| David Drysdale | 2566fb3 | 2024-07-09 14:46:37 +0100 | [diff] [blame] | 1 | // Copyright 2020, The Android Open Source Project |
| 2 | // |
| 3 | // Licensed under the Apache License, Version 2.0 (the "License"); |
| 4 | // you may not use this file except in compliance with the License. |
| 5 | // You may obtain a copy of the License at |
| 6 | // |
| 7 | // http://www.apache.org/licenses/LICENSE-2.0 |
| 8 | // |
| 9 | // Unless required by applicable law or agreed to in writing, software |
| 10 | // distributed under the License is distributed on an "AS IS" BASIS, |
| 11 | // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| 12 | // See the License for the specific language governing permissions and |
| 13 | // limitations under the License. |
| 14 | |
| 15 | //! Async task tests. |
| 16 | use super::{AsyncTask, Shelf}; |
| 17 | use std::sync::{ |
| 18 | mpsc::{channel, sync_channel, RecvTimeoutError}, |
| 19 | Arc, |
| 20 | }; |
| 21 | use std::time::Duration; |
| 22 | |
| 23 | #[test] |
| 24 | fn test_shelf() { |
| 25 | let mut shelf = Shelf::default(); |
| 26 | |
| 27 | let s = "A string".to_string(); |
| 28 | assert_eq!(shelf.put(s), None); |
| 29 | |
| 30 | let s2 = "Another string".to_string(); |
| 31 | assert_eq!(shelf.put(s2), Some("A string".to_string())); |
| 32 | |
| 33 | // Put something of a different type on the shelf. |
| 34 | #[derive(Debug, PartialEq, Eq)] |
| 35 | struct Elf { |
| 36 | pub name: String, |
| 37 | } |
| 38 | let e1 = Elf { name: "Glorfindel".to_string() }; |
| 39 | assert_eq!(shelf.put(e1), None); |
| 40 | |
| 41 | // The String value is still on the shelf. |
| 42 | let s3 = shelf.get_downcast_ref::<String>().unwrap(); |
| 43 | assert_eq!(s3, "Another string"); |
| 44 | |
| 45 | // As is the Elf. |
| 46 | { |
| 47 | let e2 = shelf.get_downcast_mut::<Elf>().unwrap(); |
| 48 | assert_eq!(e2.name, "Glorfindel"); |
| 49 | e2.name = "Celeborn".to_string(); |
| 50 | } |
| 51 | |
| 52 | // Take the Elf off the shelf. |
| 53 | let e3 = shelf.remove_downcast_ref::<Elf>().unwrap(); |
| 54 | assert_eq!(e3.name, "Celeborn"); |
| 55 | |
| 56 | assert_eq!(shelf.remove_downcast_ref::<Elf>(), None); |
| 57 | |
| 58 | // No u64 value has been put on the shelf, so getting one gives the default value. |
| 59 | { |
| 60 | let i = shelf.get_mut::<u64>(); |
| 61 | assert_eq!(*i, 0); |
| 62 | *i = 42; |
| 63 | } |
| 64 | let i2 = shelf.get_downcast_ref::<u64>().unwrap(); |
| 65 | assert_eq!(*i2, 42); |
| 66 | |
| 67 | // No i32 value has ever been seen near the shelf. |
| 68 | assert_eq!(shelf.get_downcast_ref::<i32>(), None); |
| 69 | assert_eq!(shelf.get_downcast_mut::<i32>(), None); |
| 70 | assert_eq!(shelf.remove_downcast_ref::<i32>(), None); |
| 71 | } |
| 72 | |
| 73 | #[test] |
| 74 | fn test_async_task() { |
| 75 | let at = AsyncTask::default(); |
| 76 | |
| 77 | // First queue up a job that blocks until we release it, to avoid |
| 78 | // unpredictable synchronization. |
| 79 | let (start_sender, start_receiver) = channel(); |
| 80 | at.queue_hi(move |shelf| { |
| 81 | start_receiver.recv().unwrap(); |
| 82 | // Put a trace vector on the shelf |
| 83 | shelf.put(Vec::<String>::new()); |
| 84 | }); |
| 85 | |
| 86 | // Queue up some high-priority and low-priority jobs. |
| 87 | for i in 0..3 { |
| 88 | let j = i; |
| 89 | at.queue_lo(move |shelf| { |
| 90 | let trace = shelf.get_mut::<Vec<String>>(); |
| 91 | trace.push(format!("L{}", j)); |
| 92 | }); |
| 93 | let j = i; |
| 94 | at.queue_hi(move |shelf| { |
| 95 | let trace = shelf.get_mut::<Vec<String>>(); |
| 96 | trace.push(format!("H{}", j)); |
| 97 | }); |
| 98 | } |
| 99 | |
| 100 | // Finally queue up a low priority job that emits the trace. |
| 101 | let (trace_sender, trace_receiver) = channel(); |
| 102 | at.queue_lo(move |shelf| { |
| 103 | let trace = shelf.get_downcast_ref::<Vec<String>>().unwrap(); |
| 104 | trace_sender.send(trace.clone()).unwrap(); |
| 105 | }); |
| 106 | |
| 107 | // Ready, set, go. |
| 108 | start_sender.send(()).unwrap(); |
| 109 | let trace = trace_receiver.recv().unwrap(); |
| 110 | |
| 111 | assert_eq!(trace, vec!["H0", "H1", "H2", "L0", "L1", "L2"]); |
| 112 | } |
| 113 | |
| 114 | #[test] |
| 115 | fn test_async_task_chain() { |
| 116 | let at = Arc::new(AsyncTask::default()); |
| 117 | let (sender, receiver) = channel(); |
| 118 | // Queue up a job that will queue up another job. This confirms |
| 119 | // that the job is not invoked with any internal AsyncTask locks held. |
| 120 | let at_clone = at.clone(); |
| 121 | at.queue_hi(move |_shelf| { |
| 122 | at_clone.queue_lo(move |_shelf| { |
| 123 | sender.send(()).unwrap(); |
| 124 | }); |
| 125 | }); |
| 126 | receiver.recv().unwrap(); |
| 127 | } |
| 128 | |
| 129 | #[test] |
| 130 | #[should_panic] |
| 131 | fn test_async_task_panic() { |
| 132 | let at = AsyncTask::default(); |
| 133 | at.queue_hi(|_shelf| { |
| 134 | panic!("Panic from queued job"); |
| 135 | }); |
| 136 | // Queue another job afterwards to ensure that the async thread gets joined. |
| 137 | let (done_sender, done_receiver) = channel(); |
| 138 | at.queue_hi(move |_shelf| { |
| 139 | done_sender.send(()).unwrap(); |
| 140 | }); |
| 141 | done_receiver.recv().unwrap(); |
| 142 | } |
| 143 | |
| 144 | #[test] |
| 145 | fn test_async_task_idle() { |
| 146 | let at = AsyncTask::new(Duration::from_secs(3)); |
| 147 | // Need a SyncSender as it is Send+Sync. |
| 148 | let (idle_done_sender, idle_done_receiver) = sync_channel::<()>(3); |
| 149 | at.add_idle(move |_shelf| { |
| 150 | idle_done_sender.send(()).unwrap(); |
| 151 | }); |
| 152 | |
| 153 | // Queue up some high-priority and low-priority jobs that take time. |
| 154 | for _i in 0..3 { |
| 155 | at.queue_lo(|_shelf| { |
| 156 | std::thread::sleep(Duration::from_millis(500)); |
| 157 | }); |
| 158 | at.queue_hi(|_shelf| { |
| 159 | std::thread::sleep(Duration::from_millis(500)); |
| 160 | }); |
| 161 | } |
| 162 | // Final low-priority job. |
| 163 | let (done_sender, done_receiver) = channel(); |
| 164 | at.queue_lo(move |_shelf| { |
| 165 | done_sender.send(()).unwrap(); |
| 166 | }); |
| 167 | |
| 168 | // Nothing happens until the last job completes. |
| 169 | assert_eq!( |
| 170 | idle_done_receiver.recv_timeout(Duration::from_secs(1)), |
| 171 | Err(RecvTimeoutError::Timeout) |
| 172 | ); |
| 173 | done_receiver.recv().unwrap(); |
| 174 | // Now that the last low-priority job has completed, the idle task should |
| 175 | // fire pretty much immediately. |
| 176 | idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap(); |
| 177 | |
| 178 | // Idle callback not executed again even if we wait for a while. |
| 179 | assert_eq!( |
| 180 | idle_done_receiver.recv_timeout(Duration::from_secs(3)), |
| 181 | Err(RecvTimeoutError::Timeout) |
| 182 | ); |
| 183 | |
| 184 | // However, if more work is done then there's another chance to go idle. |
| 185 | let (done_sender, done_receiver) = channel(); |
| 186 | at.queue_hi(move |_shelf| { |
| 187 | std::thread::sleep(Duration::from_millis(500)); |
| 188 | done_sender.send(()).unwrap(); |
| 189 | }); |
| 190 | // Idle callback not immediately executed, because the high priority |
| 191 | // job is taking a while. |
| 192 | assert_eq!( |
| 193 | idle_done_receiver.recv_timeout(Duration::from_millis(1)), |
| 194 | Err(RecvTimeoutError::Timeout) |
| 195 | ); |
| 196 | done_receiver.recv().unwrap(); |
| 197 | idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap(); |
| 198 | } |
| 199 | |
| 200 | #[test] |
| 201 | fn test_async_task_multiple_idle() { |
| 202 | let at = AsyncTask::new(Duration::from_secs(3)); |
| 203 | let (idle_sender, idle_receiver) = sync_channel::<i32>(5); |
| 204 | // Queue a high priority job to start things off |
| 205 | at.queue_hi(|_shelf| { |
| 206 | std::thread::sleep(Duration::from_millis(500)); |
| 207 | }); |
| 208 | |
| 209 | // Multiple idle callbacks. |
| 210 | for i in 0..3 { |
| 211 | let idle_sender = idle_sender.clone(); |
| 212 | at.add_idle(move |_shelf| { |
| 213 | idle_sender.send(i).unwrap(); |
| 214 | }); |
| 215 | } |
| 216 | |
| 217 | // Nothing happens immediately. |
| 218 | assert_eq!( |
| 219 | idle_receiver.recv_timeout(Duration::from_millis(1)), |
| 220 | Err(RecvTimeoutError::Timeout) |
| 221 | ); |
| 222 | // Wait for a moment and the idle jobs should have run. |
| 223 | std::thread::sleep(Duration::from_secs(1)); |
| 224 | |
| 225 | let mut results = Vec::new(); |
| 226 | while let Ok(i) = idle_receiver.recv_timeout(Duration::from_millis(1)) { |
| 227 | results.push(i); |
| 228 | } |
| 229 | assert_eq!(results, [0, 1, 2]); |
| 230 | } |
| 231 | |
| 232 | #[test] |
| 233 | fn test_async_task_idle_queues_job() { |
| 234 | let at = Arc::new(AsyncTask::new(Duration::from_secs(1))); |
| 235 | let at_clone = at.clone(); |
| 236 | let (idle_sender, idle_receiver) = sync_channel::<i32>(100); |
| 237 | // Add an idle callback that queues a low-priority job. |
| 238 | at.add_idle(move |shelf| { |
| 239 | at_clone.queue_lo(|_shelf| { |
| 240 | // Slow things down so the channel doesn't fill up. |
| 241 | std::thread::sleep(Duration::from_millis(50)); |
| 242 | }); |
| 243 | let i = shelf.get_mut::<i32>(); |
| 244 | idle_sender.send(*i).unwrap(); |
| 245 | *i += 1; |
| 246 | }); |
| 247 | |
| 248 | // Nothing happens immediately. |
| 249 | assert_eq!( |
| 250 | idle_receiver.recv_timeout(Duration::from_millis(1500)), |
| 251 | Err(RecvTimeoutError::Timeout) |
| 252 | ); |
| 253 | |
| 254 | // Once we queue a normal job, things start. |
| 255 | at.queue_hi(|_shelf| {}); |
| 256 | assert_eq!(0, idle_receiver.recv_timeout(Duration::from_millis(200)).unwrap()); |
| 257 | |
| 258 | // The idle callback queues a job, and completion of that job |
| 259 | // means the task is going idle again...so the idle callback will |
| 260 | // be called repeatedly. |
| 261 | assert_eq!(1, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| 262 | assert_eq!(2, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| 263 | assert_eq!(3, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| 264 | } |
| 265 | |
| 266 | #[test] |
| 267 | #[should_panic] |
| 268 | fn test_async_task_idle_panic() { |
| 269 | let at = AsyncTask::new(Duration::from_secs(1)); |
| 270 | let (idle_sender, idle_receiver) = sync_channel::<()>(3); |
| 271 | // Add an idle callback that panics. |
| 272 | at.add_idle(move |_shelf| { |
| 273 | idle_sender.send(()).unwrap(); |
| 274 | panic!("Panic from idle callback"); |
| 275 | }); |
| 276 | // Queue a job to trigger idleness and ensuing panic. |
| 277 | at.queue_hi(|_shelf| {}); |
| 278 | idle_receiver.recv().unwrap(); |
| 279 | |
| 280 | // Queue another job afterwards to ensure that the async thread gets joined |
| 281 | // and the panic detected. |
| 282 | let (done_sender, done_receiver) = channel(); |
| 283 | at.queue_hi(move |_shelf| { |
| 284 | done_sender.send(()).unwrap(); |
| 285 | }); |
| 286 | done_receiver.recv().unwrap(); |
| 287 | } |