blob: 9867f623c7fe60dc5e2e8ae9a172a6a986891f70 [file] [log] [blame]
/*
* Copyright (C) 2020 The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include "CertUtils.h"
#include <android-base/logging.h>
#include <android-base/result.h>
#include <openssl/bn.h>
#include <openssl/crypto.h>
#include <openssl/pkcs7.h>
#include <openssl/rsa.h>
#include <openssl/x509.h>
#include <openssl/x509v3.h>
#include <fcntl.h>
#include <vector>
#include "KeyConstants.h"
const char kBasicConstraints[] = "CA:TRUE";
const char kKeyUsage[] = "critical,keyCertSign,cRLSign,digitalSignature";
const char kSubjectKeyIdentifier[] = "hash";
const char kAuthorityKeyIdentifier[] = "keyid:always";
constexpr int kCertLifetimeSeconds = 10 * 365 * 24 * 60 * 60;
using android::base::Result;
// using android::base::ErrnoError;
using android::base::Error;
static bool add_ext(X509* cert, int nid, const char* value) {
size_t len = strlen(value) + 1;
std::vector<char> mutableValue(value, value + len);
X509V3_CTX context;
X509V3_set_ctx_nodb(&context);
X509V3_set_ctx(&context, cert, cert, nullptr, nullptr, 0);
X509_EXTENSION* ex = X509V3_EXT_nconf_nid(nullptr, &context, nid, mutableValue.data());
if (!ex) {
return false;
}
X509_add_ext(cert, ex, -1);
X509_EXTENSION_free(ex);
return true;
}
Result<bssl::UniquePtr<RSA>> getRsa(const std::vector<uint8_t>& publicKey) {
bssl::UniquePtr<BIGNUM> n(BN_new());
bssl::UniquePtr<BIGNUM> e(BN_new());
bssl::UniquePtr<RSA> rsaPubkey(RSA_new());
if (!n || !e || !rsaPubkey || !BN_bin2bn(publicKey.data(), publicKey.size(), n.get()) ||
!BN_set_word(e.get(), kRsaKeyExponent) ||
!RSA_set0_key(rsaPubkey.get(), n.get(), e.get(), /*d=*/nullptr)) {
return Error() << "Failed to create RSA key";
}
// RSA_set0_key takes ownership of |n| and |e| on success.
(void)n.release();
(void)e.release();
return rsaPubkey;
}
Result<void> verifySignature(const std::string& message, const std::string& signature,
const std::vector<uint8_t>& publicKey) {
auto rsaKey = getRsa(publicKey);
if (!rsaKey.ok()) {
return rsaKey.error();
}
uint8_t hashBuf[SHA256_DIGEST_LENGTH];
SHA256(const_cast<uint8_t*>(reinterpret_cast<const uint8_t*>(message.c_str())),
message.length(), hashBuf);
bool success = RSA_verify(NID_sha256, hashBuf, sizeof(hashBuf),
(const uint8_t*)signature.c_str(), signature.length(), rsaKey->get());
if (!success) {
return Error() << "Failed to verify signature.";
}
return {};
}
static Result<bssl::UniquePtr<EVP_PKEY>> toRsaPkey(const std::vector<uint8_t>& publicKey) {
// "publicKey" corresponds to the raw public key bytes - need to create
// a new RSA key with the correct exponent.
auto rsaPubkey = getRsa(publicKey);
if (!rsaPubkey.ok()) {
return rsaPubkey.error();
}
bssl::UniquePtr<EVP_PKEY> public_key(EVP_PKEY_new());
if (!EVP_PKEY_assign_RSA(public_key.get(), rsaPubkey->release())) {
return Error() << "Failed to assign key";
}
return public_key;
}
Result<void> createSelfSignedCertificate(
const std::vector<uint8_t>& publicKey,
const std::function<Result<std::string>(const std::string&)>& signFunction,
const std::string& path) {
bssl::UniquePtr<X509> x509(X509_new());
if (!x509) {
return Error() << "Unable to allocate x509 container";
}
X509_set_version(x509.get(), 2);
ASN1_INTEGER_set(X509_get_serialNumber(x509.get()), 1);
X509_gmtime_adj(X509_get_notBefore(x509.get()), 0);
X509_gmtime_adj(X509_get_notAfter(x509.get()), kCertLifetimeSeconds);
auto public_key = toRsaPkey(publicKey);
if (!public_key.ok()) {
return public_key.error();
}
if (!X509_set_pubkey(x509.get(), public_key.value().get())) {
return Error() << "Unable to set x509 public key";
}
X509_NAME* name = X509_get_subject_name(x509.get());
if (!name) {
return Error() << "Unable to get x509 subject name";
}
X509_NAME_add_entry_by_txt(name, "C", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("US"), -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "O", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("Android"), -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("ODS"), -1, -1, 0);
if (!X509_set_issuer_name(x509.get(), name)) {
return Error() << "Unable to set x509 issuer name";
}
add_ext(x509.get(), NID_basic_constraints, kBasicConstraints);
add_ext(x509.get(), NID_key_usage, kKeyUsage);
add_ext(x509.get(), NID_subject_key_identifier, kSubjectKeyIdentifier);
add_ext(x509.get(), NID_authority_key_identifier, kAuthorityKeyIdentifier);
bssl::UniquePtr<X509_ALGOR> algor(X509_ALGOR_new());
if (!algor ||
!X509_ALGOR_set0(algor.get(), OBJ_nid2obj(NID_sha256WithRSAEncryption), V_ASN1_NULL,
NULL) ||
!X509_set1_signature_algo(x509.get(), algor.get())) {
return Error() << "Unable to set x509 signature algorithm";
}
// Get the data to be signed
unsigned char* to_be_signed_buf(nullptr);
size_t to_be_signed_length = i2d_re_X509_tbs(x509.get(), &to_be_signed_buf);
auto signed_data = signFunction(
std::string(reinterpret_cast<const char*>(to_be_signed_buf), to_be_signed_length));
if (!signed_data.ok()) {
return signed_data.error();
}
if (!X509_set1_signature_value(x509.get(),
reinterpret_cast<const uint8_t*>(signed_data->data()),
signed_data->size())) {
return Error() << "Unable to set x509 signature";
}
auto f = fopen(path.c_str(), "wbe");
if (f == nullptr) {
return Error() << "Failed to open " << path;
}
i2d_X509_fp(f, x509.get());
fclose(f);
return {};
}
Result<std::vector<uint8_t>> extractPublicKey(EVP_PKEY* pkey) {
if (pkey == nullptr) {
return Error() << "Failed to extract public key from x509 cert";
}
if (EVP_PKEY_id(pkey) != EVP_PKEY_RSA) {
return Error() << "The public key is not an RSA key";
}
RSA* rsa = EVP_PKEY_get0_RSA(pkey);
auto num_bytes = BN_num_bytes(RSA_get0_n(rsa));
std::vector<uint8_t> pubKey(num_bytes);
int res = BN_bn2bin(RSA_get0_n(rsa), pubKey.data());
if (!res) {
return Error() << "Failed to convert public key to bytes";
}
return pubKey;
}
Result<std::vector<uint8_t>>
extractPublicKeyFromSubjectPublicKeyInfo(const std::vector<uint8_t>& keyData) {
auto keyDataBytes = keyData.data();
bssl::UniquePtr<EVP_PKEY> public_key(d2i_PUBKEY(nullptr, &keyDataBytes, keyData.size()));
return extractPublicKey(public_key.get());
}
Result<std::vector<uint8_t>> extractPublicKeyFromX509(const std::vector<uint8_t>& derCert) {
auto derCertBytes = derCert.data();
bssl::UniquePtr<X509> decoded_cert(d2i_X509(nullptr, &derCertBytes, derCert.size()));
if (decoded_cert.get() == nullptr) {
return Error() << "Failed to decode X509 certificate.";
}
bssl::UniquePtr<EVP_PKEY> decoded_pkey(X509_get_pubkey(decoded_cert.get()));
return extractPublicKey(decoded_pkey.get());
}
static Result<bssl::UniquePtr<X509>> loadX509(const std::string& path) {
X509* rawCert;
auto f = fopen(path.c_str(), "re");
if (f == nullptr) {
return Error() << "Failed to open " << path;
}
if (!d2i_X509_fp(f, &rawCert)) {
fclose(f);
return Error() << "Unable to decode x509 cert at " << path;
}
bssl::UniquePtr<X509> cert(rawCert);
fclose(f);
return cert;
}
Result<std::vector<uint8_t>> extractPublicKeyFromX509(const std::string& path) {
auto cert = loadX509(path);
if (!cert.ok()) {
return cert.error();
}
return extractPublicKey(X509_get_pubkey(cert.value().get()));
}
Result<CertInfo> verifyAndExtractCertInfoFromX509(const std::string& path,
const std::vector<uint8_t>& publicKey) {
auto public_key = toRsaPkey(publicKey);
if (!public_key.ok()) {
return public_key.error();
}
auto cert = loadX509(path);
if (!cert.ok()) {
return cert.error();
}
X509* x509 = cert.value().get();
// Make sure we signed it.
if (X509_verify(x509, public_key.value().get()) != 1) {
return Error() << "Failed to verify certificate.";
}
bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(x509));
auto subject_key = extractPublicKey(pkey.get());
if (!subject_key.ok()) {
return subject_key.error();
}
// The pointers here are all owned by x509, and each function handles an
// error return from the previous call correctly.
X509_NAME* name = X509_get_subject_name(x509);
int index = X509_NAME_get_index_by_NID(name, NID_commonName, -1);
X509_NAME_ENTRY* entry = X509_NAME_get_entry(name, index);
ASN1_STRING* asn1cn = X509_NAME_ENTRY_get_data(entry);
unsigned char* utf8cn;
int length = ASN1_STRING_to_UTF8(&utf8cn, asn1cn);
if (length < 0) {
return Error() << "Failed to read subject CN";
}
bssl::UniquePtr<unsigned char> utf8owner(utf8cn);
std::string cn(reinterpret_cast<char*>(utf8cn), static_cast<size_t>(length));
CertInfo cert_info{std::move(cn), std::move(subject_key.value())};
return cert_info;
}
Result<std::vector<uint8_t>> createPkcs7(const std::vector<uint8_t>& signed_digest) {
CBB out, outer_seq, wrapped_seq, seq, digest_algos_set, digest_algo, null;
CBB content_info, issuer_and_serial, signer_infos, signer_info, sign_algo, signature;
uint8_t *pkcs7_data, *name_der;
size_t pkcs7_data_len, name_der_len;
BIGNUM* serial = BN_new();
int sig_nid = NID_rsaEncryption;
X509_NAME* name = X509_NAME_new();
if (!name) {
return Error() << "Unable to get x509 subject name";
}
X509_NAME_add_entry_by_txt(name, "C", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("US"), -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "O", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("Android"), -1, -1, 0);
X509_NAME_add_entry_by_txt(name, "CN", MBSTRING_ASC,
reinterpret_cast<const unsigned char*>("ODS"), -1, -1, 0);
BN_set_word(serial, 1);
name_der_len = i2d_X509_NAME(name, &name_der);
CBB_init(&out, 1024);
if (!CBB_add_asn1(&out, &outer_seq, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&outer_seq, NID_pkcs7_signed) ||
!CBB_add_asn1(&outer_seq, &wrapped_seq,
CBS_ASN1_CONTEXT_SPECIFIC | CBS_ASN1_CONSTRUCTED | 0) ||
// See https://tools.ietf.org/html/rfc2315#section-9.1
!CBB_add_asn1(&wrapped_seq, &seq, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&seq, 1 /* version */) ||
!CBB_add_asn1(&seq, &digest_algos_set, CBS_ASN1_SET) ||
!CBB_add_asn1(&digest_algos_set, &digest_algo, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&digest_algo, NID_sha256) ||
!CBB_add_asn1(&digest_algo, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&seq, &content_info, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&content_info, NID_pkcs7_data) ||
!CBB_add_asn1(&seq, &signer_infos, CBS_ASN1_SET) ||
!CBB_add_asn1(&signer_infos, &signer_info, CBS_ASN1_SEQUENCE) ||
!CBB_add_asn1_uint64(&signer_info, 1 /* version */) ||
!CBB_add_asn1(&signer_info, &issuer_and_serial, CBS_ASN1_SEQUENCE) ||
!CBB_add_bytes(&issuer_and_serial, name_der, name_der_len) ||
!BN_marshal_asn1(&issuer_and_serial, serial) ||
!CBB_add_asn1(&signer_info, &digest_algo, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&digest_algo, NID_sha256) ||
!CBB_add_asn1(&digest_algo, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&signer_info, &sign_algo, CBS_ASN1_SEQUENCE) ||
!OBJ_nid2cbb(&sign_algo, sig_nid) || !CBB_add_asn1(&sign_algo, &null, CBS_ASN1_NULL) ||
!CBB_add_asn1(&signer_info, &signature, CBS_ASN1_OCTETSTRING) ||
!CBB_add_bytes(&signature, signed_digest.data(), signed_digest.size()) ||
!CBB_finish(&out, &pkcs7_data, &pkcs7_data_len)) {
return Error() << "Failed to create PKCS7 certificate.";
}
return std::vector<uint8_t>(&pkcs7_data[0], &pkcs7_data[pkcs7_data_len]);
}