blob: 56dd3f4a57f32394efcbddc9801da05c863d8396 [file] [log] [blame]
/*
* Copyright 2020, The Android Open Source Project
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <certificate_utils.h>
#include <openssl/err.h>
#include <openssl/evp.h>
#include <openssl/mem.h>
#include <openssl/x509v3.h>
#include <functional>
#include <limits>
#include <string>
#include <variant>
#include <vector>
namespace keystore {
namespace {
constexpr int kDigitalSignatureKeyUsageBit = 0;
constexpr int kKeyEnciphermentKeyUsageBit = 2;
constexpr int kDataEnciphermentKeyUsageBit = 3;
constexpr int kKeyCertSignBit = 5;
constexpr int kMaxKeyUsageBit = 8;
DEFINE_OPENSSL_OBJECT_POINTER(ASN1_STRING);
DEFINE_OPENSSL_OBJECT_POINTER(RSA_PSS_PARAMS);
DEFINE_OPENSSL_OBJECT_POINTER(AUTHORITY_KEYID);
DEFINE_OPENSSL_OBJECT_POINTER(BASIC_CONSTRAINTS);
DEFINE_OPENSSL_OBJECT_POINTER(X509_ALGOR);
} // namespace
std::variant<CertUtilsError, X509_NAME_Ptr> makeCommonName(const std::string& name) {
X509_NAME_Ptr x509_name(X509_NAME_new());
if (!x509_name) {
return CertUtilsError::BoringSsl;
}
if (!X509_NAME_add_entry_by_txt(x509_name.get(), "CN", MBSTRING_ASC,
reinterpret_cast<const uint8_t*>(name.c_str()), name.length(),
-1 /* loc */, 0 /* set */)) {
return CertUtilsError::BoringSsl;
}
return x509_name;
}
std::variant<CertUtilsError, std::vector<uint8_t>> makeKeyId(const X509* cert) {
std::vector<uint8_t> keyid(20);
unsigned int len;
if (!X509_pubkey_digest(cert, EVP_sha1(), keyid.data(), &len)) {
return CertUtilsError::Encoding;
}
return keyid;
}
std::variant<CertUtilsError, AUTHORITY_KEYID_Ptr>
makeAuthorityKeyExtension(const std::vector<uint8_t>& keyid) {
AUTHORITY_KEYID_Ptr auth_key(AUTHORITY_KEYID_new());
if (!auth_key) {
return CertUtilsError::MemoryAllocation;
}
auth_key->keyid = ASN1_OCTET_STRING_new();
if (auth_key->keyid == nullptr) {
return CertUtilsError::MemoryAllocation;
}
if (!ASN1_OCTET_STRING_set(auth_key->keyid, keyid.data(), keyid.size())) {
return CertUtilsError::BoringSsl;
}
return auth_key;
}
std::variant<CertUtilsError, ASN1_OCTET_STRING_Ptr>
makeSubjectKeyExtension(const std::vector<uint8_t>& keyid) {
// Build OCTET_STRING
ASN1_OCTET_STRING_Ptr keyid_str(ASN1_OCTET_STRING_new());
if (!keyid_str || !ASN1_OCTET_STRING_set(keyid_str.get(), keyid.data(), keyid.size())) {
return CertUtilsError::BoringSsl;
}
return keyid_str;
}
std::variant<CertUtilsError, BASIC_CONSTRAINTS_Ptr>
makeBasicConstraintsExtension(bool is_ca, std::optional<int> path_length) {
BASIC_CONSTRAINTS_Ptr bcons(BASIC_CONSTRAINTS_new());
if (!bcons) {
return CertUtilsError::MemoryAllocation;
}
bcons->ca = is_ca;
bcons->pathlen = nullptr;
if (path_length) {
bcons->pathlen = ASN1_INTEGER_new();
if (bcons->pathlen == nullptr || !ASN1_INTEGER_set(bcons->pathlen, *path_length)) {
return CertUtilsError::BoringSsl;
}
}
return bcons;
}
std::variant<CertUtilsError, ASN1_BIT_STRING_Ptr>
makeKeyUsageExtension(bool is_signing_key, bool is_encryption_key, bool is_cert_key) {
// Build BIT_STRING with correct contents.
ASN1_BIT_STRING_Ptr key_usage(ASN1_BIT_STRING_new());
if (!key_usage) {
return CertUtilsError::BoringSsl;
}
for (size_t i = 0; i <= kMaxKeyUsageBit; ++i) {
if (!ASN1_BIT_STRING_set_bit(key_usage.get(), i, 0)) {
return CertUtilsError::BoringSsl;
}
}
if (is_signing_key) {
if (!ASN1_BIT_STRING_set_bit(key_usage.get(), kDigitalSignatureKeyUsageBit, 1)) {
return CertUtilsError::BoringSsl;
}
}
if (is_encryption_key) {
if (!ASN1_BIT_STRING_set_bit(key_usage.get(), kKeyEnciphermentKeyUsageBit, 1) ||
!ASN1_BIT_STRING_set_bit(key_usage.get(), kDataEnciphermentKeyUsageBit, 1)) {
return CertUtilsError::BoringSsl;
}
}
if (is_cert_key) {
if (!ASN1_BIT_STRING_set_bit(key_usage.get(), kKeyCertSignBit, 1)) {
return CertUtilsError::BoringSsl;
}
}
return key_usage;
}
// Creates a rump certificate structure with serial, subject and issuer names, as well as
// activation and expiry date.
// Callers should pass an empty X509_Ptr and check the return value for CertUtilsError::Ok (0)
// before accessing the result.
std::variant<CertUtilsError, X509_Ptr>
makeCertRump(const uint32_t serial, const char subject[], const uint64_t activeDateTimeMilliSeconds,
const uint64_t usageExpireDateTimeMilliSeconds) {
// Sanitize pointer arguments.
if (!subject || strlen(subject) == 0) {
return CertUtilsError::InvalidArgument;
}
// Create certificate structure.
X509_Ptr certificate(X509_new());
if (!certificate) {
return CertUtilsError::BoringSsl;
}
// Set the X509 version.
if (!X509_set_version(certificate.get(), 2 /* version 3, but zero-based */)) {
return CertUtilsError::BoringSsl;
}
// Set the certificate serialNumber
ASN1_INTEGER_Ptr serialNumber(ASN1_INTEGER_new());
if (!serialNumber || !ASN1_INTEGER_set(serialNumber.get(), serial) ||
!X509_set_serialNumber(certificate.get(), serialNumber.get() /* Don't release; copied */))
return CertUtilsError::BoringSsl;
// Set Subject Name
auto subjectName = makeCommonName(subject);
if (auto x509_subject = std::get_if<X509_NAME_Ptr>(&subjectName)) {
if (!X509_set_subject_name(certificate.get(), x509_subject->get() /* copied */)) {
return CertUtilsError::BoringSsl;
}
} else {
return std::get<CertUtilsError>(subjectName);
}
// Set activation date.
ASN1_TIME_Ptr notBefore(ASN1_TIME_new());
if (!notBefore || !ASN1_TIME_set(notBefore.get(), activeDateTimeMilliSeconds / 1000) ||
!X509_set_notBefore(certificate.get(), notBefore.get() /* Don't release; copied */))
return CertUtilsError::BoringSsl;
// Set expiration date.
time_t notAfterTime;
notAfterTime = (time_t)std::min((uint64_t)std::numeric_limits<time_t>::max(),
usageExpireDateTimeMilliSeconds / 1000);
ASN1_TIME_Ptr notAfter(ASN1_TIME_new());
if (!notAfter || !ASN1_TIME_set(notAfter.get(), notAfterTime) ||
!X509_set_notAfter(certificate.get(), notAfter.get() /* Don't release; copied */)) {
return CertUtilsError::BoringSsl;
}
return certificate;
}
std::variant<CertUtilsError, X509_Ptr>
makeCert(const EVP_PKEY* evp_pkey, const uint32_t serial, const char subject[],
const uint64_t activeDateTimeMilliSeconds, const uint64_t usageExpireDateTimeMilliSeconds,
bool addSubjectKeyIdEx, std::optional<KeyUsageExtension> keyUsageEx,
std::optional<BasicConstraintsExtension> basicConstraints) {
// Make the rump certificate with serial, subject, not before and not after dates.
auto certificateV =
makeCertRump(serial, subject, activeDateTimeMilliSeconds, usageExpireDateTimeMilliSeconds);
if (auto error = std::get_if<CertUtilsError>(&certificateV)) {
return *error;
}
auto certificate = std::move(std::get<X509_Ptr>(certificateV));
// Set the public key.
if (!X509_set_pubkey(certificate.get(), const_cast<EVP_PKEY*>(evp_pkey))) {
return CertUtilsError::BoringSsl;
}
if (keyUsageEx) {
// Make and add the key usage extension.
auto key_usage_extensionV = makeKeyUsageExtension(
keyUsageEx->isSigningKey, keyUsageEx->isEncryptionKey, keyUsageEx->isCertificationKey);
if (auto error = std::get_if<CertUtilsError>(&key_usage_extensionV)) {
return *error;
}
auto key_usage_extension = std::move(std::get<ASN1_BIT_STRING_Ptr>(key_usage_extensionV));
if (!X509_add1_ext_i2d(certificate.get(), NID_key_usage,
key_usage_extension.get() /* Don't release; copied */,
true /* critical */, 0 /* flags */)) {
return CertUtilsError::BoringSsl;
}
}
if (basicConstraints) {
// Make and add basic constraints
auto basic_constraints_extensionV =
makeBasicConstraintsExtension(basicConstraints->isCa, basicConstraints->pathLength);
if (auto error = std::get_if<CertUtilsError>(&basic_constraints_extensionV)) {
return *error;
}
auto basic_constraints_extension =
std::move(std::get<BASIC_CONSTRAINTS_Ptr>(basic_constraints_extensionV));
if (!X509_add1_ext_i2d(certificate.get(), NID_basic_constraints,
basic_constraints_extension.get() /* Don't release; copied */,
true /* critical */, 0 /* flags */)) {
return CertUtilsError::BoringSsl;
}
}
if (addSubjectKeyIdEx) {
// Make and add subject key id extension.
auto keyidV = makeKeyId(certificate.get());
if (auto error = std::get_if<CertUtilsError>(&keyidV)) {
return *error;
}
auto& keyid = std::get<std::vector<uint8_t>>(keyidV);
auto subject_key_extensionV = makeSubjectKeyExtension(keyid);
if (auto error = std::get_if<CertUtilsError>(&subject_key_extensionV)) {
return *error;
}
auto subject_key_extension =
std::move(std::get<ASN1_OCTET_STRING_Ptr>(subject_key_extensionV));
if (!X509_add1_ext_i2d(certificate.get(), NID_subject_key_identifier,
subject_key_extension.get() /* Don't release; copied */,
false /* critical */, 0 /* flags */)) {
return CertUtilsError::BoringSsl;
}
}
return certificate;
}
CertUtilsError setIssuer(X509* cert, const X509* signingCert, bool addAuthKeyExt) {
X509_NAME* issuerName(X509_get_subject_name(signingCert));
// Set Issuer Name
if (issuerName) {
if (!X509_set_issuer_name(cert, issuerName /* copied */)) {
return CertUtilsError::BoringSsl;
}
} else {
return CertUtilsError::Encoding;
}
if (addAuthKeyExt) {
// Make and add authority key extension - self signed.
auto keyidV = makeKeyId(signingCert);
if (auto error = std::get_if<CertUtilsError>(&keyidV)) {
return *error;
}
auto& keyid = std::get<std::vector<uint8_t>>(keyidV);
auto auth_key_extensionV = makeAuthorityKeyExtension(keyid);
if (auto error = std::get_if<CertUtilsError>(&auth_key_extensionV)) {
return *error;
}
auto auth_key_extension = std::move(std::get<AUTHORITY_KEYID_Ptr>(auth_key_extensionV));
if (!X509_add1_ext_i2d(cert, NID_authority_key_identifier, auth_key_extension.get(), false,
0)) {
return CertUtilsError::BoringSsl;
}
}
return CertUtilsError::Ok;
}
// Takes a certificate a signing certificate and the raw private signing_key. And signs
// the certificate with the latter.
CertUtilsError signCert(X509* certificate, EVP_PKEY* signing_key) {
if (certificate == nullptr) {
return CertUtilsError::UnexpectedNullPointer;
}
if (!X509_sign(certificate, signing_key, EVP_sha256())) {
return CertUtilsError::BoringSsl;
}
return CertUtilsError::Ok;
}
std::variant<CertUtilsError, std::vector<uint8_t>> encodeCert(X509* certificate) {
int len = i2d_X509(certificate, nullptr);
if (len < 0) {
return CertUtilsError::BoringSsl;
}
auto result = std::vector<uint8_t>(len);
uint8_t* p = result.data();
if (i2d_X509(certificate, &p) < 0) {
return CertUtilsError::BoringSsl;
}
return result;
}
CertUtilsError setRsaDigestAlgorField(X509_ALGOR** alg_ptr, const EVP_MD* digest) {
if (alg_ptr == nullptr || digest == nullptr) {
return CertUtilsError::UnexpectedNullPointer;
}
*alg_ptr = X509_ALGOR_new();
if (*alg_ptr == nullptr) {
return CertUtilsError::MemoryAllocation;
}
X509_ALGOR_set_md(*alg_ptr, digest);
return CertUtilsError::Ok;
}
CertUtilsError setPssMaskGeneratorField(X509_ALGOR** alg_ptr, const EVP_MD* digest) {
X509_ALGOR* mgf1_digest = nullptr;
if (auto error = setRsaDigestAlgorField(&mgf1_digest, digest)) {
return error;
}
X509_ALGOR_Ptr mgf1_digest_ptr(mgf1_digest);
ASN1_OCTET_STRING* mgf1_digest_algor_str = nullptr;
if (!ASN1_item_pack(mgf1_digest, ASN1_ITEM_rptr(X509_ALGOR), &mgf1_digest_algor_str)) {
return CertUtilsError::Encoding;
}
ASN1_OCTET_STRING_Ptr mgf1_digest_algor_str_ptr(mgf1_digest_algor_str);
*alg_ptr = X509_ALGOR_new();
if (*alg_ptr == nullptr) {
return CertUtilsError::MemoryAllocation;
}
X509_ALGOR_set0(*alg_ptr, OBJ_nid2obj(NID_mgf1), V_ASN1_SEQUENCE, mgf1_digest_algor_str);
// *alg_ptr took ownership of the octet string
mgf1_digest_algor_str_ptr.release();
return CertUtilsError::Ok;
}
static CertUtilsError setSaltLength(RSA_PSS_PARAMS* pss_params, unsigned length) {
pss_params->saltLength = ASN1_INTEGER_new();
if (pss_params->saltLength == nullptr) {
return CertUtilsError::MemoryAllocation;
}
if (!ASN1_INTEGER_set(pss_params->saltLength, length)) {
return CertUtilsError::Encoding;
};
return CertUtilsError::Ok;
}
std::variant<CertUtilsError, ASN1_STRING_Ptr> buildRsaPssParameter(Digest digest) {
RSA_PSS_PARAMS_Ptr pss(RSA_PSS_PARAMS_new());
if (!pss) {
return CertUtilsError::MemoryAllocation;
}
const EVP_MD* md = nullptr;
switch (digest) {
case Digest::SHA1:
break;
case Digest::SHA224:
md = EVP_sha224();
break;
case Digest::SHA256:
md = EVP_sha256();
break;
case Digest::SHA384:
md = EVP_sha384();
break;
case Digest::SHA512:
md = EVP_sha512();
break;
default:
return CertUtilsError::InvalidArgument;
}
if (md != nullptr) {
if (auto error = setSaltLength(pss.get(), EVP_MD_size(md))) {
return error;
}
if (auto error = setRsaDigestAlgorField(&pss->hashAlgorithm, md)) {
return error;
}
if (auto error = setPssMaskGeneratorField(&pss->maskGenAlgorithm, md)) {
return error;
}
}
ASN1_STRING* algo_str = nullptr;
if (!ASN1_item_pack(pss.get(), ASN1_ITEM_rptr(RSA_PSS_PARAMS), &algo_str)) {
return CertUtilsError::BoringSsl;
}
return ASN1_STRING_Ptr(algo_str);
}
CertUtilsError makeAndSetAlgo(X509_ALGOR* algo_field, Algo algo, Padding padding, Digest digest) {
if (algo_field == nullptr) {
return CertUtilsError::UnexpectedNullPointer;
}
ASN1_STRING_Ptr param;
int param_type = V_ASN1_UNDEF;
int nid = 0;
switch (algo) {
case Algo::ECDSA:
switch (digest) {
case Digest::SHA1:
nid = NID_ecdsa_with_SHA1;
break;
case Digest::SHA224:
nid = NID_ecdsa_with_SHA224;
break;
case Digest::SHA256:
nid = NID_ecdsa_with_SHA256;
break;
case Digest::SHA384:
nid = NID_ecdsa_with_SHA384;
break;
case Digest::SHA512:
nid = NID_ecdsa_with_SHA512;
break;
default:
return CertUtilsError::InvalidArgument;
}
break;
case Algo::RSA:
switch (padding) {
case Padding::PKCS1_5:
param_type = V_ASN1_NULL;
switch (digest) {
case Digest::SHA1:
nid = NID_sha1WithRSAEncryption;
break;
case Digest::SHA224:
nid = NID_sha224WithRSAEncryption;
break;
case Digest::SHA256:
nid = NID_sha256WithRSAEncryption;
break;
case Digest::SHA384:
nid = NID_sha384WithRSAEncryption;
break;
case Digest::SHA512:
nid = NID_sha512WithRSAEncryption;
break;
default:
return CertUtilsError::InvalidArgument;
}
break;
case Padding::PSS: {
auto v = buildRsaPssParameter(digest);
if (auto param_str = std::get_if<ASN1_STRING_Ptr>(&v)) {
param = std::move(*param_str);
param_type = V_ASN1_SEQUENCE;
nid = NID_rsassaPss;
} else {
return std::get<CertUtilsError>(v);
}
break;
}
default:
return CertUtilsError::InvalidArgument;
}
break;
default:
return CertUtilsError::InvalidArgument;
}
if (!X509_ALGOR_set0(algo_field, OBJ_nid2obj(nid), param_type, param.get())) {
return CertUtilsError::Encoding;
}
// The X509 struct took ownership.
param.release();
return CertUtilsError::Ok;
}
// This function allows for signing a
CertUtilsError signCertWith(X509* certificate,
std::function<std::vector<uint8_t>(const uint8_t*, size_t)> sign,
Algo algo, Padding padding, Digest digest) {
if (auto error = makeAndSetAlgo(certificate->sig_alg, algo, padding, digest)) {
return error;
}
if (auto error = makeAndSetAlgo(certificate->cert_info->signature, algo, padding, digest)) {
return error;
}
uint8_t* cert_buf = nullptr;
size_t buf_len = i2d_re_X509_tbs(certificate, &cert_buf);
if (buf_len < 0) {
return CertUtilsError::Encoding;
}
bssl::UniquePtr<uint8_t> free_cert_buf(cert_buf);
auto signature = sign(cert_buf, buf_len);
if (!ASN1_STRING_set(certificate->signature, signature.data(), signature.size())) {
return CertUtilsError::BoringSsl;
}
certificate->signature->flags &= ~(0x07);
certificate->signature->flags |= ASN1_STRING_FLAG_BITS_LEFT;
return CertUtilsError::Ok;
}
} // namespace keystore