; i >= 0; i--) { |
| 135 | *p++ = (privateLen >> (8*i)) & 0xFF; |
| 136 | } |
| 137 | if (i2d_PrivateKey(pkey, &p) != privateLen) { |
| 138 | logOpenSSLError("wrap_key"); |
| 139 | return -1; |
| 140 | } |
| 141 | |
| 142 | *keyBlob = derData.release(); |
| 143 | |
| 144 | return 0; |
| 145 | } |
| 146 | |
| 147 | static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { |
| 148 | long publicLen = 0; |
| 149 | long privateLen = 0; |
| 150 | const uint8_t* p = keyBlob; |
| 151 | const uint8_t *const end = keyBlob + keyBlobLength; |
| 152 | |
| 153 | if (keyBlob == NULL) { |
| 154 | ALOGE("supplied key blob was NULL"); |
| 155 | return NULL; |
| 156 | } |
| 157 | |
| 158 | // Should be large enough for: |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 159 | // int32 magic, int32 type, int32 pubLen, char* pub, int32 privLen, char* priv |
| 160 | if (keyBlobLength < (get_softkey_header_size() + sizeof(int) + sizeof(int) + 1 |
| 161 | + sizeof(int) + 1)) { |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 162 | ALOGE("key blob appears to be truncated"); |
| 163 | return NULL; |
| 164 | } |
| 165 | |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 166 | if (!is_softkey(p, keyBlobLength)) { |
| 167 | ALOGE("cannot read key; it was not made by this keymaster"); |
| 168 | return NULL; |
| 169 | } |
| 170 | p += get_softkey_header_size(); |
| 171 | |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 172 | int type = 0; |
| 173 | for (size_t i = 0; i < sizeof(int); i++) { |
| 174 | type = (type << 8) | *p++; |
| 175 | } |
| 176 | |
| 177 | Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| 178 | if (pkey.get() == NULL) { |
| 179 | logOpenSSLError("unwrap_key"); |
| 180 | return NULL; |
| 181 | } |
| 182 | |
| 183 | for (size_t i = 0; i < sizeof(int); i++) { |
| 184 | publicLen = (publicLen << 8) | *p++; |
| 185 | } |
| 186 | if (p + publicLen > end) { |
| 187 | ALOGE("public key length encoding error: size=%ld, end=%d", publicLen, end - p); |
| 188 | return NULL; |
| 189 | } |
| 190 | EVP_PKEY* tmp = pkey.get(); |
| 191 | d2i_PublicKey(type, &tmp, &p, publicLen); |
| 192 | |
| 193 | if (end - p < 2) { |
| 194 | ALOGE("private key truncated"); |
| 195 | return NULL; |
| 196 | } |
| 197 | for (size_t i = 0; i < sizeof(int); i++) { |
| 198 | privateLen = (privateLen << 8) | *p++; |
| 199 | } |
| 200 | if (p + privateLen > end) { |
| 201 | ALOGE("private key length encoding error: size=%ld, end=%d", privateLen, end - p); |
| 202 | return NULL; |
| 203 | } |
| 204 | d2i_PrivateKey(type, &tmp, &p, privateLen); |
| 205 | |
| 206 | return pkey.release(); |
| 207 | } |
| 208 | |
| 209 | static int openssl_generate_keypair(const keymaster_device_t* dev, |
| 210 | const keymaster_keypair_t key_type, const void* key_params, |
| 211 | uint8_t** keyBlob, size_t* keyBlobLength) { |
| 212 | ssize_t privateLen, publicLen; |
| 213 | |
| 214 | if (key_type != TYPE_RSA) { |
| 215 | ALOGW("Unsupported key type %d", key_type); |
| 216 | return -1; |
| 217 | } else if (key_params == NULL) { |
| 218 | ALOGW("key_params == null"); |
| 219 | return -1; |
| 220 | } |
| 221 | |
| 222 | keymaster_rsa_keygen_params_t* rsa_params = (keymaster_rsa_keygen_params_t*) key_params; |
| 223 | |
| 224 | Unique_BIGNUM bn(BN_new()); |
| 225 | if (bn.get() == NULL) { |
| 226 | logOpenSSLError("openssl_generate_keypair"); |
| 227 | return -1; |
| 228 | } |
| 229 | |
| 230 | if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { |
| 231 | logOpenSSLError("openssl_generate_keypair"); |
| 232 | return -1; |
| 233 | } |
| 234 | |
| 235 | /* initialize RSA */ |
| 236 | Unique_RSA rsa(RSA_new()); |
| 237 | if (rsa.get() == NULL) { |
| 238 | logOpenSSLError("openssl_generate_keypair"); |
| 239 | return -1; |
| 240 | } |
| 241 | |
| 242 | if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) |
| 243 | || RSA_check_key(rsa.get()) < 0) { |
| 244 | logOpenSSLError("openssl_generate_keypair"); |
| 245 | return -1; |
| 246 | } |
| 247 | |
| 248 | /* assign to EVP */ |
| 249 | Unique_EVP_PKEY pkey(EVP_PKEY_new()); |
| 250 | if (pkey.get() == NULL) { |
| 251 | logOpenSSLError("openssl_generate_keypair"); |
| 252 | return -1; |
| 253 | } |
| 254 | |
| 255 | if (EVP_PKEY_assign_RSA(pkey.get(), rsa.get()) == 0) { |
| 256 | logOpenSSLError("openssl_generate_keypair"); |
| 257 | return -1; |
| 258 | } |
| 259 | OWNERSHIP_TRANSFERRED(rsa); |
| 260 | |
| 261 | if (wrap_key(pkey.get(), EVP_PKEY_RSA, keyBlob, keyBlobLength)) { |
| 262 | return -1; |
| 263 | } |
| 264 | |
| 265 | return 0; |
| 266 | } |
| 267 | |
| 268 | static int openssl_import_keypair(const keymaster_device_t* dev, |
| 269 | const uint8_t* key, const size_t key_length, |
| 270 | uint8_t** key_blob, size_t* key_blob_length) { |
| 271 | int response = -1; |
| 272 | |
| 273 | if (key == NULL) { |
| 274 | ALOGW("input key == NULL"); |
| 275 | return -1; |
| 276 | } else if (key_blob == NULL || key_blob_length == NULL) { |
| 277 | ALOGW("output key blob or length == NULL"); |
| 278 | return -1; |
| 279 | } |
| 280 | |
| 281 | Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); |
| 282 | if (pkcs8.get() == NULL) { |
| 283 | logOpenSSLError("openssl_import_keypair"); |
| 284 | return -1; |
| 285 | } |
| 286 | |
| 287 | /* assign to EVP */ |
| 288 | Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); |
| 289 | if (pkey.get() == NULL) { |
| 290 | logOpenSSLError("openssl_import_keypair"); |
| 291 | return -1; |
| 292 | } |
| 293 | OWNERSHIP_TRANSFERRED(pkcs8); |
| 294 | |
| 295 | if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { |
| 296 | return -1; |
| 297 | } |
| 298 | |
| 299 | return 0; |
| 300 | } |
| 301 | |
| 302 | static int openssl_get_keypair_public(const struct keymaster_device* dev, |
| 303 | const uint8_t* key_blob, const size_t key_blob_length, |
| 304 | uint8_t** x509_data, size_t* x509_data_length) { |
| 305 | |
| 306 | if (x509_data == NULL || x509_data_length == NULL) { |
| 307 | ALOGW("output public key buffer == NULL"); |
| 308 | return -1; |
| 309 | } |
| 310 | |
| 311 | Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); |
| 312 | if (pkey.get() == NULL) { |
| 313 | return -1; |
| 314 | } |
| 315 | |
| 316 | int len = i2d_PUBKEY(pkey.get(), NULL); |
| 317 | if (len <= 0) { |
| 318 | logOpenSSLError("openssl_get_keypair_public"); |
| 319 | return -1; |
| 320 | } |
| 321 | |
| 322 | UniquePtr<uint8_t> key(static_cast<uint8_t*>(malloc(len))); |
| 323 | if (key.get() == NULL) { |
| 324 | ALOGE("Could not allocate memory for public key data"); |
| 325 | return -1; |
| 326 | } |
| 327 | |
| 328 | unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); |
| 329 | if (i2d_PUBKEY(pkey.get(), &tmp) != len) { |
| 330 | logOpenSSLError("openssl_get_keypair_public"); |
| 331 | return -1; |
| 332 | } |
| 333 | |
| 334 | ALOGV("Length of x509 data is %d", len); |
| 335 | *x509_data_length = len; |
| 336 | *x509_data = key.release(); |
| 337 | |
| 338 | return 0; |
| 339 | } |
| 340 | |
| 341 | static int openssl_sign_data(const keymaster_device_t* dev, |
| 342 | const void* params, |
| 343 | const uint8_t* keyBlob, const size_t keyBlobLength, |
| 344 | const uint8_t* data, const size_t dataLength, |
| 345 | uint8_t** signedData, size_t* signedDataLength) { |
| 346 | |
| 347 | int result = -1; |
| 348 | EVP_MD_CTX ctx; |
| 349 | size_t maxSize; |
| 350 | |
| 351 | if (data == NULL) { |
| 352 | ALOGW("input data to sign == NULL"); |
| 353 | return -1; |
| 354 | } else if (signedData == NULL || signedDataLength == NULL) { |
| 355 | ALOGW("output signature buffer == NULL"); |
| 356 | return -1; |
| 357 | } |
| 358 | |
| 359 | Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| 360 | if (pkey.get() == NULL) { |
| 361 | return -1; |
| 362 | } |
| 363 | |
| 364 | if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { |
| 365 | ALOGW("Cannot handle non-RSA keys yet"); |
| 366 | return -1; |
| 367 | } |
| 368 | |
| 369 | keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; |
| 370 | if (sign_params->digest_type != DIGEST_NONE) { |
| 371 | ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| 372 | return -1; |
| 373 | } else if (sign_params->padding_type != PADDING_NONE) { |
| 374 | ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| 375 | return -1; |
| 376 | } |
| 377 | |
| 378 | Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| 379 | if (rsa.get() == NULL) { |
| 380 | logOpenSSLError("openssl_sign_data"); |
| 381 | return -1; |
| 382 | } |
| 383 | |
| 384 | UniquePtr<uint8_t> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); |
| 385 | if (signedDataPtr.get() == NULL) { |
| 386 | logOpenSSLError("openssl_sign_data"); |
| 387 | return -1; |
| 388 | } |
| 389 | |
| 390 | unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); |
| 391 | if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { |
| 392 | logOpenSSLError("openssl_sign_data"); |
| 393 | return -1; |
| 394 | } |
| 395 | |
| 396 | *signedDataLength = dataLength; |
| 397 | *signedData = signedDataPtr.release(); |
| 398 | return 0; |
| 399 | } |
| 400 | |
| 401 | static int openssl_verify_data(const keymaster_device_t* dev, |
| 402 | const void* params, |
| 403 | const uint8_t* keyBlob, const size_t keyBlobLength, |
| 404 | const uint8_t* signedData, const size_t signedDataLength, |
| 405 | const uint8_t* signature, const size_t signatureLength) { |
| 406 | |
| 407 | if (signedData == NULL || signature == NULL) { |
| 408 | ALOGW("data or signature buffers == NULL"); |
| 409 | return -1; |
| 410 | } |
| 411 | |
| 412 | Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); |
| 413 | if (pkey.get() == NULL) { |
| 414 | return -1; |
| 415 | } |
| 416 | |
| 417 | if (EVP_PKEY_type(pkey->type) != EVP_PKEY_RSA) { |
| 418 | ALOGW("Cannot handle non-RSA keys yet"); |
| 419 | return -1; |
| 420 | } |
| 421 | |
| 422 | keymaster_rsa_sign_params_t* sign_params = (keymaster_rsa_sign_params_t*) params; |
| 423 | if (sign_params->digest_type != DIGEST_NONE) { |
| 424 | ALOGW("Cannot handle digest type %d", sign_params->digest_type); |
| 425 | return -1; |
| 426 | } else if (sign_params->padding_type != PADDING_NONE) { |
| 427 | ALOGW("Cannot handle padding type %d", sign_params->padding_type); |
| 428 | return -1; |
| 429 | } else if (signatureLength != signedDataLength) { |
| 430 | ALOGW("signed data length must be signature length"); |
| 431 | return -1; |
| 432 | } |
| 433 | |
| 434 | Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| 435 | if (rsa.get() == NULL) { |
| 436 | logOpenSSLError("openssl_verify_data"); |
| 437 | return -1; |
| 438 | } |
| 439 | |
| 440 | UniquePtr<uint8_t> dataPtr(reinterpret_cast<uint8_t*>(malloc(signedDataLength))); |
| 441 | if (dataPtr.get() == NULL) { |
| 442 | logOpenSSLError("openssl_verify_data"); |
| 443 | return -1; |
| 444 | } |
| 445 | |
| 446 | unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); |
| 447 | if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { |
| 448 | logOpenSSLError("openssl_verify_data"); |
| 449 | return -1; |
| 450 | } |
| 451 | |
| 452 | int result = 0; |
| 453 | for (size_t i = 0; i < signedDataLength; i++) { |
| 454 | result |= tmp[i] ^ signedData[i]; |
| 455 | } |
| 456 | |
| 457 | return result == 0 ? 0 : -1; |
| 458 | } |
| 459 | |
| 460 | /* Close an opened OpenSSL instance */ |
| 461 | static int openssl_close(hw_device_t *dev) { |
| 462 | free(dev); |
| 463 | return 0; |
| 464 | } |
| 465 | |
| 466 | /* |
| 467 | * Generic device handling |
| 468 | */ |
| 469 | static int openssl_open(const hw_module_t* module, const char* name, |
| 470 | hw_device_t** device) { |
| 471 | if (strcmp(name, KEYSTORE_KEYMASTER) != 0) |
| 472 | return -EINVAL; |
| 473 | |
| 474 | Unique_keymaster_device_t dev(new keymaster_device_t); |
| 475 | if (dev.get() == NULL) |
| 476 | return -ENOMEM; |
| 477 | |
| 478 | dev->common.tag = HARDWARE_DEVICE_TAG; |
| 479 | dev->common.version = 1; |
| 480 | dev->common.module = (struct hw_module_t*) module; |
| 481 | dev->common.close = openssl_close; |
| 482 | |
Kenny Root | 822c3a9 | 2012-03-23 16:34:39 -0700 | [diff] [blame] | 483 | dev->flags = KEYMASTER_SOFTWARE_ONLY; |
| 484 | |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 485 | dev->generate_keypair = openssl_generate_keypair; |
| 486 | dev->import_keypair = openssl_import_keypair; |
| 487 | dev->get_keypair_public = openssl_get_keypair_public; |
| 488 | dev->delete_keypair = NULL; |
Kenny Root | c0ff10d | 2012-05-17 12:42:15 -0700 | [diff] [blame] | 489 | dev->delete_all = NULL; |
Kenny Root | 70e3a86 | 2012-02-15 17:20:23 -0800 | [diff] [blame] | 490 | dev->sign_data = openssl_sign_data; |
| 491 | dev->verify_data = openssl_verify_data; |
| 492 | |
| 493 | ERR_load_crypto_strings(); |
| 494 | ERR_load_BIO_strings(); |
| 495 | |
| 496 | *device = reinterpret_cast<hw_device_t*>(dev.release()); |
| 497 | |
| 498 | return 0; |
| 499 | } |
| 500 | |
| 501 | static struct hw_module_methods_t keystore_module_methods = { |
| 502 | open: openssl_open, |
| 503 | }; |
| 504 | |
| 505 | struct keystore_module HAL_MODULE_INFO_SYM |
| 506 | __attribute__ ((visibility ("default"))) = { |
| 507 | common: { |
| 508 | tag: HARDWARE_MODULE_TAG, |
| 509 | version_major: 1, |
| 510 | version_minor: 0, |
| 511 | id: KEYSTORE_HARDWARE_MODULE_ID, |
| 512 | name: "Keymaster OpenSSL HAL", |
| 513 | author: "The Android Open Source Project", |
| 514 | methods: &keystore_module_methods, |
| 515 | dso: 0, |
| 516 | reserved: {}, |
| 517 | }, |
| 518 | }; |