blob: 3d33a26c701b5693305e4b56e29ccdf3844117e5 [file] [log] [blame]
// Copyright 2021, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Offer keys based on the "boot level" for superencryption.
use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
Algorithm::Algorithm, BeginResult::BeginResult, Digest::Digest, ErrorCode::ErrorCode,
IKeyMintDevice::IKeyMintDevice, IKeyMintOperation::IKeyMintOperation,
KeyParameter::KeyParameter, KeyPurpose::KeyPurpose, SecurityLevel::SecurityLevel,
};
use android_system_keystore2::aidl::android::system::keystore2::{
Domain::Domain, KeyDescriptor::KeyDescriptor, ResponseCode::ResponseCode,
};
use anyhow::{Context, Result};
use binder::Strong;
use keystore2_crypto::{hkdf_expand, ZVec, AES_256_KEY_LENGTH};
use std::{collections::VecDeque, convert::TryFrom};
use crate::{
database::{
BlobMetaData, BlobMetaEntry, CertificateInfo, DateTime, KeyEntry, KeyEntryLoadBits,
KeyIdGuard, KeyMetaData, KeyMetaEntry, KeyType, KeystoreDB, SubComponentType, Uuid,
},
error::{map_km_error, Error},
globals::get_keymint_device,
key_parameter::KeyParameterValue,
super_key::KeyBlob,
utils::{key_characteristics_to_internal, Asp, AID_KEYSTORE},
};
/// Wrapper for operating directly on a KeyMint device.
/// These methods often mirror methods in [`crate::security_level`]. However
/// the functions in [`crate::security_level`] make assumptions that hold, and has side effects
/// that make sense, only if called by an external client through binder.
/// In addition we are trying to maintain a separation between interface services
/// so that the architecture is compatible with a future move to multiple thread pools.
/// So the simplest approach today is to write new implementations of them for internal use.
/// Because these methods run very early, we don't even try to cooperate with
/// the operation slot database; we assume there will be plenty of slots.
struct KeyMintDevice {
asp: Asp,
km_uuid: Uuid,
}
impl KeyMintDevice {
fn get(security_level: SecurityLevel) -> Result<KeyMintDevice> {
let (asp, _hw_info, km_uuid) = get_keymint_device(&security_level)
.context("In KeyMintDevice::get: get_keymint_device failed")?;
Ok(KeyMintDevice { asp, km_uuid })
}
/// Generate a KM key and store in the database.
fn generate_and_store_key(
&self,
db: &mut KeystoreDB,
key_desc: &KeyDescriptor,
params: &[KeyParameter],
) -> Result<()> {
let km_dev: Strong<dyn IKeyMintDevice> = self
.asp
.get_interface()
.context("In generate_and_store_key: Failed to get KeyMint device")?;
let creation_result = map_km_error(km_dev.generateKey(params, None))
.context("In generate_and_store_key: generateKey failed")?;
let key_parameters = key_characteristics_to_internal(creation_result.keyCharacteristics);
let creation_date =
DateTime::now().context("In generate_and_store_key: DateTime::now() failed")?;
let mut key_metadata = KeyMetaData::new();
key_metadata.add(KeyMetaEntry::CreationDate(creation_date));
let mut blob_metadata = BlobMetaData::new();
blob_metadata.add(BlobMetaEntry::KmUuid(self.km_uuid));
db.store_new_key(
&key_desc,
&key_parameters,
&(&creation_result.keyBlob, &blob_metadata),
&CertificateInfo::new(None, None),
&key_metadata,
&self.km_uuid,
)
.context("In generate_and_store_key: store_new_key failed")?;
Ok(())
}
/// This does the lookup and store in separate transactions; caller must
/// hold a lock before calling.
fn lookup_or_generate_key(
&self,
db: &mut KeystoreDB,
key_desc: &KeyDescriptor,
params: &[KeyParameter],
) -> Result<(KeyIdGuard, KeyEntry)> {
// We use a separate transaction for the lookup than for the store
// - to keep the code simple
// - because the caller needs to hold a lock in any case
// - because it avoids holding database locks during slow
// KeyMint operations
let lookup = db.load_key_entry(
&key_desc,
KeyType::Client,
KeyEntryLoadBits::KM,
AID_KEYSTORE,
|_, _| Ok(()),
);
match lookup {
Ok(result) => return Ok(result),
Err(e) => match e.root_cause().downcast_ref::<Error>() {
Some(&Error::Rc(ResponseCode::KEY_NOT_FOUND)) => {}
_ => return Err(e),
},
}
self.generate_and_store_key(db, &key_desc, &params)
.context("In lookup_or_generate_key: generate_and_store_key failed")?;
db.load_key_entry(&key_desc, KeyType::Client, KeyEntryLoadBits::KM, AID_KEYSTORE, |_, _| {
Ok(())
})
.context("In lookup_or_generate_key: load_key_entry failed")
}
/// Call the passed closure; if it returns `KEY_REQUIRES_UPGRADE`, call upgradeKey, and
/// write the upgraded key to the database.
fn upgrade_keyblob_if_required_with<T, F>(
&self,
db: &mut KeystoreDB,
km_dev: &Strong<dyn IKeyMintDevice>,
key_id_guard: KeyIdGuard,
key_blob: &KeyBlob,
f: F,
) -> Result<T>
where
F: Fn(&[u8]) -> Result<T, Error>,
{
match f(key_blob) {
Err(Error::Km(ErrorCode::KEY_REQUIRES_UPGRADE)) => {
let upgraded_blob = map_km_error(km_dev.upgradeKey(key_blob, &[]))
.context("In upgrade_keyblob_if_required_with: Upgrade failed")?;
let mut new_blob_metadata = BlobMetaData::new();
new_blob_metadata.add(BlobMetaEntry::KmUuid(self.km_uuid));
db.set_blob(
&key_id_guard,
SubComponentType::KEY_BLOB,
Some(&upgraded_blob),
Some(&new_blob_metadata),
)
.context(concat!(
"In upgrade_keyblob_if_required_with: ",
"Failed to insert upgraded blob into the database"
))?;
Ok(f(&upgraded_blob).context(concat!(
"In upgrade_keyblob_if_required_with: ",
"Closure failed after upgrade"
))?)
}
result => Ok(result.context("In upgrade_keyblob_if_required_with: Closure failed")?),
}
}
/// Use the created key in an operation that can be done with
/// a call to begin followed by a call to finish.
fn use_key_in_one_step(
&self,
db: &mut KeystoreDB,
key_id_guard: KeyIdGuard,
key_entry: &KeyEntry,
purpose: KeyPurpose,
operation_parameters: &[KeyParameter],
input: &[u8],
) -> Result<Vec<u8>> {
let km_dev: Strong<dyn IKeyMintDevice> = self
.asp
.get_interface()
.context("In use_key_in_one_step: Failed to get KeyMint device")?;
let (key_blob, _blob_metadata) = key_entry
.key_blob_info()
.as_ref()
.ok_or_else(Error::sys)
.context("use_key_in_one_step: Keyblob missing")?;
let key_blob = KeyBlob::Ref(&key_blob);
let begin_result: BeginResult = self
.upgrade_keyblob_if_required_with(db, &km_dev, key_id_guard, &key_blob, |blob| {
map_km_error(km_dev.begin(purpose, blob, operation_parameters, &Default::default()))
})
.context("In use_key_in_one_step: Failed to begin operation.")?;
let operation: Strong<dyn IKeyMintOperation> = begin_result
.operation
.ok_or_else(Error::sys)
.context("In use_key_in_one_step: Operation missing")?;
map_km_error(operation.finish(Some(input), None, None, None, None))
.context("In use_key_in_one_step: Failed to finish operation.")
}
}
/// This is not thread safe; caller must hold a lock before calling.
/// In practice the caller is SuperKeyManager and the lock is the
/// Mutex on its internal state.
pub fn get_level_zero_key(db: &mut KeystoreDB) -> Result<ZVec> {
let key_desc = KeyDescriptor {
domain: Domain::APP,
nspace: AID_KEYSTORE as i64,
alias: Some("boot_level_key".to_string()),
blob: None,
};
let params = [
KeyParameterValue::Algorithm(Algorithm::HMAC).into(),
KeyParameterValue::Digest(Digest::SHA_2_256).into(),
KeyParameterValue::KeySize(256).into(),
KeyParameterValue::MinMacLength(256).into(),
KeyParameterValue::KeyPurpose(KeyPurpose::SIGN).into(),
KeyParameterValue::MaxUsesPerBoot(1).into(),
];
// We use TRUSTED_ENVIRONMENT here because it is the authority on when
// the device has rebooted.
let km_dev: KeyMintDevice = KeyMintDevice::get(SecurityLevel::TRUSTED_ENVIRONMENT)
.context("In get_level_zero_key: KeyMintDevice::get failed")?;
let (key_id_guard, key_entry) = km_dev
.lookup_or_generate_key(db, &key_desc, &params)
.context("In get_level_zero_key: lookup_or_generate_key failed")?;
let params = [KeyParameterValue::MacLength(256).into()];
let level_zero_key = km_dev
.use_key_in_one_step(
db,
key_id_guard,
&key_entry,
KeyPurpose::SIGN,
&params,
b"Create boot level key",
)
.context("In get_level_zero_key: use_key_in_one_step failed")?;
// TODO: this is rather unsatisfactory, we need a better way to handle
// sensitive binder returns.
let level_zero_key = ZVec::try_from(level_zero_key)
.context("In get_level_zero_key: conversion to ZVec failed")?;
Ok(level_zero_key)
}
/// Holds the key for the current boot level, and a cache of future keys generated as required.
/// When the boot level advances, keys prior to the current boot level are securely dropped.
pub struct BootLevelKeyCache {
/// Least boot level currently accessible, if any is.
current: usize,
/// Invariant: cache entry *i*, if it exists, holds the HKDF key for boot level
/// *i* + `current`. If the cache is non-empty it can be grown forwards, but it cannot be
/// grown backwards, so keys below `current` are inaccessible.
/// `cache.clear()` makes all keys inaccessible.
cache: VecDeque<ZVec>,
}
impl BootLevelKeyCache {
const HKDF_ADVANCE: &'static [u8] = b"Advance KDF one step";
const HKDF_AES: &'static [u8] = b"Generate AES-256-GCM key";
const HKDF_KEY_SIZE: usize = 32;
/// Initialize the cache with the level zero key.
pub fn new(level_zero_key: ZVec) -> Self {
let mut cache: VecDeque<ZVec> = VecDeque::new();
cache.push_back(level_zero_key);
Self { current: 0, cache }
}
/// Report whether the key for the given level can be inferred.
pub fn level_accessible(&self, boot_level: usize) -> bool {
// If the requested boot level is lower than the current boot level
// or if we have reached the end (`cache.empty()`) we can't retrieve
// the boot key.
boot_level >= self.current && !self.cache.is_empty()
}
/// Get the HKDF key for boot level `boot_level`. The key for level *i*+1
/// is calculated from the level *i* key using `hkdf_expand`.
fn get_hkdf_key(&mut self, boot_level: usize) -> Result<Option<&ZVec>> {
if !self.level_accessible(boot_level) {
return Ok(None);
}
// `self.cache.len()` represents the first entry not in the cache,
// so `self.current + self.cache.len()` is the first boot level not in the cache.
let first_not_cached = self.current + self.cache.len();
// Grow the cache forwards until it contains the desired boot level.
for _level in first_not_cached..=boot_level {
// We check at the start that cache is non-empty and future iterations only push,
// so this must unwrap.
let highest_key = self.cache.back().unwrap();
let next_key = hkdf_expand(Self::HKDF_KEY_SIZE, highest_key, Self::HKDF_ADVANCE)
.context("In BootLevelKeyCache::get_hkdf_key: Advancing key one step")?;
self.cache.push_back(next_key);
}
// If we reach this point, we should have a key at index boot_level - current.
Ok(Some(self.cache.get(boot_level - self.current).unwrap()))
}
/// Drop keys prior to the given boot level, while retaining the ability to generate keys for
/// that level and later.
pub fn advance_boot_level(&mut self, new_boot_level: usize) -> Result<()> {
if !self.level_accessible(new_boot_level) {
log::error!(
concat!(
"In BootLevelKeyCache::advance_boot_level: ",
"Failed to advance boot level to {}, current is {}, cache size {}"
),
new_boot_level,
self.current,
self.cache.len()
);
return Ok(());
}
// We `get` the new boot level for the side effect of advancing the cache to a point
// where the new boot level is present.
self.get_hkdf_key(new_boot_level)
.context("In BootLevelKeyCache::advance_boot_level: Advancing cache")?;
// Then we split the queue at the index of the new boot level and discard the front,
// keeping only the keys with the current boot level or higher.
self.cache = self.cache.split_off(new_boot_level - self.current);
// The new cache has the new boot level at index 0, so we set `current` to
// `new_boot_level`.
self.current = new_boot_level;
Ok(())
}
/// Drop all keys, effectively raising the current boot level to infinity; no keys can
/// be inferred from this point on.
pub fn finish(&mut self) {
self.cache.clear();
}
fn expand_key(
&mut self,
boot_level: usize,
out_len: usize,
info: &[u8],
) -> Result<Option<ZVec>> {
self.get_hkdf_key(boot_level)
.context("In BootLevelKeyCache::expand_key: Looking up HKDF key")?
.map(|k| hkdf_expand(out_len, k, info))
.transpose()
.context("In BootLevelKeyCache::expand_key: Calling hkdf_expand")
}
/// Return the AES-256-GCM key for the current boot level.
pub fn aes_key(&mut self, boot_level: usize) -> Result<Option<ZVec>> {
self.expand_key(boot_level, AES_256_KEY_LENGTH, BootLevelKeyCache::HKDF_AES)
.context("In BootLevelKeyCache::aes_key: expand_key failed")
}
}
#[cfg(test)]
mod test {
use super::*;
#[test]
fn test_output_is_consistent() -> Result<()> {
let initial_key = b"initial key";
let mut blkc = BootLevelKeyCache::new(ZVec::try_from(initial_key as &[u8])?);
assert_eq!(true, blkc.level_accessible(0));
assert_eq!(true, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
let v0 = blkc.aes_key(0).unwrap().unwrap();
let v10 = blkc.aes_key(10).unwrap().unwrap();
assert_eq!(Some(&v0), blkc.aes_key(0)?.as_ref());
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(5)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(true, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(10)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(&v10), blkc.aes_key(10)?.as_ref());
blkc.advance_boot_level(0)?;
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(true, blkc.level_accessible(10));
assert_eq!(true, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(Some(v10), blkc.aes_key(10)?);
blkc.finish();
assert_eq!(false, blkc.level_accessible(0));
assert_eq!(false, blkc.level_accessible(9));
assert_eq!(false, blkc.level_accessible(10));
assert_eq!(false, blkc.level_accessible(100));
assert_eq!(None, blkc.aes_key(0)?);
assert_eq!(None, blkc.aes_key(10)?);
Ok(())
}
}