|  | /* | 
|  | * Copyright (C) 2012 The Android Open Source Project | 
|  | * | 
|  | * Licensed under the Apache License, Version 2.0 (the "License"); | 
|  | * you may not use this file except in compliance with the License. | 
|  | * You may obtain a copy of the License at | 
|  | * | 
|  | *      http://www.apache.org/licenses/LICENSE-2.0 | 
|  | * | 
|  | * Unless required by applicable law or agreed to in writing, software | 
|  | * distributed under the License is distributed on an "AS IS" BASIS, | 
|  | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | 
|  | * See the License for the specific language governing permissions and | 
|  | * limitations under the License. | 
|  | */ | 
|  | #include <errno.h> | 
|  | #include <string.h> | 
|  | #include <stdint.h> | 
|  |  | 
|  | #include <keystore/keystore.h> | 
|  | #include <keymaster/softkeymaster.h> | 
|  |  | 
|  | #include <hardware/hardware.h> | 
|  | #include <hardware/keymaster0.h> | 
|  |  | 
|  | #include <openssl/evp.h> | 
|  | #include <openssl/bio.h> | 
|  | #include <openssl/rsa.h> | 
|  | #include <openssl/err.h> | 
|  | #include <openssl/x509.h> | 
|  |  | 
|  | #include <UniquePtr.h> | 
|  |  | 
|  | // For debugging | 
|  | // #define LOG_NDEBUG 0 | 
|  |  | 
|  | #define LOG_TAG "OpenSSLKeyMaster" | 
|  | #include <cutils/log.h> | 
|  |  | 
|  | struct BIGNUM_Delete { | 
|  | void operator()(BIGNUM* p) const { BN_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<BIGNUM, BIGNUM_Delete> Unique_BIGNUM; | 
|  |  | 
|  | struct EVP_PKEY_Delete { | 
|  | void operator()(EVP_PKEY* p) const { EVP_PKEY_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<EVP_PKEY, EVP_PKEY_Delete> Unique_EVP_PKEY; | 
|  |  | 
|  | struct PKCS8_PRIV_KEY_INFO_Delete { | 
|  | void operator()(PKCS8_PRIV_KEY_INFO* p) const { PKCS8_PRIV_KEY_INFO_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<PKCS8_PRIV_KEY_INFO, PKCS8_PRIV_KEY_INFO_Delete> Unique_PKCS8_PRIV_KEY_INFO; | 
|  |  | 
|  | struct DSA_Delete { | 
|  | void operator()(DSA* p) const { DSA_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<DSA, DSA_Delete> Unique_DSA; | 
|  |  | 
|  | struct EC_KEY_Delete { | 
|  | void operator()(EC_KEY* p) const { EC_KEY_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<EC_KEY, EC_KEY_Delete> Unique_EC_KEY; | 
|  |  | 
|  | struct EC_GROUP_Delete { | 
|  | void operator()(EC_GROUP* p) const { EC_GROUP_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<EC_GROUP, EC_GROUP_Delete> Unique_EC_GROUP; | 
|  |  | 
|  | struct RSA_Delete { | 
|  | void operator()(RSA* p) const { RSA_free(p); } | 
|  | }; | 
|  | typedef UniquePtr<RSA, RSA_Delete> Unique_RSA; | 
|  |  | 
|  | struct Malloc_Free { | 
|  | void operator()(void* p) const { free(p); } | 
|  | }; | 
|  |  | 
|  | typedef UniquePtr<keymaster0_device_t> Unique_keymaster_device_t; | 
|  |  | 
|  | /** | 
|  | * Many OpenSSL APIs take ownership of an argument on success but | 
|  | * don't free the argument on failure. This means we need to tell our | 
|  | * scoped pointers when we've transferred ownership, without | 
|  | * triggering a warning by not using the result of release(). | 
|  | */ | 
|  | template <typename T, typename Delete_T> | 
|  | inline void release_because_ownership_transferred(UniquePtr<T, Delete_T>& p) { | 
|  | T* val __attribute__((unused)) = p.release(); | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Checks this thread's OpenSSL error queue and logs if | 
|  | * necessary. | 
|  | */ | 
|  | static void logOpenSSLError(const char* location) { | 
|  | int error = ERR_get_error(); | 
|  |  | 
|  | if (error != 0) { | 
|  | char message[256]; | 
|  | ERR_error_string_n(error, message, sizeof(message)); | 
|  | ALOGE("OpenSSL error in %s %d: %s", location, error, message); | 
|  | } | 
|  |  | 
|  | ERR_clear_error(); | 
|  | ERR_remove_thread_state(NULL); | 
|  | } | 
|  |  | 
|  | static int wrap_key(EVP_PKEY* pkey, int type, uint8_t** keyBlob, size_t* keyBlobLength) { | 
|  | /* | 
|  | * Find the length of each size. Public key is not needed anymore | 
|  | * but must be kept for alignment purposes. | 
|  | */ | 
|  | int publicLen = 0; | 
|  | int privateLen = i2d_PrivateKey(pkey, NULL); | 
|  |  | 
|  | if (privateLen <= 0) { | 
|  | ALOGE("private key size was too big"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* int type + int size + private key data + int size + public key data */ | 
|  | *keyBlobLength = get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + privateLen + | 
|  | sizeof(privateLen) + publicLen; | 
|  |  | 
|  | // derData will be returned to the caller, so allocate it with malloc. | 
|  | UniquePtr<unsigned char, Malloc_Free> derData( | 
|  | static_cast<unsigned char*>(malloc(*keyBlobLength))); | 
|  | if (derData.get() == NULL) { | 
|  | ALOGE("could not allocate memory for key blob"); | 
|  | return -1; | 
|  | } | 
|  | unsigned char* p = derData.get(); | 
|  |  | 
|  | /* Write the magic value for software keys. */ | 
|  | p = add_softkey_header(p, *keyBlobLength); | 
|  |  | 
|  | /* Write key type to allocated buffer */ | 
|  | for (int i = sizeof(type) - 1; i >= 0; i--) { | 
|  | *p++ = (type >> (8 * i)) & 0xFF; | 
|  | } | 
|  |  | 
|  | /* Write public key to allocated buffer */ | 
|  | for (int i = sizeof(publicLen) - 1; i >= 0; i--) { | 
|  | *p++ = (publicLen >> (8 * i)) & 0xFF; | 
|  | } | 
|  |  | 
|  | /* Write private key to allocated buffer */ | 
|  | for (int i = sizeof(privateLen) - 1; i >= 0; i--) { | 
|  | *p++ = (privateLen >> (8 * i)) & 0xFF; | 
|  | } | 
|  | if (i2d_PrivateKey(pkey, &p) != privateLen) { | 
|  | logOpenSSLError("wrap_key"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *keyBlob = derData.release(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static EVP_PKEY* unwrap_key(const uint8_t* keyBlob, const size_t keyBlobLength) { | 
|  | long publicLen = 0; | 
|  | long privateLen = 0; | 
|  | const uint8_t* p = keyBlob; | 
|  | const uint8_t* const end = keyBlob + keyBlobLength; | 
|  |  | 
|  | if (keyBlob == NULL) { | 
|  | ALOGE("supplied key blob was NULL"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | int type = 0; | 
|  | if (keyBlobLength < (get_softkey_header_size() + sizeof(type) + sizeof(publicLen) + 1 + | 
|  | sizeof(privateLen) + 1)) { | 
|  | ALOGE("key blob appears to be truncated"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | if (!is_softkey(p, keyBlobLength)) { | 
|  | ALOGE("cannot read key; it was not made by this keymaster"); | 
|  | return NULL; | 
|  | } | 
|  | p += get_softkey_header_size(); | 
|  |  | 
|  | for (size_t i = 0; i < sizeof(type); i++) { | 
|  | type = (type << 8) | *p++; | 
|  | } | 
|  |  | 
|  | for (size_t i = 0; i < sizeof(type); i++) { | 
|  | publicLen = (publicLen << 8) | *p++; | 
|  | } | 
|  | if (p + publicLen > end) { | 
|  | ALOGE("public key length encoding error: size=%ld, end=%td", publicLen, end - p); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | p += publicLen; | 
|  | if (end - p < 2) { | 
|  | ALOGE("private key truncated"); | 
|  | return NULL; | 
|  | } | 
|  | for (size_t i = 0; i < sizeof(type); i++) { | 
|  | privateLen = (privateLen << 8) | *p++; | 
|  | } | 
|  | if (p + privateLen > end) { | 
|  | ALOGE("private key length encoding error: size=%ld, end=%td", privateLen, end - p); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | Unique_EVP_PKEY pkey(EVP_PKEY_new()); | 
|  | if (pkey.get() == NULL) { | 
|  | logOpenSSLError("unwrap_key"); | 
|  | return NULL; | 
|  | } | 
|  | EVP_PKEY* tmp = pkey.get(); | 
|  |  | 
|  | if (d2i_PrivateKey(type, &tmp, &p, privateLen) == NULL) { | 
|  | logOpenSSLError("unwrap_key"); | 
|  | return NULL; | 
|  | } | 
|  |  | 
|  | return pkey.release(); | 
|  | } | 
|  |  | 
|  | static int generate_dsa_keypair(EVP_PKEY* pkey, const keymaster_dsa_keygen_params_t* dsa_params) { | 
|  | if (dsa_params->key_size < 512) { | 
|  | ALOGI("Requested DSA key size is too small (<512)"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_DSA dsa(DSA_new()); | 
|  |  | 
|  | if (dsa_params->generator_len == 0 || dsa_params->prime_p_len == 0 || | 
|  | dsa_params->prime_q_len == 0 || dsa_params->generator == NULL || | 
|  | dsa_params->prime_p == NULL || dsa_params->prime_q == NULL) { | 
|  | if (DSA_generate_parameters_ex(dsa.get(), dsa_params->key_size, NULL, 0, NULL, NULL, | 
|  | NULL) != 1) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  | } else { | 
|  | dsa->g = BN_bin2bn(dsa_params->generator, dsa_params->generator_len, NULL); | 
|  | if (dsa->g == NULL) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dsa->p = BN_bin2bn(dsa_params->prime_p, dsa_params->prime_p_len, NULL); | 
|  | if (dsa->p == NULL) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | dsa->q = BN_bin2bn(dsa_params->prime_q, dsa_params->prime_q_len, NULL); | 
|  | if (dsa->q == NULL) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | if (DSA_generate_key(dsa.get()) != 1) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (EVP_PKEY_assign_DSA(pkey, dsa.get()) == 0) { | 
|  | logOpenSSLError("generate_dsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  | release_because_ownership_transferred(dsa); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int generate_ec_keypair(EVP_PKEY* pkey, const keymaster_ec_keygen_params_t* ec_params) { | 
|  | Unique_EC_GROUP group; | 
|  | switch (ec_params->field_size) { | 
|  | case 224: | 
|  | group.reset(EC_GROUP_new_by_curve_name(NID_secp224r1)); | 
|  | break; | 
|  | case 256: | 
|  | group.reset(EC_GROUP_new_by_curve_name(NID_X9_62_prime256v1)); | 
|  | break; | 
|  | case 384: | 
|  | group.reset(EC_GROUP_new_by_curve_name(NID_secp384r1)); | 
|  | break; | 
|  | case 521: | 
|  | group.reset(EC_GROUP_new_by_curve_name(NID_secp521r1)); | 
|  | break; | 
|  | default: | 
|  | break; | 
|  | } | 
|  |  | 
|  | if (group.get() == NULL) { | 
|  | logOpenSSLError("generate_ec_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | #if !defined(OPENSSL_IS_BORINGSSL) | 
|  | EC_GROUP_set_point_conversion_form(group.get(), POINT_CONVERSION_UNCOMPRESSED); | 
|  | EC_GROUP_set_asn1_flag(group.get(), OPENSSL_EC_NAMED_CURVE); | 
|  | #endif | 
|  |  | 
|  | /* initialize EC key */ | 
|  | Unique_EC_KEY eckey(EC_KEY_new()); | 
|  | if (eckey.get() == NULL) { | 
|  | logOpenSSLError("generate_ec_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (EC_KEY_set_group(eckey.get(), group.get()) != 1) { | 
|  | logOpenSSLError("generate_ec_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (EC_KEY_generate_key(eckey.get()) != 1 || EC_KEY_check_key(eckey.get()) < 0) { | 
|  | logOpenSSLError("generate_ec_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (EVP_PKEY_assign_EC_KEY(pkey, eckey.get()) == 0) { | 
|  | logOpenSSLError("generate_ec_keypair"); | 
|  | return -1; | 
|  | } | 
|  | release_because_ownership_transferred(eckey); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int generate_rsa_keypair(EVP_PKEY* pkey, const keymaster_rsa_keygen_params_t* rsa_params) { | 
|  | Unique_BIGNUM bn(BN_new()); | 
|  | if (bn.get() == NULL) { | 
|  | logOpenSSLError("generate_rsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (BN_set_word(bn.get(), rsa_params->public_exponent) == 0) { | 
|  | logOpenSSLError("generate_rsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* initialize RSA */ | 
|  | Unique_RSA rsa(RSA_new()); | 
|  | if (rsa.get() == NULL) { | 
|  | logOpenSSLError("generate_rsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (!RSA_generate_key_ex(rsa.get(), rsa_params->modulus_size, bn.get(), NULL) || | 
|  | RSA_check_key(rsa.get()) < 0) { | 
|  | logOpenSSLError("generate_rsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (EVP_PKEY_assign_RSA(pkey, rsa.get()) == 0) { | 
|  | logOpenSSLError("generate_rsa_keypair"); | 
|  | return -1; | 
|  | } | 
|  | release_because_ownership_transferred(rsa); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __attribute__((visibility("default"))) int openssl_generate_keypair( | 
|  | const keymaster0_device_t*, const keymaster_keypair_t key_type, const void* key_params, | 
|  | uint8_t** keyBlob, size_t* keyBlobLength) { | 
|  | Unique_EVP_PKEY pkey(EVP_PKEY_new()); | 
|  | if (pkey.get() == NULL) { | 
|  | logOpenSSLError("openssl_generate_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (key_params == NULL) { | 
|  | ALOGW("key_params == null"); | 
|  | return -1; | 
|  | } else if (key_type == TYPE_DSA) { | 
|  | const keymaster_dsa_keygen_params_t* dsa_params = | 
|  | (const keymaster_dsa_keygen_params_t*)key_params; | 
|  | generate_dsa_keypair(pkey.get(), dsa_params); | 
|  | } else if (key_type == TYPE_EC) { | 
|  | const keymaster_ec_keygen_params_t* ec_params = | 
|  | (const keymaster_ec_keygen_params_t*)key_params; | 
|  | generate_ec_keypair(pkey.get(), ec_params); | 
|  | } else if (key_type == TYPE_RSA) { | 
|  | const keymaster_rsa_keygen_params_t* rsa_params = | 
|  | (const keymaster_rsa_keygen_params_t*)key_params; | 
|  | generate_rsa_keypair(pkey.get(), rsa_params); | 
|  | } else { | 
|  | ALOGW("Unsupported key type %d", key_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), keyBlob, keyBlobLength)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __attribute__((visibility("default"))) int openssl_import_keypair(const keymaster0_device_t*, | 
|  | const uint8_t* key, | 
|  | const size_t key_length, | 
|  | uint8_t** key_blob, | 
|  | size_t* key_blob_length) { | 
|  | if (key == NULL) { | 
|  | ALOGW("input key == NULL"); | 
|  | return -1; | 
|  | } else if (key_blob == NULL || key_blob_length == NULL) { | 
|  | ALOGW("output key blob or length == NULL"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_PKCS8_PRIV_KEY_INFO pkcs8(d2i_PKCS8_PRIV_KEY_INFO(NULL, &key, key_length)); | 
|  | if (pkcs8.get() == NULL) { | 
|  | logOpenSSLError("openssl_import_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | /* assign to EVP */ | 
|  | Unique_EVP_PKEY pkey(EVP_PKCS82PKEY(pkcs8.get())); | 
|  | if (pkey.get() == NULL) { | 
|  | logOpenSSLError("openssl_import_keypair"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (wrap_key(pkey.get(), EVP_PKEY_type(pkey->type), key_blob, key_blob_length)) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __attribute__((visibility("default"))) int openssl_get_keypair_public(const keymaster0_device_t*, | 
|  | const uint8_t* key_blob, | 
|  | const size_t key_blob_length, | 
|  | uint8_t** x509_data, | 
|  | size_t* x509_data_length) { | 
|  | if (x509_data == NULL || x509_data_length == NULL) { | 
|  | ALOGW("output public key buffer == NULL"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_EVP_PKEY pkey(unwrap_key(key_blob, key_blob_length)); | 
|  | if (pkey.get() == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int len = i2d_PUBKEY(pkey.get(), NULL); | 
|  | if (len <= 0) { | 
|  | logOpenSSLError("openssl_get_keypair_public"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | UniquePtr<uint8_t, Malloc_Free> key(static_cast<uint8_t*>(malloc(len))); | 
|  | if (key.get() == NULL) { | 
|  | ALOGE("Could not allocate memory for public key data"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char* tmp = reinterpret_cast<unsigned char*>(key.get()); | 
|  | if (i2d_PUBKEY(pkey.get(), &tmp) != len) { | 
|  | logOpenSSLError("openssl_get_keypair_public"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | ALOGV("Length of x509 data is %d", len); | 
|  | *x509_data_length = len; | 
|  | *x509_data = key.release(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sign_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, const uint8_t* data, | 
|  | const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); | 
|  | if (dsa.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_dsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned int dsaSize = DSA_size(dsa.get()); | 
|  | UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dsaSize))); | 
|  | if (signedDataPtr.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_dsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); | 
|  | if (DSA_sign(0, data, dataLength, tmp, &dsaSize, dsa.get()) <= 0) { | 
|  | logOpenSSLError("openssl_sign_dsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *signedDataLength = dsaSize; | 
|  | *signedData = signedDataPtr.release(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sign_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, const uint8_t* data, | 
|  | const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); | 
|  | if (eckey.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_ec"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned int ecdsaSize = ECDSA_size(eckey.get()); | 
|  | UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(ecdsaSize))); | 
|  | if (signedDataPtr.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_ec"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); | 
|  | if (ECDSA_sign(0, data, dataLength, tmp, &ecdsaSize, eckey.get()) <= 0) { | 
|  | logOpenSSLError("openssl_sign_ec"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *signedDataLength = ecdsaSize; | 
|  | *signedData = signedDataPtr.release(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int sign_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, const uint8_t* data, | 
|  | const size_t dataLength, uint8_t** signedData, size_t* signedDataLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } else if (sign_params->padding_type != PADDING_NONE) { | 
|  | ALOGW("Cannot handle padding type %d", sign_params->padding_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); | 
|  | if (rsa.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_rsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | UniquePtr<uint8_t, Malloc_Free> signedDataPtr(reinterpret_cast<uint8_t*>(malloc(dataLength))); | 
|  | if (signedDataPtr.get() == NULL) { | 
|  | logOpenSSLError("openssl_sign_rsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char* tmp = reinterpret_cast<unsigned char*>(signedDataPtr.get()); | 
|  | if (RSA_private_encrypt(dataLength, data, tmp, rsa.get(), RSA_NO_PADDING) <= 0) { | 
|  | logOpenSSLError("openssl_sign_rsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | *signedDataLength = dataLength; | 
|  | *signedData = signedDataPtr.release(); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | __attribute__((visibility("default"))) int openssl_sign_data( | 
|  | const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, | 
|  | const size_t keyBlobLength, const uint8_t* data, const size_t dataLength, uint8_t** signedData, | 
|  | size_t* signedDataLength) { | 
|  | if (data == NULL) { | 
|  | ALOGW("input data to sign == NULL"); | 
|  | return -1; | 
|  | } else if (signedData == NULL || signedDataLength == NULL) { | 
|  | ALOGW("output signature buffer == NULL"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); | 
|  | if (pkey.get() == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int type = EVP_PKEY_type(pkey->type); | 
|  | if (type == EVP_PKEY_DSA) { | 
|  | const keymaster_dsa_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); | 
|  | return sign_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), data, | 
|  | dataLength, signedData, signedDataLength); | 
|  | } else if (type == EVP_PKEY_EC) { | 
|  | const keymaster_ec_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_ec_sign_params_t*>(params); | 
|  | return sign_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), data, | 
|  | dataLength, signedData, signedDataLength); | 
|  | } else if (type == EVP_PKEY_RSA) { | 
|  | const keymaster_rsa_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); | 
|  | return sign_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), data, | 
|  | dataLength, signedData, signedDataLength); | 
|  | } else { | 
|  | ALOGW("Unsupported key type"); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | static int verify_dsa(EVP_PKEY* pkey, keymaster_dsa_sign_params_t* sign_params, | 
|  | const uint8_t* signedData, const size_t signedDataLength, | 
|  | const uint8_t* signature, const size_t signatureLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_DSA dsa(EVP_PKEY_get1_DSA(pkey)); | 
|  | if (dsa.get() == NULL) { | 
|  | logOpenSSLError("openssl_verify_dsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (DSA_verify(0, signedData, signedDataLength, signature, signatureLength, dsa.get()) <= 0) { | 
|  | logOpenSSLError("openssl_verify_dsa"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int verify_ec(EVP_PKEY* pkey, keymaster_ec_sign_params_t* sign_params, | 
|  | const uint8_t* signedData, const size_t signedDataLength, | 
|  | const uint8_t* signature, const size_t signatureLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_EC_KEY eckey(EVP_PKEY_get1_EC_KEY(pkey)); | 
|  | if (eckey.get() == NULL) { | 
|  | logOpenSSLError("openssl_verify_ec"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | if (ECDSA_verify(0, signedData, signedDataLength, signature, signatureLength, eckey.get()) <= | 
|  | 0) { | 
|  | logOpenSSLError("openssl_verify_ec"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static int verify_rsa(EVP_PKEY* pkey, keymaster_rsa_sign_params_t* sign_params, | 
|  | const uint8_t* signedData, const size_t signedDataLength, | 
|  | const uint8_t* signature, const size_t signatureLength) { | 
|  | if (sign_params->digest_type != DIGEST_NONE) { | 
|  | ALOGW("Cannot handle digest type %d", sign_params->digest_type); | 
|  | return -1; | 
|  | } else if (sign_params->padding_type != PADDING_NONE) { | 
|  | ALOGW("Cannot handle padding type %d", sign_params->padding_type); | 
|  | return -1; | 
|  | } else if (signatureLength != signedDataLength) { | 
|  | ALOGW("signed data length must be signature length"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_RSA rsa(EVP_PKEY_get1_RSA(pkey)); | 
|  | if (rsa.get() == NULL) { | 
|  | logOpenSSLError("openssl_verify_data"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | UniquePtr<uint8_t[]> dataPtr(new uint8_t[signedDataLength]); | 
|  | if (dataPtr.get() == NULL) { | 
|  | logOpenSSLError("openssl_verify_data"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | unsigned char* tmp = reinterpret_cast<unsigned char*>(dataPtr.get()); | 
|  | if (!RSA_public_decrypt(signatureLength, signature, tmp, rsa.get(), RSA_NO_PADDING)) { | 
|  | logOpenSSLError("openssl_verify_data"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int result = 0; | 
|  | for (size_t i = 0; i < signedDataLength; i++) { | 
|  | result |= tmp[i] ^ signedData[i]; | 
|  | } | 
|  |  | 
|  | return result == 0 ? 0 : -1; | 
|  | } | 
|  |  | 
|  | __attribute__((visibility("default"))) int openssl_verify_data( | 
|  | const keymaster0_device_t*, const void* params, const uint8_t* keyBlob, | 
|  | const size_t keyBlobLength, const uint8_t* signedData, const size_t signedDataLength, | 
|  | const uint8_t* signature, const size_t signatureLength) { | 
|  | if (signedData == NULL || signature == NULL) { | 
|  | ALOGW("data or signature buffers == NULL"); | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | Unique_EVP_PKEY pkey(unwrap_key(keyBlob, keyBlobLength)); | 
|  | if (pkey.get() == NULL) { | 
|  | return -1; | 
|  | } | 
|  |  | 
|  | int type = EVP_PKEY_type(pkey->type); | 
|  | if (type == EVP_PKEY_DSA) { | 
|  | const keymaster_dsa_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_dsa_sign_params_t*>(params); | 
|  | return verify_dsa(pkey.get(), const_cast<keymaster_dsa_sign_params_t*>(sign_params), | 
|  | signedData, signedDataLength, signature, signatureLength); | 
|  | } else if (type == EVP_PKEY_RSA) { | 
|  | const keymaster_rsa_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_rsa_sign_params_t*>(params); | 
|  | return verify_rsa(pkey.get(), const_cast<keymaster_rsa_sign_params_t*>(sign_params), | 
|  | signedData, signedDataLength, signature, signatureLength); | 
|  | } else if (type == EVP_PKEY_EC) { | 
|  | const keymaster_ec_sign_params_t* sign_params = | 
|  | reinterpret_cast<const keymaster_ec_sign_params_t*>(params); | 
|  | return verify_ec(pkey.get(), const_cast<keymaster_ec_sign_params_t*>(sign_params), | 
|  | signedData, signedDataLength, signature, signatureLength); | 
|  | } else { | 
|  | ALOGW("Unsupported key type %d", type); | 
|  | return -1; | 
|  | } | 
|  | } | 
|  |  | 
|  | /* Close an opened OpenSSL instance */ | 
|  | static int openssl_close(hw_device_t* dev) { | 
|  | delete dev; | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | /* | 
|  | * Generic device handling | 
|  | */ | 
|  | __attribute__((visibility("default"))) int openssl_open(const hw_module_t* module, const char* name, | 
|  | hw_device_t** device) { | 
|  | if (strcmp(name, KEYSTORE_KEYMASTER) != 0) | 
|  | return -EINVAL; | 
|  |  | 
|  | Unique_keymaster_device_t dev(new keymaster0_device_t); | 
|  | if (dev.get() == NULL) | 
|  | return -ENOMEM; | 
|  |  | 
|  | dev->common.tag = HARDWARE_DEVICE_TAG; | 
|  | dev->common.version = 1; | 
|  | dev->common.module = (struct hw_module_t*)module; | 
|  | dev->common.close = openssl_close; | 
|  |  | 
|  | dev->flags = KEYMASTER_SOFTWARE_ONLY | KEYMASTER_BLOBS_ARE_STANDALONE | KEYMASTER_SUPPORTS_DSA | | 
|  | KEYMASTER_SUPPORTS_EC; | 
|  |  | 
|  | dev->generate_keypair = openssl_generate_keypair; | 
|  | dev->import_keypair = openssl_import_keypair; | 
|  | dev->get_keypair_public = openssl_get_keypair_public; | 
|  | dev->delete_keypair = NULL; | 
|  | dev->delete_all = NULL; | 
|  | dev->sign_data = openssl_sign_data; | 
|  | dev->verify_data = openssl_verify_data; | 
|  |  | 
|  | ERR_load_crypto_strings(); | 
|  | ERR_load_BIO_strings(); | 
|  |  | 
|  | *device = reinterpret_cast<hw_device_t*>(dev.release()); | 
|  |  | 
|  | return 0; | 
|  | } | 
|  |  | 
|  | static struct hw_module_methods_t keystore_module_methods = { | 
|  | .open = openssl_open, | 
|  | }; | 
|  |  | 
|  | struct keystore_module softkeymaster_module __attribute__((visibility("default"))) = { | 
|  | .common = | 
|  | { | 
|  | .tag = HARDWARE_MODULE_TAG, | 
|  | .module_api_version = KEYMASTER_MODULE_API_VERSION_0_2, | 
|  | .hal_api_version = HARDWARE_HAL_API_VERSION, | 
|  | .id = KEYSTORE_HARDWARE_MODULE_ID, | 
|  | .name = "Keymaster OpenSSL HAL", | 
|  | .author = "The Android Open Source Project", | 
|  | .methods = &keystore_module_methods, | 
|  | .dso = 0, | 
|  | .reserved = {}, | 
|  | }, | 
|  | }; |