| /* |
| * Copyright (C) 2021 The Android Open Source Project |
| * |
| * Licensed under the Apache License, Version 2.0 (the "License"); |
| * you may not use this file except in compliance with the License. |
| * You may obtain a copy of the License at |
| * |
| * http://www.apache.org/licenses/LICENSE-2.0 |
| * |
| * Unless required by applicable law or agreed to in writing, software |
| * distributed under the License is distributed on an "AS IS" BASIS, |
| * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| * See the License for the specific language governing permissions and |
| * limitations under the License. |
| */ |
| |
| #include "keystore2_engine.h" |
| |
| #include <aidl/android/system/keystore2/IKeystoreService.h> |
| #include <android-base/logging.h> |
| #include <android-base/strings.h> |
| #include <android/binder_manager.h> |
| |
| #include <private/android_filesystem_config.h> |
| |
| #include <openssl/bn.h> |
| #include <openssl/ec.h> |
| #include <openssl/ec_key.h> |
| #include <openssl/ecdsa.h> |
| #include <openssl/engine.h> |
| #include <openssl/rsa.h> |
| #include <openssl/x509.h> |
| |
| #define AT __func__ << ":" << __LINE__ << " " |
| |
| constexpr const char keystore2_service_name[] = "android.system.keystore2"; |
| const std::string keystore2_grant_id_prefix("ks2_keystore-engine_grant_id:"); |
| |
| /** |
| * Keystore 2.0 namespace identifiers. |
| * Keep in sync with system/sepolicy/private/keystore2_key_contexts. |
| */ |
| constexpr const int64_t KS2_NAMESPACE_WIFI = 102; |
| |
| namespace ks2 = ::aidl::android::system::keystore2; |
| namespace KMV1 = ::aidl::android::hardware::security::keymint; |
| |
| namespace { |
| |
| int64_t getNamespaceforCurrentUid() { |
| auto uid = getuid(); |
| switch (uid) { |
| case AID_WIFI: |
| return KS2_NAMESPACE_WIFI; |
| // 0 is the super user namespace, and nothing has access to this namespace on user builds. |
| // So this will always fail. |
| default: |
| return 0; |
| } |
| } |
| |
| struct Keystore2KeyBackend { |
| ks2::KeyDescriptor descriptor_; |
| std::shared_ptr<ks2::IKeystoreSecurityLevel> i_keystore_security_level_; |
| }; |
| |
| /* key_backend_dup is called when one of the RSA or EC_KEY objects is duplicated. */ |
| extern "C" int key_backend_dup(CRYPTO_EX_DATA* /* to */, const CRYPTO_EX_DATA* /* from */, |
| void** from_d, int /* index */, long /* argl */, void* /* argp */) { |
| auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(*from_d); |
| if (key_backend != nullptr) { |
| *from_d = new std::shared_ptr<Keystore2KeyBackend>(*key_backend); |
| } |
| return 1; |
| } |
| |
| /* key_backend_free is called when one of the RSA, DSA or EC_KEY object is freed. */ |
| extern "C" void key_backend_free(void* /* parent */, void* ptr, CRYPTO_EX_DATA* /* ad */, |
| int /* index */, long /* argl */, void* /* argp */) { |
| delete reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>(ptr); |
| } |
| |
| extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len); |
| extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, |
| unsigned int* sig_len, EC_KEY* ec_key); |
| /* KeystoreEngine is a BoringSSL ENGINE that implements RSA and ECDSA by |
| * forwarding the requested operations to Keystore. */ |
| class Keystore2Engine { |
| public: |
| Keystore2Engine() |
| : rsa_index_(RSA_get_ex_new_index(0 /* argl */, nullptr /* argp */, nullptr /* new_func */, |
| key_backend_dup, key_backend_free)), |
| ec_key_index_(EC_KEY_get_ex_new_index(0 /* argl */, nullptr /* argp */, |
| nullptr /* new_func */, key_backend_dup, |
| key_backend_free)), |
| engine_(ENGINE_new()) { |
| memset(&rsa_method_, 0, sizeof(rsa_method_)); |
| rsa_method_.common.is_static = 1; |
| rsa_method_.private_transform = rsa_private_transform; |
| rsa_method_.flags = RSA_FLAG_OPAQUE; |
| ENGINE_set_RSA_method(engine_, &rsa_method_, sizeof(rsa_method_)); |
| |
| memset(&ecdsa_method_, 0, sizeof(ecdsa_method_)); |
| ecdsa_method_.common.is_static = 1; |
| ecdsa_method_.sign = ecdsa_sign; |
| ecdsa_method_.flags = ECDSA_FLAG_OPAQUE; |
| ENGINE_set_ECDSA_method(engine_, &ecdsa_method_, sizeof(ecdsa_method_)); |
| } |
| |
| int rsa_ex_index() const { return rsa_index_; } |
| int ec_key_ex_index() const { return ec_key_index_; } |
| |
| const ENGINE* engine() const { return engine_; } |
| |
| static const Keystore2Engine& get() { |
| static Keystore2Engine engine; |
| return engine; |
| } |
| |
| private: |
| const int rsa_index_; |
| const int ec_key_index_; |
| RSA_METHOD rsa_method_; |
| ECDSA_METHOD ecdsa_method_; |
| ENGINE* const engine_; |
| }; |
| |
| #define OWNERSHIP_TRANSFERRED(x) x.release() |
| |
| /* wrap_rsa returns an |EVP_PKEY| that contains an RSA key where the public |
| * part is taken from |public_rsa| and the private operations are forwarded to |
| * KeyStore and operate on the key named |key_id|. */ |
| bssl::UniquePtr<EVP_PKEY> wrap_rsa(std::shared_ptr<Keystore2KeyBackend> key_backend, |
| const RSA* public_rsa) { |
| bssl::UniquePtr<RSA> rsa(RSA_new_method(Keystore2Engine::get().engine())); |
| if (rsa.get() == nullptr) { |
| return nullptr; |
| } |
| |
| auto key_backend_copy = new decltype(key_backend)(key_backend); |
| |
| if (!RSA_set_ex_data(rsa.get(), Keystore2Engine::get().rsa_ex_index(), key_backend_copy)) { |
| delete key_backend_copy; |
| return nullptr; |
| } |
| |
| rsa->n = BN_dup(public_rsa->n); |
| rsa->e = BN_dup(public_rsa->e); |
| if (rsa->n == nullptr || rsa->e == nullptr) { |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); |
| if (result.get() == nullptr || !EVP_PKEY_assign_RSA(result.get(), rsa.get())) { |
| return nullptr; |
| } |
| OWNERSHIP_TRANSFERRED(rsa); |
| |
| return result; |
| } |
| |
| /* wrap_ecdsa returns an |EVP_PKEY| that contains an ECDSA key where the public |
| * part is taken from |public_rsa| and the private operations are forwarded to |
| * KeyStore and operate on the key named |key_id|. */ |
| bssl::UniquePtr<EVP_PKEY> wrap_ecdsa(std::shared_ptr<Keystore2KeyBackend> key_backend, |
| const EC_KEY* public_ecdsa) { |
| bssl::UniquePtr<EC_KEY> ec(EC_KEY_new_method(Keystore2Engine::get().engine())); |
| if (ec.get() == nullptr) { |
| return nullptr; |
| } |
| |
| if (!EC_KEY_set_group(ec.get(), EC_KEY_get0_group(public_ecdsa)) || |
| !EC_KEY_set_public_key(ec.get(), EC_KEY_get0_public_key(public_ecdsa))) { |
| return nullptr; |
| } |
| |
| auto key_backend_copy = new decltype(key_backend)(key_backend); |
| |
| if (!EC_KEY_set_ex_data(ec.get(), Keystore2Engine::get().ec_key_ex_index(), key_backend_copy)) { |
| delete key_backend_copy; |
| return nullptr; |
| } |
| |
| bssl::UniquePtr<EVP_PKEY> result(EVP_PKEY_new()); |
| if (result.get() == nullptr || !EVP_PKEY_assign_EC_KEY(result.get(), ec.get())) { |
| return nullptr; |
| } |
| OWNERSHIP_TRANSFERRED(ec); |
| |
| return result; |
| } |
| |
| std::optional<std::vector<uint8_t>> keystore2_sign(const Keystore2KeyBackend& key_backend, |
| std::vector<uint8_t> input, |
| KMV1::Algorithm algorithm) { |
| auto sec_level = key_backend.i_keystore_security_level_; |
| ks2::CreateOperationResponse response; |
| |
| std::vector<KMV1::KeyParameter> op_params(4); |
| op_params[0] = KMV1::KeyParameter{ |
| .tag = KMV1::Tag::PURPOSE, |
| .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::keyPurpose>( |
| KMV1::KeyPurpose::SIGN)}; |
| op_params[1] = KMV1::KeyParameter{ |
| .tag = KMV1::Tag::ALGORITHM, |
| .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::algorithm>(algorithm)}; |
| op_params[2] = KMV1::KeyParameter{ |
| .tag = KMV1::Tag::PADDING, |
| .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::paddingMode>( |
| KMV1::PaddingMode::NONE)}; |
| op_params[3] = |
| KMV1::KeyParameter{.tag = KMV1::Tag::DIGEST, |
| .value = KMV1::KeyParameterValue::make<KMV1::KeyParameterValue::digest>( |
| KMV1::Digest::NONE)}; |
| |
| auto rc = sec_level->createOperation(key_backend.descriptor_, op_params, false /* forced */, |
| &response); |
| if (!rc.isOk()) { |
| auto exception_code = rc.getExceptionCode(); |
| if (exception_code == EX_SERVICE_SPECIFIC) { |
| LOG(ERROR) << AT << "Keystore createOperation returned service specific error: " |
| << rc.getServiceSpecificError(); |
| } else { |
| LOG(ERROR) << AT << "Communication with Keystore createOperation failed error: " |
| << exception_code; |
| } |
| return std::nullopt; |
| } |
| |
| auto op = response.iOperation; |
| |
| std::optional<std::vector<uint8_t>> output = std::nullopt; |
| rc = op->finish(std::move(input), {}, &output); |
| if (!rc.isOk()) { |
| auto exception_code = rc.getExceptionCode(); |
| if (exception_code == EX_SERVICE_SPECIFIC) { |
| LOG(ERROR) << AT << "Keystore finish returned service specific error: " |
| << rc.getServiceSpecificError(); |
| } else { |
| LOG(ERROR) << AT |
| << "Communication with Keystore finish failed error: " << exception_code; |
| } |
| return std::nullopt; |
| } |
| |
| if (!output) { |
| LOG(ERROR) << AT << "We did not get a signature from Keystore."; |
| } |
| |
| return output; |
| } |
| |
| /* rsa_private_transform takes a big-endian integer from |in|, calculates the |
| * d'th power of it, modulo the RSA modulus, and writes the result as a |
| * big-endian integer to |out|. Both |in| and |out| are |len| bytes long. It |
| * returns one on success and zero otherwise. */ |
| extern "C" int rsa_private_transform(RSA* rsa, uint8_t* out, const uint8_t* in, size_t len) { |
| auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( |
| RSA_get_ex_data(rsa, Keystore2Engine::get().rsa_ex_index())); |
| |
| if (key_backend == nullptr) { |
| LOG(ERROR) << AT << "Invalid key."; |
| return 0; |
| } |
| |
| auto output = |
| keystore2_sign(**key_backend, std::vector<uint8_t>(in, in + len), KMV1::Algorithm::RSA); |
| if (!output) { |
| return 0; |
| } |
| |
| if (output->size() > len) { |
| /* The result of the RSA operation can never be larger than the size of |
| * the modulus so we assume that the result has extra zeros on the |
| * left. This provides attackers with an oracle, but there's nothing |
| * that we can do about it here. */ |
| LOG(WARNING) << "Reply len " << output->size() << " greater than expected " << len; |
| memcpy(out, &output->data()[output->size() - len], len); |
| } else if (output->size() < len) { |
| /* If the Keystore implementation returns a short value we assume that |
| * it's because it removed leading zeros from the left side. This is |
| * bad because it provides attackers with an oracle but we cannot do |
| * anything about a broken Keystore implementation here. */ |
| LOG(WARNING) << "Reply len " << output->size() << " less than expected " << len; |
| memset(out, 0, len); |
| memcpy(out + len - output->size(), output->data(), output->size()); |
| } else { |
| memcpy(out, output->data(), len); |
| } |
| |
| return 1; |
| } |
| |
| /* ecdsa_sign signs |digest_len| bytes from |digest| with |ec_key| and writes |
| * the resulting signature (an ASN.1 encoded blob) to |sig|. It returns one on |
| * success and zero otherwise. */ |
| extern "C" int ecdsa_sign(const uint8_t* digest, size_t digest_len, uint8_t* sig, |
| unsigned int* sig_len, EC_KEY* ec_key) { |
| auto key_backend = reinterpret_cast<std::shared_ptr<Keystore2KeyBackend>*>( |
| EC_KEY_get_ex_data(ec_key, Keystore2Engine::get().ec_key_ex_index())); |
| |
| if (key_backend == nullptr) { |
| LOG(ERROR) << AT << "Invalid key."; |
| return 0; |
| } |
| |
| size_t ecdsa_size = ECDSA_size(ec_key); |
| |
| auto output = keystore2_sign(**key_backend, std::vector<uint8_t>(digest, digest + digest_len), |
| KMV1::Algorithm::EC); |
| if (!output) { |
| LOG(ERROR) << "There was an error during ecdsa_sign."; |
| return 0; |
| } |
| |
| if (output->size() == 0) { |
| LOG(ERROR) << "No valid signature returned"; |
| return 0; |
| } else if (output->size() > ecdsa_size) { |
| LOG(ERROR) << "Signature is too large"; |
| return 0; |
| } |
| |
| memcpy(sig, output->data(), output->size()); |
| *sig_len = output->size(); |
| |
| return 1; |
| } |
| |
| } // namespace |
| |
| /* EVP_PKEY_from_keystore returns an |EVP_PKEY| that contains either an RSA or |
| * ECDSA key where the public part of the key reflects the value of the key |
| * named |key_id| in Keystore and the private operations are forwarded onto |
| * KeyStore. */ |
| extern "C" EVP_PKEY* EVP_PKEY_from_keystore2(const char* key_id) { |
| ::ndk::SpAIBinder keystoreBinder(AServiceManager_checkService(keystore2_service_name)); |
| auto keystore2 = ks2::IKeystoreService::fromBinder(keystoreBinder); |
| |
| if (!keystore2) { |
| LOG(ERROR) << AT << "Unable to connect to Keystore 2.0."; |
| return nullptr; |
| } |
| |
| std::string alias = key_id; |
| if (android::base::StartsWith(alias, "USRPKEY_")) { |
| LOG(WARNING) << AT << "Keystore backend used with legacy alias prefix - ignoring."; |
| alias = alias.substr(8); |
| } |
| |
| ks2::KeyDescriptor descriptor = { |
| .domain = ks2::Domain::SELINUX, |
| .nspace = getNamespaceforCurrentUid(), |
| .alias = alias, |
| .blob = std::nullopt, |
| }; |
| |
| // If the key_id starts with the grant id prefix, we parse the following string as numeric |
| // grant id. We can then use the grant domain without alias to load the designated key. |
| if (alias.find(keystore2_grant_id_prefix) == 0) { |
| std::stringstream s(alias.substr(keystore2_grant_id_prefix.size())); |
| s >> std::hex >> reinterpret_cast<uint64_t&>(descriptor.nspace); |
| descriptor.domain = ks2::Domain::GRANT; |
| descriptor.alias = std::nullopt; |
| } |
| |
| ks2::KeyEntryResponse response; |
| auto rc = keystore2->getKeyEntry(descriptor, &response); |
| if (!rc.isOk()) { |
| auto exception_code = rc.getExceptionCode(); |
| if (exception_code == EX_SERVICE_SPECIFIC) { |
| LOG(ERROR) << AT << "Keystore getKeyEntry returned service specific error: " |
| << rc.getServiceSpecificError(); |
| } else { |
| LOG(ERROR) << AT << "Communication with Keystore getKeyEntry failed error: " |
| << exception_code; |
| } |
| return nullptr; |
| } |
| |
| if (!response.metadata.certificate) { |
| LOG(ERROR) << AT << "No public key found."; |
| return nullptr; |
| } |
| |
| const uint8_t* p = response.metadata.certificate->data(); |
| bssl::UniquePtr<X509> x509(d2i_X509(nullptr, &p, response.metadata.certificate->size())); |
| if (!x509) { |
| LOG(ERROR) << AT << "Failed to parse x509 certificate."; |
| return nullptr; |
| } |
| bssl::UniquePtr<EVP_PKEY> pkey(X509_get_pubkey(x509.get())); |
| if (!pkey) { |
| LOG(ERROR) << AT << "Failed to extract public key."; |
| return nullptr; |
| } |
| |
| auto key_backend = std::make_shared<Keystore2KeyBackend>( |
| Keystore2KeyBackend{response.metadata.key, response.iSecurityLevel}); |
| |
| bssl::UniquePtr<EVP_PKEY> result; |
| switch (EVP_PKEY_type(pkey->type)) { |
| case EVP_PKEY_RSA: { |
| bssl::UniquePtr<RSA> public_rsa(EVP_PKEY_get1_RSA(pkey.get())); |
| result = wrap_rsa(key_backend, public_rsa.get()); |
| break; |
| } |
| case EVP_PKEY_EC: { |
| bssl::UniquePtr<EC_KEY> public_ecdsa(EVP_PKEY_get1_EC_KEY(pkey.get())); |
| result = wrap_ecdsa(key_backend, public_ecdsa.get()); |
| break; |
| } |
| default: |
| LOG(ERROR) << AT << "Unsupported key type " << EVP_PKEY_type(pkey->type); |
| return nullptr; |
| } |
| |
| return result.release(); |
| } |