blob: 0e8892b7b61c3ca5330a060daccad29c80da8bd7 [file] [log] [blame]
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! This module holds global state of Keystore such as the thread local
//! database connections and connections to services that Keystore needs
//! to talk to.
use crate::async_task::AsyncTask;
use crate::gc::Gc;
use crate::km_compat::{BacklevelKeyMintWrapper, KeyMintV1};
use crate::ks_err;
use crate::legacy_blob::LegacyBlobLoader;
use crate::legacy_importer::LegacyImporter;
use crate::super_key::SuperKeyManager;
use crate::utils::{retry_get_interface, watchdog as wd};
use crate::{
database::KeystoreDB,
database::Uuid,
error::{map_binder_status, map_binder_status_code, Error, ErrorCode},
};
use crate::{enforcements::Enforcements, error::map_km_error};
use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
IKeyMintDevice::BpKeyMintDevice, IKeyMintDevice::IKeyMintDevice,
KeyMintHardwareInfo::KeyMintHardwareInfo, SecurityLevel::SecurityLevel,
};
use android_hardware_security_keymint::binder::{StatusCode, Strong};
use android_hardware_security_rkp::aidl::android::hardware::security::keymint::{
IRemotelyProvisionedComponent::BpRemotelyProvisionedComponent,
IRemotelyProvisionedComponent::IRemotelyProvisionedComponent,
};
use android_hardware_security_secureclock::aidl::android::hardware::security::secureclock::{
ISecureClock::BpSecureClock, ISecureClock::ISecureClock,
};
use android_security_compat::aidl::android::security::compat::IKeystoreCompatService::IKeystoreCompatService;
use anyhow::{Context, Result};
use binder::FromIBinder;
use binder::{get_declared_instances, is_declared};
use std::sync::{Arc, LazyLock, Mutex, RwLock};
use std::{cell::RefCell, sync::Once};
use std::{collections::HashMap, path::Path, path::PathBuf};
static DB_INIT: Once = Once::new();
/// Open a connection to the Keystore 2.0 database. This is called during the initialization of
/// the thread local DB field. It should never be called directly. The first time this is called
/// we also call KeystoreDB::cleanup_leftovers to restore the key lifecycle invariant. See the
/// documentation of cleanup_leftovers for more details. The function also constructs a blob
/// garbage collector. The initializing closure constructs another database connection without
/// a gc. Although one GC is created for each thread local database connection, this closure
/// is run only once, as long as the ASYNC_TASK instance is the same. So only one additional
/// database connection is created for the garbage collector worker.
pub fn create_thread_local_db() -> KeystoreDB {
let db_path = DB_PATH.read().expect("Could not get the database directory");
let result = KeystoreDB::new(&db_path, Some(GC.clone()));
let mut db = match result {
Ok(db) => db,
Err(e) => {
log::error!("Failed to open Keystore database at {db_path:?}: {e:?}");
log::error!("Has /data been mounted correctly?");
panic!("Failed to open database for Keystore, cannot continue: {e:?}")
}
};
DB_INIT.call_once(|| {
log::info!("Touching Keystore 2.0 database for this first time since boot.");
log::info!("Calling cleanup leftovers.");
let n = db.cleanup_leftovers().expect("Failed to cleanup database on startup");
if n != 0 {
log::info!(
"Cleaned up {n} failed entries, indicating keystore crash on key generation"
);
}
});
db
}
thread_local! {
/// Database connections are not thread safe, but connecting to the
/// same database multiple times is safe as long as each connection is
/// used by only one thread. So we store one database connection per
/// thread in this thread local key.
pub static DB: RefCell<KeystoreDB> = RefCell::new(create_thread_local_db());
}
struct DevicesMap<T: FromIBinder + ?Sized> {
devices_by_uuid: HashMap<Uuid, (Strong<T>, KeyMintHardwareInfo)>,
uuid_by_sec_level: HashMap<SecurityLevel, Uuid>,
}
impl<T: FromIBinder + ?Sized> DevicesMap<T> {
fn dev_by_sec_level(
&self,
sec_level: &SecurityLevel,
) -> Option<(Strong<T>, KeyMintHardwareInfo, Uuid)> {
self.uuid_by_sec_level.get(sec_level).and_then(|uuid| self.dev_by_uuid(uuid))
}
fn dev_by_uuid(&self, uuid: &Uuid) -> Option<(Strong<T>, KeyMintHardwareInfo, Uuid)> {
self.devices_by_uuid
.get(uuid)
.map(|(dev, hw_info)| ((*dev).clone(), (*hw_info).clone(), *uuid))
}
fn devices(&self) -> Vec<Strong<T>> {
self.devices_by_uuid.values().map(|(dev, _)| dev.clone()).collect()
}
/// The requested security level and the security level of the actual implementation may
/// differ. So we map the requested security level to the uuid of the implementation
/// so that there cannot be any confusion as to which KeyMint instance is requested.
fn insert(&mut self, sec_level: SecurityLevel, dev: Strong<T>, hw_info: KeyMintHardwareInfo) {
// For now we use the reported security level of the KM instance as UUID.
// TODO update this section once UUID was added to the KM hardware info.
let uuid: Uuid = sec_level.into();
self.devices_by_uuid.insert(uuid, (dev, hw_info));
self.uuid_by_sec_level.insert(sec_level, uuid);
}
}
impl<T: FromIBinder + ?Sized> Default for DevicesMap<T> {
fn default() -> Self {
Self {
devices_by_uuid: HashMap::<Uuid, (Strong<T>, KeyMintHardwareInfo)>::new(),
uuid_by_sec_level: Default::default(),
}
}
}
/// The path where keystore stores all its keys.
pub static DB_PATH: LazyLock<RwLock<PathBuf>> =
LazyLock::new(|| RwLock::new(Path::new("/data/misc/keystore").to_path_buf()));
/// Runtime database of unwrapped super keys.
pub static SUPER_KEY: LazyLock<Arc<RwLock<SuperKeyManager>>> = LazyLock::new(Default::default);
/// Map of KeyMint devices.
static KEY_MINT_DEVICES: LazyLock<Mutex<DevicesMap<dyn IKeyMintDevice>>> =
LazyLock::new(Default::default);
/// Timestamp service.
static TIME_STAMP_DEVICE: Mutex<Option<Strong<dyn ISecureClock>>> = Mutex::new(None);
/// A single on-demand worker thread that handles deferred tasks with two different
/// priorities.
pub static ASYNC_TASK: LazyLock<Arc<AsyncTask>> = LazyLock::new(Default::default);
/// Singleton for enforcements.
pub static ENFORCEMENTS: LazyLock<Enforcements> = LazyLock::new(Default::default);
/// LegacyBlobLoader is initialized and exists globally.
/// The same directory used by the database is used by the LegacyBlobLoader as well.
pub static LEGACY_BLOB_LOADER: LazyLock<Arc<LegacyBlobLoader>> = LazyLock::new(|| {
Arc::new(LegacyBlobLoader::new(
&DB_PATH.read().expect("Could not determine database path for legacy blob loader"),
))
});
/// Legacy migrator. Atomically migrates legacy blobs to the database.
pub static LEGACY_IMPORTER: LazyLock<Arc<LegacyImporter>> =
LazyLock::new(|| Arc::new(LegacyImporter::new(Arc::new(Default::default()))));
/// Background thread which handles logging via statsd and logd
pub static LOGS_HANDLER: LazyLock<Arc<AsyncTask>> = LazyLock::new(Default::default);
static GC: LazyLock<Arc<Gc>> = LazyLock::new(|| {
Arc::new(Gc::new_init_with(ASYNC_TASK.clone(), || {
(
Box::new(|uuid, blob| {
let km_dev = get_keymint_dev_by_uuid(uuid).map(|(dev, _)| dev)?;
let _wp = wd::watch("invalidate key closure: calling IKeyMintDevice::deleteKey");
map_km_error(km_dev.deleteKey(blob))
.context(ks_err!("Trying to invalidate key blob."))
}),
KeystoreDB::new(
&DB_PATH.read().expect("Could not determine database path for GC"),
None,
)
.expect("Failed to open database"),
SUPER_KEY.clone(),
)
}))
});
/// Determine the service name for a KeyMint device of the given security level
/// gotten by binder service from the device and determining what services
/// are available.
fn keymint_service_name(security_level: &SecurityLevel) -> Result<Option<String>> {
let keymint_descriptor: &str = <BpKeyMintDevice as IKeyMintDevice>::get_descriptor();
let keymint_instances = get_declared_instances(keymint_descriptor).unwrap();
let service_name = match *security_level {
SecurityLevel::TRUSTED_ENVIRONMENT => {
if keymint_instances.iter().any(|instance| *instance == "default") {
Some(format!("{}/default", keymint_descriptor))
} else {
None
}
}
SecurityLevel::STRONGBOX => {
if keymint_instances.iter().any(|instance| *instance == "strongbox") {
Some(format!("{}/strongbox", keymint_descriptor))
} else {
None
}
}
_ => {
return Err(Error::Km(ErrorCode::HARDWARE_TYPE_UNAVAILABLE)).context(ks_err!(
"Trying to find keymint for security level: {:?}",
security_level
));
}
};
Ok(service_name)
}
/// Make a new connection to a KeyMint device of the given security level.
/// If no native KeyMint device can be found this function also brings
/// up the compatibility service and attempts to connect to the legacy wrapper.
fn connect_keymint(
security_level: &SecurityLevel,
) -> Result<(Strong<dyn IKeyMintDevice>, KeyMintHardwareInfo)> {
// Show the keymint interface that is registered in the binder
// service and use the security level to get the service name.
let service_name = keymint_service_name(security_level)
.context(ks_err!("Get service name from binder service"))?;
let (keymint, hal_version) = if let Some(service_name) = service_name {
let km: Strong<dyn IKeyMintDevice> =
if SecurityLevel::TRUSTED_ENVIRONMENT == *security_level {
map_binder_status_code(retry_get_interface(&service_name))
} else {
map_binder_status_code(binder::get_interface(&service_name))
}
.context(ks_err!("Trying to connect to genuine KeyMint service."))?;
// Map the HAL version code for KeyMint to be <AIDL version> * 100, so
// - V1 is 100
// - V2 is 200
// - V3 is 300
// etc.
let km_version = km.getInterfaceVersion()?;
(km, Some(km_version * 100))
} else {
// This is a no-op if it was called before.
keystore2_km_compat::add_keymint_device_service();
let keystore_compat_service: Strong<dyn IKeystoreCompatService> =
map_binder_status_code(binder::get_interface("android.security.compat"))
.context(ks_err!("Trying to connect to compat service."))?;
(
map_binder_status(keystore_compat_service.getKeyMintDevice(*security_level))
.map_err(|e| match e {
Error::BinderTransaction(StatusCode::NAME_NOT_FOUND) => {
Error::Km(ErrorCode::HARDWARE_TYPE_UNAVAILABLE)
}
e => e,
})
.context(ks_err!(
"Trying to get Legacy wrapper. Attempt to get keystore \
compat service for security level {:?}",
*security_level
))?,
None,
)
};
// If the KeyMint device is back-level, use a wrapper that intercepts and
// emulates things that are not supported by the hardware.
let keymint = match hal_version {
Some(400) | Some(300) | Some(200) => {
// KeyMint v2+: use as-is (we don't have any software emulation of v3 or v4-specific KeyMint features).
log::info!(
"KeyMint device is current version ({:?}) for security level: {:?}",
hal_version,
security_level
);
keymint
}
Some(100) => {
// KeyMint v1: perform software emulation.
log::info!(
"Add emulation wrapper around {:?} device for security level: {:?}",
hal_version,
security_level
);
BacklevelKeyMintWrapper::wrap(KeyMintV1::new(*security_level), keymint)
.context(ks_err!("Trying to create V1 compatibility wrapper."))?
}
None => {
// Compatibility wrapper around a KeyMaster device: this roughly
// behaves like KeyMint V1 (e.g. it includes AGREE_KEY support,
// albeit in software.)
log::info!(
"Add emulation wrapper around Keymaster device for security level: {:?}",
security_level
);
BacklevelKeyMintWrapper::wrap(KeyMintV1::new(*security_level), keymint)
.context(ks_err!("Trying to create km_compat V1 compatibility wrapper ."))?
}
_ => {
return Err(Error::Km(ErrorCode::HARDWARE_TYPE_UNAVAILABLE)).context(ks_err!(
"unexpected hal_version {:?} for security level: {:?}",
hal_version,
security_level
));
}
};
let wp = wd::watch("connect_keymint: calling IKeyMintDevice::getHardwareInfo()");
let mut hw_info =
map_km_error(keymint.getHardwareInfo()).context(ks_err!("Failed to get hardware info."))?;
drop(wp);
// The legacy wrapper sets hw_info.versionNumber to the underlying HAL version like so:
// 10 * <major> + <minor>, e.g., KM 3.0 = 30. So 30, 40, and 41 are the only viable values.
//
// For KeyMint the returned versionNumber is implementation defined and thus completely
// meaningless to Keystore 2.0. So set the versionNumber field that is returned to
// the rest of the code to be the <AIDL version> * 100, so KeyMint V1 is 100, KeyMint V2 is 200
// and so on.
//
// This ensures that versionNumber value across KeyMaster and KeyMint is monotonically
// increasing (and so comparisons like `versionNumber >= KEY_MINT_1` are valid).
if let Some(hal_version) = hal_version {
hw_info.versionNumber = hal_version;
}
Ok((keymint, hw_info))
}
/// Get a keymint device for the given security level either from our cache or
/// by making a new connection. Returns the device, the hardware info and the uuid.
/// TODO the latter can be removed when the uuid is part of the hardware info.
pub fn get_keymint_device(
security_level: &SecurityLevel,
) -> Result<(Strong<dyn IKeyMintDevice>, KeyMintHardwareInfo, Uuid)> {
let mut devices_map = KEY_MINT_DEVICES.lock().unwrap();
if let Some((dev, hw_info, uuid)) = devices_map.dev_by_sec_level(security_level) {
Ok((dev, hw_info, uuid))
} else {
let (dev, hw_info) =
connect_keymint(security_level).context(ks_err!("Cannot connect to Keymint"))?;
devices_map.insert(*security_level, dev, hw_info);
// Unwrap must succeed because we just inserted it.
Ok(devices_map.dev_by_sec_level(security_level).unwrap())
}
}
/// Get a keymint device for the given uuid. This will only access the cache, but will not
/// attempt to establish a new connection. It is assumed that the cache is already populated
/// when this is called. This is a fair assumption, because service.rs iterates through all
/// security levels when it gets instantiated.
pub fn get_keymint_dev_by_uuid(
uuid: &Uuid,
) -> Result<(Strong<dyn IKeyMintDevice>, KeyMintHardwareInfo)> {
let devices_map = KEY_MINT_DEVICES.lock().unwrap();
if let Some((dev, hw_info, _)) = devices_map.dev_by_uuid(uuid) {
Ok((dev, hw_info))
} else {
Err(Error::sys()).context(ks_err!("No KeyMint instance found."))
}
}
/// Return all known keymint devices.
pub fn get_keymint_devices() -> Vec<Strong<dyn IKeyMintDevice>> {
KEY_MINT_DEVICES.lock().unwrap().devices()
}
/// Make a new connection to a secure clock service.
/// If no native SecureClock device can be found brings up the compatibility service and attempts
/// to connect to the legacy wrapper.
fn connect_secureclock() -> Result<Strong<dyn ISecureClock>> {
let secure_clock_descriptor: &str = <BpSecureClock as ISecureClock>::get_descriptor();
let secureclock_instances = get_declared_instances(secure_clock_descriptor).unwrap();
let secure_clock_available =
secureclock_instances.iter().any(|instance| *instance == "default");
let default_time_stamp_service_name = format!("{}/default", secure_clock_descriptor);
let secureclock = if secure_clock_available {
map_binder_status_code(binder::get_interface(&default_time_stamp_service_name))
.context(ks_err!("Trying to connect to genuine secure clock service."))
} else {
// This is a no-op if it was called before.
keystore2_km_compat::add_keymint_device_service();
let keystore_compat_service: Strong<dyn IKeystoreCompatService> =
map_binder_status_code(binder::get_interface("android.security.compat"))
.context(ks_err!("Trying to connect to compat service."))?;
// Legacy secure clock services were only implemented by TEE.
map_binder_status(keystore_compat_service.getSecureClock())
.map_err(|e| match e {
Error::BinderTransaction(StatusCode::NAME_NOT_FOUND) => {
Error::Km(ErrorCode::HARDWARE_TYPE_UNAVAILABLE)
}
e => e,
})
.context(ks_err!("Failed attempt to get legacy secure clock."))
}?;
Ok(secureclock)
}
/// Get the timestamp service that verifies auth token timeliness towards security levels with
/// different clocks.
pub fn get_timestamp_service() -> Result<Strong<dyn ISecureClock>> {
let mut ts_device = TIME_STAMP_DEVICE.lock().unwrap();
if let Some(dev) = &*ts_device {
Ok(dev.clone())
} else {
let dev = connect_secureclock().context(ks_err!())?;
*ts_device = Some(dev.clone());
Ok(dev)
}
}
/// Get the service name of a remotely provisioned component corresponding to given security level.
pub fn get_remotely_provisioned_component_name(security_level: &SecurityLevel) -> Result<String> {
let remote_prov_descriptor: &str =
<BpRemotelyProvisionedComponent as IRemotelyProvisionedComponent>::get_descriptor();
match *security_level {
SecurityLevel::TRUSTED_ENVIRONMENT => {
let instance = format!("{}/default", remote_prov_descriptor);
if is_declared(&instance)? {
Some(instance)
} else {
None
}
}
SecurityLevel::STRONGBOX => {
let instance = format!("{}/strongbox", remote_prov_descriptor);
if is_declared(&instance)? {
Some(instance)
} else {
None
}
}
_ => None,
}
.ok_or(Error::Km(ErrorCode::HARDWARE_TYPE_UNAVAILABLE))
.context(ks_err!("Failed to get rpc for sec level {:?}", *security_level))
}