blob: 2beb7ebb060c0abb2f32e9a3577a7ed4d6dbcd07 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <filesystem>
#include <map>
#include <span>
#include <string>
#include <fcntl.h>
#include <linux/fs.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <sys/wait.h>
#include <android-base/logging.h>
#include <android-base/unique_fd.h>
#include <asm/byteorder.h>
#include <libfsverity.h>
#include <linux/fsverity.h>
#include "CertUtils.h"
#include "SigningKey.h"
#include "compos_signature.pb.h"
#define FS_VERITY_MAX_DIGEST_SIZE 64
using android::base::ErrnoError;
using android::base::Error;
using android::base::Result;
using android::base::unique_fd;
using compos::proto::Signature;
static const char* kFsVerityInitPath = "/system/bin/fsverity_init";
static const char* kSignatureExtension = ".signature";
static bool isSignatureFile(const std::filesystem::path& path) {
return path.extension().native() == kSignatureExtension;
}
static std::string toHex(std::span<const uint8_t> data) {
std::stringstream ss;
for (auto it = data.begin(); it != data.end(); ++it) {
ss << std::setfill('0') << std::setw(2) << std::hex << static_cast<unsigned>(*it);
}
return ss.str();
}
static int read_callback(void* file, void* buf, size_t count) {
int* fd = (int*)file;
if (TEMP_FAILURE_RETRY(read(*fd, buf, count)) < 0) return errno ? -errno : -EIO;
return 0;
}
Result<std::vector<uint8_t>> createDigest(int fd) {
struct stat filestat;
int ret = fstat(fd, &filestat);
if (ret < 0) {
return ErrnoError() << "Failed to fstat";
}
struct libfsverity_merkle_tree_params params = {
.version = 1,
.hash_algorithm = FS_VERITY_HASH_ALG_SHA256,
.file_size = static_cast<uint64_t>(filestat.st_size),
.block_size = 4096,
};
struct libfsverity_digest* digest;
ret = libfsverity_compute_digest(&fd, &read_callback, &params, &digest);
if (ret < 0) {
return ErrnoError() << "Failed to compute fs-verity digest";
}
int expected_digest_size = libfsverity_get_digest_size(FS_VERITY_HASH_ALG_SHA256);
if (digest->digest_size != expected_digest_size) {
return Error() << "Digest does not have expected size: " << expected_digest_size
<< " actual: " << digest->digest_size;
}
std::vector<uint8_t> digestVector(&digest->digest[0], &digest->digest[expected_digest_size]);
free(digest);
return digestVector;
}
Result<std::vector<uint8_t>> createDigest(const std::string& path) {
unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (!fd.ok()) {
return ErrnoError() << "Unable to open";
}
return createDigest(fd.get());
}
namespace {
template <typename T> struct DeleteAsPODArray {
void operator()(T* x) {
if (x) {
x->~T();
delete[](uint8_t*) x;
}
}
};
} // namespace
template <typename T> using trailing_unique_ptr = std::unique_ptr<T, DeleteAsPODArray<T>>;
template <typename T>
static trailing_unique_ptr<T> makeUniqueWithTrailingData(size_t trailing_data_size) {
uint8_t* memory = new uint8_t[sizeof(T) + trailing_data_size];
T* ptr = new (memory) T;
return trailing_unique_ptr<T>{ptr};
}
static Result<std::vector<uint8_t>> signDigest(const SigningKey& key,
const std::vector<uint8_t>& digest) {
auto d = makeUniqueWithTrailingData<fsverity_formatted_digest>(digest.size());
memcpy(d->magic, "FSVerity", 8);
d->digest_algorithm = __cpu_to_le16(FS_VERITY_HASH_ALG_SHA256);
d->digest_size = __cpu_to_le16(digest.size());
memcpy(d->digest, digest.data(), digest.size());
auto signed_digest = key.sign(std::string((char*)d.get(), sizeof(*d) + digest.size()));
if (!signed_digest.ok()) {
return signed_digest.error();
}
return std::vector<uint8_t>(signed_digest->begin(), signed_digest->end());
}
Result<void> enableFsVerity(int fd, std::span<uint8_t> pkcs7) {
struct fsverity_enable_arg arg = {.version = 1};
arg.sig_ptr = reinterpret_cast<uint64_t>(pkcs7.data());
arg.sig_size = pkcs7.size();
arg.hash_algorithm = FS_VERITY_HASH_ALG_SHA256;
arg.block_size = 4096;
int ret = ioctl(fd, FS_IOC_ENABLE_VERITY, &arg);
if (ret != 0) {
return ErrnoError() << "Failed to call FS_IOC_ENABLE_VERITY";
}
return {};
}
Result<std::string> enableFsVerity(const std::string& path, const SigningKey& key) {
unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (!fd.ok()) {
return ErrnoError() << "Failed to open " << path;
}
auto digest = createDigest(fd.get());
if (!digest.ok()) {
return Error() << digest.error() << ": " << path;
}
auto signed_digest = signDigest(key, digest.value());
if (!signed_digest.ok()) {
return signed_digest.error();
}
auto pkcs7_data = createPkcs7(signed_digest.value(), kRootSubject);
if (!pkcs7_data.ok()) {
return pkcs7_data.error();
}
auto enabled = enableFsVerity(fd.get(), pkcs7_data.value());
if (!enabled.ok()) {
return Error() << enabled.error() << ": " << path;
}
// Return the root hash as a hex string
return toHex(digest.value());
}
Result<std::map<std::string, std::string>> addFilesToVerityRecursive(const std::string& path,
const SigningKey& key) {
std::map<std::string, std::string> digests;
std::error_code ec;
auto it = std::filesystem::recursive_directory_iterator(path, ec);
for (auto end = std::filesystem::recursive_directory_iterator(); it != end; it.increment(ec)) {
if (it->is_regular_file()) {
LOG(INFO) << "Adding " << it->path() << " to fs-verity...";
auto result = enableFsVerity(it->path(), key);
if (!result.ok()) {
return result.error();
}
digests[it->path()] = *result;
}
}
if (ec) {
return Error() << "Failed to iterate " << path << ": " << ec.message();
}
return digests;
}
Result<std::string> isFileInVerity(int fd) {
auto d = makeUniqueWithTrailingData<fsverity_digest>(FS_VERITY_MAX_DIGEST_SIZE);
d->digest_size = FS_VERITY_MAX_DIGEST_SIZE;
auto ret = ioctl(fd, FS_IOC_MEASURE_VERITY, d.get());
if (ret < 0) {
if (errno == ENODATA) {
return Error() << "File is not in fs-verity";
} else {
return ErrnoError() << "Failed to FS_IOC_MEASURE_VERITY";
}
}
return toHex({&d->digest[0], &d->digest[d->digest_size]});
}
Result<std::string> isFileInVerity(const std::string& path) {
unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (!fd.ok()) {
return ErrnoError() << "Failed to open " << path;
}
auto digest = isFileInVerity(fd);
if (!digest.ok()) {
return Error() << digest.error() << ": " << path;
}
return digest;
}
Result<std::map<std::string, std::string>> verifyAllFilesInVerity(const std::string& path) {
std::map<std::string, std::string> digests;
std::error_code ec;
auto it = std::filesystem::recursive_directory_iterator(path, ec);
auto end = std::filesystem::recursive_directory_iterator();
while (!ec && it != end) {
if (it->is_regular_file()) {
// Verify the file is in fs-verity
auto result = isFileInVerity(it->path());
if (!result.ok()) {
return result.error();
}
digests[it->path()] = *result;
} else if (it->is_directory()) {
// These are fine to ignore
} else if (it->is_symlink()) {
return Error() << "Rejecting artifacts, symlink at " << it->path();
} else {
return Error() << "Rejecting artifacts, unexpected file type for " << it->path();
}
++it;
}
if (ec) {
return Error() << "Failed to iterate " << path << ": " << ec;
}
return digests;
}
Result<Signature> readSignature(const std::filesystem::path& signature_path) {
unique_fd fd(TEMP_FAILURE_RETRY(open(signature_path.c_str(), O_RDONLY | O_CLOEXEC)));
if (fd == -1) {
return ErrnoError();
}
Signature signature;
if (!signature.ParseFromFileDescriptor(fd.get())) {
return Error() << "Failed to parse";
}
return signature;
}
Result<std::map<std::string, std::string>>
verifyAllFilesUsingCompOs(const std::string& directory_path,
const std::vector<uint8_t>& compos_key) {
std::map<std::string, std::string> new_digests;
std::vector<std::filesystem::path> signature_files;
std::error_code ec;
auto it = std::filesystem::recursive_directory_iterator(directory_path, ec);
for (auto end = std::filesystem::recursive_directory_iterator(); it != end; it.increment(ec)) {
auto& path = it->path();
if (it->is_regular_file()) {
if (isSignatureFile(path)) {
continue;
}
unique_fd fd(TEMP_FAILURE_RETRY(open(path.c_str(), O_RDONLY | O_CLOEXEC)));
if (!fd.ok()) {
return ErrnoError() << "Can't open " << path;
}
auto signature_path = path;
signature_path += kSignatureExtension;
auto signature = readSignature(signature_path);
if (!signature.ok()) {
return Error() << "Invalid signature " << signature_path << ": "
<< signature.error();
}
signature_files.push_back(signature_path);
// Note that these values are not yet trusted.
auto& raw_digest = signature->digest();
auto& raw_signature = signature->signature();
// Re-construct the fsverity_formatted_digest that was signed, so we
// can verify the signature.
std::vector<uint8_t> buffer(sizeof(fsverity_formatted_digest) + raw_digest.size());
auto signed_data = new (buffer.data()) fsverity_formatted_digest;
memcpy(signed_data->magic, "FSVerity", sizeof signed_data->magic);
signed_data->digest_algorithm = __cpu_to_le16(FS_VERITY_HASH_ALG_SHA256);
signed_data->digest_size = __cpu_to_le16(raw_digest.size());
memcpy(signed_data->digest, raw_digest.data(), raw_digest.size());
// Make sure the signature matches the CompOs public key, and not some other
// fs-verity trusted key.
std::string to_verify(reinterpret_cast<char*>(buffer.data()), buffer.size());
auto verified = verifyRsaPublicKeySignature(to_verify, raw_signature, compos_key);
if (!verified.ok()) {
return Error() << verified.error() << ": " << path;
}
std::span<const uint8_t> digest_bytes(
reinterpret_cast<const uint8_t*>(raw_digest.data()), raw_digest.size());
std::string compos_digest = toHex(digest_bytes);
auto verity_digest = isFileInVerity(fd);
if (verity_digest.ok()) {
// The file is already in fs-verity. We need to make sure it was signed
// by CompOs, so we just check that it has the digest we expect.
if (verity_digest.value() != compos_digest) {
return Error() << "fs-verity digest does not match signature file: " << path;
}
} else {
// Not in fs-verity yet. But we have a valid signature of some
// digest. If it's not the correct digest for the file then
// enabling fs-verity will fail, so we don't need to check it
// explicitly ourselves. Otherwise we should be good.
std::vector<uint8_t> signature_bytes(raw_signature.begin(), raw_signature.end());
auto pkcs7 = createPkcs7(signature_bytes, kCompOsSubject);
if (!pkcs7.ok()) {
return Error() << pkcs7.error() << ": " << path;
}
LOG(INFO) << "Adding " << path << " to fs-verity...";
auto enabled = enableFsVerity(fd, pkcs7.value());
if (!enabled.ok()) {
return Error() << enabled.error() << ": " << path;
}
}
new_digests[path] = compos_digest;
} else if (it->is_directory()) {
// These are fine to ignore
} else if (it->is_symlink()) {
return Error() << "Rejecting artifacts, symlink at " << path;
} else {
return Error() << "Rejecting artifacts, unexpected file type for " << path;
}
}
if (ec) {
return Error() << "Failed to iterate " << directory_path << ": " << ec.message();
}
// Delete the signature files now that they have served their purpose. (ART
// has no use for them, and their presence could cause verification to fail
// on subsequent boots.)
for (auto& signature_path : signature_files) {
std::filesystem::remove(signature_path, ec);
if (ec) {
return Error() << "Failed to delete " << signature_path << ": " << ec.message();
}
}
return new_digests;
}
Result<void> addCertToFsVerityKeyring(const std::string& path, const char* keyName) {
const char* const argv[] = {kFsVerityInitPath, "--load-extra-key", keyName};
int fd = open(path.c_str(), O_RDONLY | O_CLOEXEC);
if (fd == -1) {
return ErrnoError() << "Failed to open " << path;
}
pid_t pid = fork();
if (pid == 0) {
dup2(fd, STDIN_FILENO);
close(fd);
int argc = arraysize(argv);
char* argv_child[argc + 1];
memcpy(argv_child, argv, argc * sizeof(char*));
argv_child[argc] = nullptr;
execvp(argv_child[0], argv_child);
PLOG(ERROR) << "exec in ForkExecvp";
_exit(EXIT_FAILURE);
} else {
close(fd);
}
if (pid == -1) {
return ErrnoError() << "Failed to fork.";
}
int status;
if (waitpid(pid, &status, 0) == -1) {
return ErrnoError() << "waitpid() failed.";
}
if (!WIFEXITED(status)) {
return Error() << kFsVerityInitPath << ": abnormal process exit";
}
if (WEXITSTATUS(status) != 0) {
return Error() << kFsVerityInitPath << " exited with " << WEXITSTATUS(status);
}
return {};
}