blob: 34a0ecab36b94e6058464a847db437feb16cb20d [file] [log] [blame]
// Copyright 2020, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#![allow(dead_code)]
//! This module implements methods to load legacy keystore key blob files.
use crate::{
database::KeyMetaData,
error::{Error as KsError, ResponseCode},
key_parameter::{KeyParameter, KeyParameterValue},
super_key::SuperKeyManager,
utils::uid_to_android_user,
};
use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{
SecurityLevel::SecurityLevel, Tag::Tag, TagType::TagType,
};
use anyhow::{Context, Result};
use keystore2_crypto::{aes_gcm_decrypt, derive_key_from_password, ZVec};
use std::io::{ErrorKind, Read};
use std::{convert::TryInto, fs::File, path::Path, path::PathBuf};
const SUPPORTED_LEGACY_BLOB_VERSION: u8 = 3;
mod flags {
/// This flag is deprecated. It is here to support keys that have been written with this flag
/// set, but we don't create any new keys with this flag.
pub const ENCRYPTED: u8 = 1 << 0;
/// This flag is deprecated. It indicates that the blob was generated and thus owned by a
/// software fallback Keymaster implementation. Keymaster 1.0 was the last Keymaster version
/// that could be accompanied by a software fallback. With the removal of Keymaster 1.0
/// support, this flag is obsolete.
pub const FALLBACK: u8 = 1 << 1;
/// KEYSTORE_FLAG_SUPER_ENCRYPTED is for blobs that are already encrypted by KM but have
/// an additional layer of password-based encryption applied. The same encryption scheme is used
/// as KEYSTORE_FLAG_ENCRYPTED. The latter is deprecated.
pub const SUPER_ENCRYPTED: u8 = 1 << 2;
/// KEYSTORE_FLAG_CRITICAL_TO_DEVICE_ENCRYPTION is for blobs that are part of device encryption
/// flow so it receives special treatment from keystore. For example this blob will not be super
/// encrypted, and it will be stored separately under a unique UID instead. This flag should
/// only be available to system uid.
pub const CRITICAL_TO_DEVICE_ENCRYPTION: u8 = 1 << 3;
/// The blob is associated with the security level Strongbox as opposed to TEE.
pub const STRONGBOX: u8 = 1 << 4;
}
/// Lagacy key blob types.
mod blob_types {
/// A generic blob used for non sensitive unstructured blobs.
pub const GENERIC: u8 = 1;
/// This key is a super encryption key encrypted with AES128
/// and a password derived key.
pub const SUPER_KEY: u8 = 2;
// Used to be the KEY_PAIR type.
const _RESERVED: u8 = 3;
/// A KM key blob.
pub const KM_BLOB: u8 = 4;
/// A legacy key characteristics file. This has only a single list of Authorizations.
pub const KEY_CHARACTERISTICS: u8 = 5;
/// A key characteristics cache has both a hardware enforced and a software enforced list
/// of authorizations.
pub const KEY_CHARACTERISTICS_CACHE: u8 = 6;
/// Like SUPER_KEY but encrypted with AES256.
pub const SUPER_KEY_AES256: u8 = 7;
}
/// Error codes specific to the legacy blob module.
#[derive(thiserror::Error, Debug, Eq, PartialEq)]
pub enum Error {
/// Returned by the legacy blob module functions if an input stream
/// did not have enough bytes to read.
#[error("Input stream had insufficient bytes to read.")]
BadLen,
/// This error code is returned by `Blob::decode_alias` if it encounters
/// an invalid alias filename encoding.
#[error("Invalid alias filename encoding.")]
BadEncoding,
}
/// The blob payload, optionally with all information required to decrypt it.
#[derive(Debug, Eq, PartialEq)]
pub enum BlobValue {
/// A generic blob used for non sensitive unstructured blobs.
Generic(Vec<u8>),
/// A legacy key characteristics file. This has only a single list of Authorizations.
Characteristics(Vec<u8>),
/// A key characteristics cache has both a hardware enforced and a software enforced list
/// of authorizations.
CharacteristicsCache(Vec<u8>),
/// A password encrypted blob. Includes the initialization vector, the aead tag, the
/// ciphertext data, a salt, and a key size. The latter two are used for key derivation.
PwEncrypted {
/// Initialization vector.
iv: Vec<u8>,
/// Aead tag for integrity verification.
tag: Vec<u8>,
/// Ciphertext.
data: Vec<u8>,
/// Salt for key derivation.
salt: Vec<u8>,
/// Key sise for key derivation. This selects between AES128 GCM and AES256 GCM.
key_size: usize,
},
/// An encrypted blob. Includes the initialization vector, the aead tag, and the
/// ciphertext data. The key can be selected from context, i.e., the owner of the key
/// blob.
Encrypted {
/// Initialization vector.
iv: Vec<u8>,
/// Aead tag for integrity verification.
tag: Vec<u8>,
/// Ciphertext.
data: Vec<u8>,
},
/// Holds the plaintext key blob either after unwrapping an encrypted blob or when the
/// blob was stored in "plaintext" on disk. The "plaintext" of a key blob is not actual
/// plaintext because all KeyMint blobs are encrypted with a device bound key. The key
/// blob in this Variant is decrypted only with respect to any extra layer of encryption
/// that Keystore added.
Decrypted(ZVec),
}
/// Represents a loaded legacy key blob file.
#[derive(Debug, Eq, PartialEq)]
pub struct Blob {
flags: u8,
value: BlobValue,
}
/// This object represents a path that holds a legacy Keystore blob database.
pub struct LegacyBlobLoader {
path: PathBuf,
}
fn read_bool(stream: &mut dyn Read) -> Result<bool> {
const SIZE: usize = std::mem::size_of::<bool>();
let mut buffer: [u8; SIZE] = [0; SIZE];
stream.read_exact(&mut buffer).map(|_| buffer[0] != 0).context("In read_ne_bool.")
}
fn read_ne_u32(stream: &mut dyn Read) -> Result<u32> {
const SIZE: usize = std::mem::size_of::<u32>();
let mut buffer: [u8; SIZE] = [0; SIZE];
stream.read_exact(&mut buffer).map(|_| u32::from_ne_bytes(buffer)).context("In read_ne_u32.")
}
fn read_ne_i32(stream: &mut dyn Read) -> Result<i32> {
const SIZE: usize = std::mem::size_of::<i32>();
let mut buffer: [u8; SIZE] = [0; SIZE];
stream.read_exact(&mut buffer).map(|_| i32::from_ne_bytes(buffer)).context("In read_ne_i32.")
}
fn read_ne_i64(stream: &mut dyn Read) -> Result<i64> {
const SIZE: usize = std::mem::size_of::<i64>();
let mut buffer: [u8; SIZE] = [0; SIZE];
stream.read_exact(&mut buffer).map(|_| i64::from_ne_bytes(buffer)).context("In read_ne_i64.")
}
impl Blob {
/// This blob was generated with a fallback software KM device.
pub fn is_fallback(&self) -> bool {
self.flags & flags::FALLBACK != 0
}
/// This blob is encrypted and needs to be decrypted with the user specific master key
/// before use.
pub fn is_encrypted(&self) -> bool {
self.flags & (flags::SUPER_ENCRYPTED | flags::ENCRYPTED) != 0
}
/// This blob is critical to device encryption. It cannot be encrypted with the super key
/// because it is itself part of the key derivation process for the key encrypting the
/// super key.
pub fn is_critical_to_device_encryption(&self) -> bool {
self.flags & flags::CRITICAL_TO_DEVICE_ENCRYPTION != 0
}
/// This blob is associated with the Strongbox security level.
pub fn is_strongbox(&self) -> bool {
self.flags & flags::STRONGBOX != 0
}
/// Returns the payload data of this blob file.
pub fn value(&self) -> &BlobValue {
&self.value
}
/// Consume this blob structure and extract the payload.
pub fn take_value(self) -> BlobValue {
self.value
}
}
impl LegacyBlobLoader {
const IV_SIZE: usize = keystore2_crypto::IV_LENGTH;
const GCM_TAG_LENGTH: usize = keystore2_crypto::TAG_LENGTH;
const SALT_SIZE: usize = keystore2_crypto::SALT_LENGTH;
// The common header has the following structure:
// version (1 Byte)
// blob_type (1 Byte)
// flags (1 Byte)
// info (1 Byte)
// initialization_vector (16 Bytes)
// integrity (MD5 digest or gcb tag) (16 Bytes)
// length (4 Bytes)
const COMMON_HEADER_SIZE: usize = 4 + Self::IV_SIZE + Self::GCM_TAG_LENGTH + 4;
const VERSION_OFFSET: usize = 0;
const TYPE_OFFSET: usize = 1;
const FLAGS_OFFSET: usize = 2;
const SALT_SIZE_OFFSET: usize = 3;
const LENGTH_OFFSET: usize = 4 + Self::IV_SIZE + Self::GCM_TAG_LENGTH;
const IV_OFFSET: usize = 4;
const AEAD_TAG_OFFSET: usize = Self::IV_OFFSET + Self::IV_SIZE;
const DIGEST_OFFSET: usize = Self::IV_OFFSET + Self::IV_SIZE;
/// Construct a new LegacyBlobLoader with a root path of `path` relative to which it will
/// expect legacy key blob files.
pub fn new(path: &Path) -> Self {
Self { path: path.to_owned() }
}
/// Encodes an alias string as ascii character sequence in the range
/// ['+' .. '.'] and ['0' .. '~'].
/// Bytes with values in the range ['0' .. '~'] are represented as they are.
/// All other bytes are split into two characters as follows:
///
/// msb a a | b b b b b b
///
/// The most significant bits (a) are encoded:
/// a a character
/// 0 0 '+'
/// 0 1 ','
/// 1 0 '-'
/// 1 1 '.'
///
/// The 6 lower bits are represented with the range ['0' .. 'o']:
/// b(hex) character
/// 0x00 '0'
/// ...
/// 0x3F 'o'
///
/// The function cannot fail because we have a representation for each
/// of the 256 possible values of each byte.
pub fn encode_alias(name: &str) -> String {
let mut acc = String::new();
for c in name.bytes() {
match c {
b'0'..=b'~' => {
acc.push(c as char);
}
c => {
acc.push((b'+' + (c as u8 >> 6)) as char);
acc.push((b'0' + (c & 0x3F)) as char);
}
};
}
acc
}
/// This function reverses the encoding described in `encode_alias`.
/// This function can fail, because not all possible character
/// sequences are valid code points. And even if the encoding is valid,
/// the result may not be a valid UTF-8 sequence.
pub fn decode_alias(name: &str) -> Result<String> {
let mut multi: Option<u8> = None;
let mut s = Vec::<u8>::new();
for c in name.bytes() {
multi = match (c, multi) {
// m is set, we are processing the second part of a multi byte sequence
(b'0'..=b'o', Some(m)) => {
s.push(m | (c - b'0'));
None
}
(b'+'..=b'.', None) => Some((c - b'+') << 6),
(b'0'..=b'~', None) => {
s.push(c);
None
}
_ => {
return Err(Error::BadEncoding)
.context("In decode_alias: could not decode filename.")
}
};
}
if multi.is_some() {
return Err(Error::BadEncoding).context("In decode_alias: could not decode filename.");
}
String::from_utf8(s).context("In decode_alias: encoded alias was not valid UTF-8.")
}
fn new_from_stream(stream: &mut dyn Read) -> Result<Blob> {
let mut buffer = Vec::new();
stream.read_to_end(&mut buffer).context("In new_from_stream.")?;
if buffer.len() < Self::COMMON_HEADER_SIZE {
return Err(Error::BadLen).context("In new_from_stream.")?;
}
let version: u8 = buffer[Self::VERSION_OFFSET];
let flags: u8 = buffer[Self::FLAGS_OFFSET];
let blob_type: u8 = buffer[Self::TYPE_OFFSET];
let is_encrypted = flags & (flags::ENCRYPTED | flags::SUPER_ENCRYPTED) != 0;
let salt = match buffer[Self::SALT_SIZE_OFFSET] as usize {
Self::SALT_SIZE => Some(&buffer[buffer.len() - Self::SALT_SIZE..buffer.len()]),
_ => None,
};
if version != SUPPORTED_LEGACY_BLOB_VERSION {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context(format!("In new_from_stream: Unknown blob version: {}.", version));
}
let length = u32::from_be_bytes(
buffer[Self::LENGTH_OFFSET..Self::LENGTH_OFFSET + 4].try_into().unwrap(),
) as usize;
if buffer.len() < Self::COMMON_HEADER_SIZE + length {
return Err(Error::BadLen).context(format!(
"In new_from_stream. Expected: {} got: {}.",
Self::COMMON_HEADER_SIZE + length,
buffer.len()
));
}
let value = &buffer[Self::COMMON_HEADER_SIZE..Self::COMMON_HEADER_SIZE + length];
let iv = &buffer[Self::IV_OFFSET..Self::IV_OFFSET + Self::IV_SIZE];
let tag = &buffer[Self::AEAD_TAG_OFFSET..Self::AEAD_TAG_OFFSET + Self::GCM_TAG_LENGTH];
match (blob_type, is_encrypted, salt) {
(blob_types::GENERIC, _, _) => {
Ok(Blob { flags, value: BlobValue::Generic(value.to_vec()) })
}
(blob_types::KEY_CHARACTERISTICS, _, _) => {
Ok(Blob { flags, value: BlobValue::Characteristics(value.to_vec()) })
}
(blob_types::KEY_CHARACTERISTICS_CACHE, _, _) => {
Ok(Blob { flags, value: BlobValue::CharacteristicsCache(value.to_vec()) })
}
(blob_types::SUPER_KEY, _, Some(salt)) => Ok(Blob {
flags,
value: BlobValue::PwEncrypted {
iv: iv.to_vec(),
tag: tag.to_vec(),
data: value.to_vec(),
key_size: keystore2_crypto::AES_128_KEY_LENGTH,
salt: salt.to_vec(),
},
}),
(blob_types::SUPER_KEY_AES256, _, Some(salt)) => Ok(Blob {
flags,
value: BlobValue::PwEncrypted {
iv: iv.to_vec(),
tag: tag.to_vec(),
data: value.to_vec(),
key_size: keystore2_crypto::AES_256_KEY_LENGTH,
salt: salt.to_vec(),
},
}),
(blob_types::KM_BLOB, true, _) => Ok(Blob {
flags,
value: BlobValue::Encrypted {
iv: iv.to_vec(),
tag: tag.to_vec(),
data: value.to_vec(),
},
}),
(blob_types::KM_BLOB, false, _) => Ok(Blob {
flags,
value: BlobValue::Decrypted(value.try_into().context("In new_from_stream.")?),
}),
(blob_types::SUPER_KEY, _, None) | (blob_types::SUPER_KEY_AES256, _, None) => {
Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context("In new_from_stream: Super key without salt for key derivation.")
}
_ => Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED)).context(format!(
"In new_from_stream: Unknown blob type. {} {}",
blob_type, is_encrypted
)),
}
}
/// Parses a legacy key blob file read from `stream`. A `decrypt` closure
/// must be supplied, that is primed with the appropriate key.
/// The callback takes the following arguments:
/// * ciphertext: &[u8] - The to-be-deciphered message.
/// * iv: &[u8] - The initialization vector.
/// * tag: Option<&[u8]> - AEAD tag if AES GCM is selected.
/// * salt: Option<&[u8]> - An optional salt. Used for password key derivation.
/// * key_size: Option<usize> - An optional key size. Used for pw key derivation.
///
/// If no super key is available, the callback must return
/// `Err(KsError::Rc(ResponseCode::LOCKED))`. The callback is only called
/// if the to-be-read blob is encrypted.
pub fn new_from_stream_decrypt_with<F>(mut stream: impl Read, decrypt: F) -> Result<Blob>
where
F: FnOnce(&[u8], &[u8], &[u8], Option<&[u8]>, Option<usize>) -> Result<ZVec>,
{
let blob =
Self::new_from_stream(&mut stream).context("In new_from_stream_decrypt_with.")?;
match blob.value() {
BlobValue::Encrypted { iv, tag, data } => Ok(Blob {
flags: blob.flags,
value: BlobValue::Decrypted(
decrypt(&data, &iv, &tag, None, None)
.context("In new_from_stream_decrypt_with.")?,
),
}),
BlobValue::PwEncrypted { iv, tag, data, salt, key_size } => Ok(Blob {
flags: blob.flags,
value: BlobValue::Decrypted(
decrypt(&data, &iv, &tag, Some(salt), Some(*key_size))
.context("In new_from_stream_decrypt_with.")?,
),
}),
_ => Ok(blob),
}
}
fn tag_type(tag: Tag) -> TagType {
TagType((tag.0 as u32 & 0xFF000000u32) as i32)
}
/// Read legacy key parameter file content.
/// Depending on the file type a key characteristics file stores one (TYPE_KEY_CHARACTERISTICS)
/// or two (TYPE_KEY_CHARACTERISTICS_CACHE) key parameter lists. The format of the list is as
/// follows:
///
/// +------------------------------+
/// | 32 bit indirect_size |
/// +------------------------------+
/// | indirect_size bytes of data | This is where the blob data is stored
/// +------------------------------+
/// | 32 bit element_count | Number of key parameter entries.
/// | 32 bit elements_size | Total bytes used by entries.
/// +------------------------------+
/// | elements_size bytes of data | This is where the elements are stored.
/// +------------------------------+
///
/// Elements have a 32 bit header holding the tag with a tag type encoded in the
/// four most significant bits (see android/hardware/secruity/keymint/TagType.aidl).
/// The header is immediately followed by the payload. The payload size depends on
/// the encoded tag type in the header:
/// BOOLEAN : 1 byte
/// ENUM, ENUM_REP, UINT, UINT_REP : 4 bytes
/// ULONG, ULONG_REP, DATETIME : 8 bytes
/// BLOB, BIGNUM : 8 bytes see below.
///
/// Bignum and blob payload format:
/// +------------------------+
/// | 32 bit blob_length | Length of the indirect payload in bytes.
/// | 32 bit indirect_offset | Offset from the beginning of the indirect section.
/// +------------------------+
pub fn read_key_parameters(stream: &mut &[u8]) -> Result<Vec<KeyParameterValue>> {
let indirect_size =
read_ne_u32(stream).context("In read_key_parameters: While reading indirect size.")?;
let indirect_buffer = stream
.get(0..indirect_size as usize)
.ok_or(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context("In read_key_parameters: While reading indirect buffer.")?;
// update the stream position.
*stream = &stream[indirect_size as usize..];
let element_count =
read_ne_u32(stream).context("In read_key_parameters: While reading element count.")?;
let element_size =
read_ne_u32(stream).context("In read_key_parameters: While reading element size.")?;
let elements_buffer = stream
.get(0..element_size as usize)
.ok_or(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context("In read_key_parameters: While reading elements buffer.")?;
// update the stream position.
*stream = &stream[element_size as usize..];
let mut element_stream = &elements_buffer[..];
let mut params: Vec<KeyParameterValue> = Vec::new();
for _ in 0..element_count {
let tag = Tag(read_ne_i32(&mut element_stream).context("In read_key_parameters.")?);
let param = match Self::tag_type(tag) {
TagType::ENUM | TagType::ENUM_REP | TagType::UINT | TagType::UINT_REP => {
KeyParameterValue::new_from_tag_primitive_pair(
tag,
read_ne_i32(&mut element_stream).context("While reading integer.")?,
)
.context("Trying to construct integer/enum KeyParameterValue.")
}
TagType::ULONG | TagType::ULONG_REP | TagType::DATE => {
KeyParameterValue::new_from_tag_primitive_pair(
tag,
read_ne_i64(&mut element_stream).context("While reading long integer.")?,
)
.context("Trying to construct long KeyParameterValue.")
}
TagType::BOOL => {
if read_bool(&mut element_stream).context("While reading long integer.")? {
KeyParameterValue::new_from_tag_primitive_pair(tag, 1)
.context("Trying to construct boolean KeyParameterValue.")
} else {
Err(anyhow::anyhow!("Invalid."))
}
}
TagType::BYTES | TagType::BIGNUM => {
let blob_size = read_ne_u32(&mut element_stream)
.context("While reading blob size.")?
as usize;
let indirect_offset = read_ne_u32(&mut element_stream)
.context("While reading indirect offset.")?
as usize;
KeyParameterValue::new_from_tag_primitive_pair(
tag,
indirect_buffer
.get(indirect_offset..indirect_offset + blob_size)
.context("While reading blob value.")?
.to_vec(),
)
.context("Trying to construct blob KeyParameterValue.")
}
TagType::INVALID => Err(anyhow::anyhow!("Invalid.")),
_ => {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context("In read_key_parameters: Encountered bogus tag type.");
}
};
if let Ok(p) = param {
params.push(p);
}
}
Ok(params)
}
fn read_characteristics_file(
&self,
uid: u32,
prefix: &str,
alias: &str,
hw_sec_level: SecurityLevel,
) -> Result<Vec<KeyParameter>> {
let blob = Self::read_generic_blob(&self.make_chr_filename(uid, alias, prefix))
.context("In read_characteristics_file")?;
let blob = match blob {
None => return Ok(Vec::new()),
Some(blob) => blob,
};
let mut stream = match blob.value() {
BlobValue::Characteristics(data) => &data[..],
BlobValue::CharacteristicsCache(data) => &data[..],
_ => {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED)).context(concat!(
"In read_characteristics_file: ",
"Characteristics file does not hold key characteristics."
))
}
};
let hw_list = match blob.value() {
// The characteristics cache file has two lists and the first is
// the hardware enforced list.
BlobValue::CharacteristicsCache(_) => Some(
Self::read_key_parameters(&mut stream)
.context("In read_characteristics_file.")?
.into_iter()
.map(|value| KeyParameter::new(value, hw_sec_level)),
),
_ => None,
};
let sw_list = Self::read_key_parameters(&mut stream)
.context("In read_characteristics_file.")?
.into_iter()
.map(|value| KeyParameter::new(value, SecurityLevel::SOFTWARE));
Ok(hw_list.into_iter().flatten().chain(sw_list).collect())
}
// This is a list of known prefixes that the Keystore 1.0 SPI used to use.
// * USRPKEY was used for private and secret key material, i.e., KM blobs.
// * USRSKEY was used for secret key material, i.e., KM blobs, before Android P.
// * CACERT was used for key chains or free standing public certificates.
// * USRCERT was used for public certificates of USRPKEY entries. But KeyChain also
// used this for user installed certificates without private key material.
fn read_km_blob_file(&self, uid: u32, alias: &str) -> Result<Option<(Blob, String)>> {
let mut iter = ["USRPKEY", "USERSKEY"].iter();
let (blob, prefix) = loop {
if let Some(prefix) = iter.next() {
if let Some(blob) =
Self::read_generic_blob(&self.make_blob_filename(uid, alias, prefix))
.context("In read_km_blob_file.")?
{
break (blob, prefix);
}
} else {
return Ok(None);
}
};
Ok(Some((blob, prefix.to_string())))
}
fn read_generic_blob(path: &Path) -> Result<Option<Blob>> {
let mut file = match File::open(path) {
Ok(file) => file,
Err(e) => match e.kind() {
ErrorKind::NotFound => return Ok(None),
_ => return Err(e).context("In read_generic_blob."),
},
};
Ok(Some(Self::new_from_stream(&mut file).context("In read_generic_blob.")?))
}
/// This function constructs the blob file name which has the form:
/// user_<android user id>/<uid>_<alias>.
fn make_blob_filename(&self, uid: u32, alias: &str, prefix: &str) -> PathBuf {
let mut path = self.path.clone();
let user_id = uid_to_android_user(uid);
let encoded_alias = Self::encode_alias(&format!("{}_{}", prefix, alias));
path.push(format!("user_{}", user_id));
path.push(format!("{}_{}", uid, encoded_alias));
path
}
/// This function constructs the characteristics file name which has the form:
/// user_<android user id>/.<uid>_chr_<alias>.
fn make_chr_filename(&self, uid: u32, alias: &str, prefix: &str) -> PathBuf {
let mut path = self.path.clone();
let user_id = uid_to_android_user(uid);
let encoded_alias = Self::encode_alias(&format!("{}_{}", prefix, alias));
path.push(format!("user_{}", user_id));
path.push(format!(".{}_chr_{}", uid, encoded_alias));
path
}
fn load_by_uid_alias(
&self,
uid: u32,
alias: &str,
key_manager: &SuperKeyManager,
) -> Result<(Option<(Blob, Vec<KeyParameter>)>, Option<Vec<u8>>, Option<Vec<u8>>, KeyMetaData)>
{
let metadata = KeyMetaData::new();
let km_blob = self.read_km_blob_file(uid, alias).context("In load_by_uid_alias.")?;
let km_blob = match km_blob {
Some((km_blob, prefix)) => {
let km_blob =
match km_blob {
Blob { flags: _, value: BlobValue::Decrypted(_) } => km_blob,
// Unwrap the key blob if required.
Blob { flags, value: BlobValue::Encrypted { iv, tag, data } } => {
let decrypted = match key_manager
.get_per_boot_key_by_user_id(uid_to_android_user(uid))
{
Some(key) => aes_gcm_decrypt(&data, &iv, &tag, &key).context(
"In load_by_uid_alias: while trying to decrypt legacy blob.",
)?,
None => {
return Err(KsError::Rc(ResponseCode::LOCKED)).context(format!(
concat!(
"In load_by_uid_alias: ",
"User {} has not unlocked the keystore yet.",
),
uid_to_android_user(uid)
))
}
};
Blob { flags, value: BlobValue::Decrypted(decrypted) }
}
_ => return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED)).context(
"In load_by_uid_alias: Found wrong blob type in legacy key blob file.",
),
};
let hw_sec_level = match km_blob.is_strongbox() {
true => SecurityLevel::STRONGBOX,
false => SecurityLevel::TRUSTED_ENVIRONMENT,
};
let key_parameters = self
.read_characteristics_file(uid, &prefix, alias, hw_sec_level)
.context("In load_by_uid_alias.")?;
Some((km_blob, key_parameters))
}
None => None,
};
let user_cert =
match Self::read_generic_blob(&self.make_blob_filename(uid, alias, "USRCERT"))
.context("In load_by_uid_alias: While loading user cert.")?
{
Some(Blob { value: BlobValue::Generic(data), .. }) => Some(data),
None => None,
_ => {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED)).context(
"In load_by_uid_alias: Found unexpected blob type in USRCERT file",
)
}
};
let ca_cert = match Self::read_generic_blob(&self.make_blob_filename(uid, alias, "CACERT"))
.context("In load_by_uid_alias: While loading ca cert.")?
{
Some(Blob { value: BlobValue::Generic(data), .. }) => Some(data),
None => None,
_ => {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED))
.context("In load_by_uid_alias: Found unexpected blob type in CACERT file")
}
};
Ok((km_blob, user_cert, ca_cert, metadata))
}
/// Load and decrypt legacy super key blob.
pub fn load_super_key(&self, user_id: u32, pw: &[u8]) -> Result<Option<ZVec>> {
let mut path = self.path.clone();
path.push(&format!("user_{}", user_id));
path.push(".masterkey");
let blob = Self::read_generic_blob(&path)
.context("In load_super_key: While loading super key.")?;
let blob = match blob {
Some(blob) => match blob {
Blob {
value: BlobValue::PwEncrypted { iv, tag, data, salt, key_size }, ..
} => {
let key = derive_key_from_password(pw, Some(&salt), key_size)
.context("In load_super_key: Failed to derive key from password.")?;
let blob = aes_gcm_decrypt(&data, &iv, &tag, &key).context(
"In load_super_key: while trying to decrypt legacy super key blob.",
)?;
Some(blob)
}
_ => {
return Err(KsError::Rc(ResponseCode::VALUE_CORRUPTED)).context(
"In load_super_key: Found wrong blob type in legacy super key blob file.",
)
}
},
None => None,
};
Ok(blob)
}
}
#[cfg(test)]
mod test {
use super::*;
use anyhow::anyhow;
use keystore2_crypto::aes_gcm_decrypt;
use rand::Rng;
use std::string::FromUtf8Error;
mod legacy_blob_test_vectors;
use crate::error;
use crate::legacy_blob::test::legacy_blob_test_vectors::*;
use crate::test::utils::TempDir;
#[test]
fn decode_encode_alias_test() {
static ALIAS: &str = "#({}test[])😗";
static ENCODED_ALIAS: &str = "+S+X{}test[]+Y.`-O-H-G";
// Second multi byte out of range ------v
static ENCODED_ALIAS_ERROR1: &str = "+S+{}test[]+Y";
// Incomplete multi byte ------------------------v
static ENCODED_ALIAS_ERROR2: &str = "+S+X{}test[]+";
// Our encoding: ".`-O-H-G"
// is UTF-8: 0xF0 0x9F 0x98 0x97
// is UNICODE: U+1F617
// is 😗
// But +H below is a valid encoding for 0x18 making this sequence invalid UTF-8.
static ENCODED_ALIAS_ERROR_UTF8: &str = ".`-O+H-G";
assert_eq!(ENCODED_ALIAS, &LegacyBlobLoader::encode_alias(ALIAS));
assert_eq!(ALIAS, &LegacyBlobLoader::decode_alias(ENCODED_ALIAS).unwrap());
assert_eq!(
Some(&Error::BadEncoding),
LegacyBlobLoader::decode_alias(ENCODED_ALIAS_ERROR1)
.unwrap_err()
.root_cause()
.downcast_ref::<Error>()
);
assert_eq!(
Some(&Error::BadEncoding),
LegacyBlobLoader::decode_alias(ENCODED_ALIAS_ERROR2)
.unwrap_err()
.root_cause()
.downcast_ref::<Error>()
);
assert!(LegacyBlobLoader::decode_alias(ENCODED_ALIAS_ERROR_UTF8)
.unwrap_err()
.root_cause()
.downcast_ref::<FromUtf8Error>()
.is_some());
for _i in 0..100 {
// Any valid UTF-8 string should be en- and decoded without loss.
let alias_str = rand::thread_rng().gen::<[char; 20]>().iter().collect::<String>();
let random_alias = alias_str.as_bytes();
let encoded = LegacyBlobLoader::encode_alias(&alias_str);
let decoded = match LegacyBlobLoader::decode_alias(&encoded) {
Ok(d) => d,
Err(_) => panic!(format!("random_alias: {:x?}\nencoded {}", random_alias, encoded)),
};
assert_eq!(random_alias.to_vec(), decoded.bytes().collect::<Vec<u8>>());
}
}
#[test]
fn read_golden_key_blob_test() -> anyhow::Result<()> {
let blob = LegacyBlobLoader::new_from_stream_decrypt_with(&mut &*BLOB, |_, _, _, _, _| {
Err(anyhow!("should not be called"))
})?;
assert!(!blob.is_encrypted());
assert!(!blob.is_fallback());
assert!(!blob.is_strongbox());
assert!(!blob.is_critical_to_device_encryption());
assert_eq!(blob.value(), &BlobValue::Generic([0xde, 0xed, 0xbe, 0xef].to_vec()));
let blob = LegacyBlobLoader::new_from_stream_decrypt_with(
&mut &*REAL_LEGACY_BLOB,
|_, _, _, _, _| Err(anyhow!("should not be called")),
)?;
assert!(!blob.is_encrypted());
assert!(!blob.is_fallback());
assert!(!blob.is_strongbox());
assert!(!blob.is_critical_to_device_encryption());
assert_eq!(
blob.value(),
&BlobValue::Decrypted(REAL_LEGACY_BLOB_PAYLOAD.try_into().unwrap())
);
Ok(())
}
#[test]
fn read_aes_gcm_encrypted_key_blob_test() {
let blob = LegacyBlobLoader::new_from_stream_decrypt_with(
&mut &*AES_GCM_ENCRYPTED_BLOB,
|d, iv, tag, salt, key_size| {
assert_eq!(salt, None);
assert_eq!(key_size, None);
assert_eq!(
iv,
&[
0xbd, 0xdb, 0x8d, 0x69, 0x72, 0x56, 0xf0, 0xf5, 0xa4, 0x02, 0x88, 0x7f,
0x00, 0x00, 0x00, 0x00,
]
);
assert_eq!(
tag,
&[
0x50, 0xd9, 0x97, 0x95, 0x37, 0x6e, 0x28, 0x6a, 0x28, 0x9d, 0x51, 0xb9,
0xb9, 0xe0, 0x0b, 0xc3
][..]
);
aes_gcm_decrypt(d, iv, tag, AES_KEY).context("Trying to decrypt blob.")
},
)
.unwrap();
assert!(blob.is_encrypted());
assert!(!blob.is_fallback());
assert!(!blob.is_strongbox());
assert!(!blob.is_critical_to_device_encryption());
assert_eq!(blob.value(), &BlobValue::Decrypted(DECRYPTED_PAYLOAD.try_into().unwrap()));
}
#[test]
fn read_golden_key_blob_too_short_test() {
let error =
LegacyBlobLoader::new_from_stream_decrypt_with(&mut &BLOB[0..15], |_, _, _, _, _| {
Err(anyhow!("should not be called"))
})
.unwrap_err();
assert_eq!(Some(&Error::BadLen), error.root_cause().downcast_ref::<Error>());
}
#[test]
fn test_legacy_blobs() -> anyhow::Result<()> {
let temp_dir = TempDir::new("legacy_blob_test")?;
std::fs::create_dir(&*temp_dir.build().push("user_0"))?;
std::fs::write(&*temp_dir.build().push("user_0").push(".masterkey"), SUPERKEY)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_USRPKEY_authbound"),
USRPKEY_AUTHBOUND,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push(".10223_chr_USRPKEY_authbound"),
USRPKEY_AUTHBOUND_CHR,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_USRCERT_authbound"),
USRCERT_AUTHBOUND,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_CACERT_authbound"),
CACERT_AUTHBOUND,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_USRPKEY_non_authbound"),
USRPKEY_NON_AUTHBOUND,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push(".10223_chr_USRPKEY_non_authbound"),
USRPKEY_NON_AUTHBOUND_CHR,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_USRCERT_non_authbound"),
USRCERT_NON_AUTHBOUND,
)?;
std::fs::write(
&*temp_dir.build().push("user_0").push("10223_CACERT_non_authbound"),
CACERT_NON_AUTHBOUND,
)?;
let key_manager = crate::super_key::SuperKeyManager::new();
let mut db = crate::database::KeystoreDB::new(temp_dir.path())?;
let legacy_blob_loader = LegacyBlobLoader::new(temp_dir.path());
assert_eq!(
legacy_blob_loader
.load_by_uid_alias(10223, "authbound", &key_manager)
.unwrap_err()
.root_cause()
.downcast_ref::<error::Error>(),
Some(&error::Error::Rc(ResponseCode::LOCKED))
);
key_manager.unlock_user_key(0, PASSWORD, &mut db, &legacy_blob_loader)?;
if let (Some((Blob { flags, value }, _params)), Some(cert), Some(chain), _kp) =
legacy_blob_loader.load_by_uid_alias(10223, "authbound", &key_manager)?
{
assert_eq!(flags, 4);
assert_eq!(value, BlobValue::Decrypted(DECRYPTED_USRPKEY_AUTHBOUND.try_into()?));
assert_eq!(&cert[..], LOADED_CERT_AUTHBOUND);
assert_eq!(&chain[..], LOADED_CACERT_AUTHBOUND);
} else {
panic!("");
}
if let (Some((Blob { flags, value }, _params)), Some(cert), Some(chain), _kp) =
legacy_blob_loader.load_by_uid_alias(10223, "non_authbound", &key_manager)?
{
assert_eq!(flags, 0);
assert_eq!(value, BlobValue::Decrypted(LOADED_USRPKEY_NON_AUTHBOUND.try_into()?));
assert_eq!(&cert[..], LOADED_CERT_NON_AUTHBOUND);
assert_eq!(&chain[..], LOADED_CACERT_NON_AUTHBOUND);
} else {
panic!("");
}
Ok(())
}
}