blob: 806bd877a8fa881b05264015b059b4a41b727419 [file] [log] [blame]
// Copyright 2024, The Android Open Source Project
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//! Implements mls_rs_core's CryptoProvider and CipherSuiteProvider backed by BoringSSL.
pub mod aead;
pub mod ecdh;
pub mod eddsa;
pub mod hash;
pub mod hpke;
pub mod kdf;
#[cfg(test)]
mod test_helpers;
use mls_rs_core::crypto::{
CipherSuite, CipherSuiteProvider, CryptoProvider, HpkeCiphertext, HpkePublicKey, HpkeSecretKey,
SignaturePublicKey, SignatureSecretKey,
};
use mls_rs_core::error::{AnyError, IntoAnyError};
use mls_rs_crypto_traits::{AeadType, KdfType, KemType};
use thiserror::Error;
use zeroize::Zeroizing;
use aead::AeadWrapper;
use ecdh::Ecdh;
use eddsa::{EdDsa, EdDsaError};
use hash::{Hash, HashError};
use hpke::{ContextR, ContextS, DhKem, Hpke, HpkeError};
use kdf::Kdf;
/// Errors returned from BoringsslCryptoProvider.
#[derive(Debug, Error)]
pub enum BoringsslCryptoError {
/// Error returned from hash functions and HMACs.
#[error(transparent)]
HashError(#[from] HashError),
/// Error returned from KEMs.
#[error(transparent)]
KemError(AnyError),
/// Error returned from KDFs.
#[error(transparent)]
KdfError(AnyError),
/// Error returned from AEADs.
#[error(transparent)]
AeadError(AnyError),
/// Error returned from HPKE.
#[error(transparent)]
HpkeError(#[from] HpkeError),
/// Error returned from EdDSA.
#[error(transparent)]
EdDsaError(#[from] EdDsaError),
}
impl IntoAnyError for BoringsslCryptoError {
fn into_dyn_error(self) -> Result<Box<dyn std::error::Error + Send + Sync>, Self> {
Ok(self.into())
}
}
/// CryptoProvider trait implementation backed by BoringSSL.
#[derive(Debug, Clone)]
#[non_exhaustive]
pub struct BoringsslCryptoProvider {
/// Available cipher suites.
pub enabled_cipher_suites: Vec<CipherSuite>,
}
impl BoringsslCryptoProvider {
/// Creates a new BoringsslCryptoProvider.
pub fn new() -> Self {
Default::default()
}
/// Sets the enabled cipher suites.
pub fn with_enabled_cipher_suites(enabled_cipher_suites: Vec<CipherSuite>) -> Self {
Self { enabled_cipher_suites }
}
/// Returns all available cipher suites.
pub fn all_supported_cipher_suites() -> Vec<CipherSuite> {
vec![CipherSuite::CURVE25519_AES128, CipherSuite::CURVE25519_CHACHA]
}
}
impl Default for BoringsslCryptoProvider {
fn default() -> Self {
Self { enabled_cipher_suites: Self::all_supported_cipher_suites() }
}
}
impl CryptoProvider for BoringsslCryptoProvider {
type CipherSuiteProvider = BoringsslCipherSuite<DhKem<Ecdh, Kdf>, Kdf, AeadWrapper>;
fn supported_cipher_suites(&self) -> Vec<CipherSuite> {
self.enabled_cipher_suites.clone()
}
fn cipher_suite_provider(
&self,
cipher_suite: CipherSuite,
) -> Option<Self::CipherSuiteProvider> {
if !self.enabled_cipher_suites.contains(&cipher_suite) {
return None;
}
let ecdh = Ecdh::new(cipher_suite)?;
let kdf = Kdf::new(cipher_suite)?;
let kem = DhKem::new(cipher_suite, ecdh, kdf.clone())?;
let aead = AeadWrapper::new(cipher_suite)?;
BoringsslCipherSuite::new(cipher_suite, kem, kdf, aead)
}
}
/// CipherSuiteProvider trait implementation backed by BoringSSL.
#[derive(Clone)]
pub struct BoringsslCipherSuite<KEM, KDF, AEAD>
where
KEM: KemType + Clone,
KDF: KdfType + Clone,
AEAD: AeadType + Clone,
{
cipher_suite: CipherSuite,
hash: Hash,
kem: KEM,
kdf: KDF,
aead: AEAD,
hpke: Hpke,
eddsa: EdDsa,
}
impl<KEM, KDF, AEAD> BoringsslCipherSuite<KEM, KDF, AEAD>
where
KEM: KemType + Clone,
KDF: KdfType + Clone,
AEAD: AeadType + Clone,
{
/// Creates a new BoringsslCipherSuite.
pub fn new(cipher_suite: CipherSuite, kem: KEM, kdf: KDF, aead: AEAD) -> Option<Self> {
Some(Self {
cipher_suite,
hash: Hash::new(cipher_suite).ok()?,
kem,
kdf,
aead,
hpke: Hpke::new(cipher_suite),
eddsa: EdDsa::new(cipher_suite)?,
})
}
/// Returns random bytes generated via BoringSSL.
pub fn random_bytes(&self, out: &mut [u8]) -> Result<(), BoringsslCryptoError> {
bssl_crypto::rand_bytes(out);
Ok(())
}
}
#[cfg_attr(not(mls_build_async), maybe_async::must_be_sync)]
#[cfg_attr(all(target_arch = "wasm32", mls_build_async), maybe_async::must_be_async(?Send))]
#[cfg_attr(all(not(target_arch = "wasm32"), mls_build_async), maybe_async::must_be_async)]
impl<KEM, KDF, AEAD> CipherSuiteProvider for BoringsslCipherSuite<KEM, KDF, AEAD>
where
KEM: KemType + Clone + Send + Sync,
KDF: KdfType + Clone + Send + Sync,
AEAD: AeadType + Clone + Send + Sync,
{
type Error = BoringsslCryptoError;
type HpkeContextS = ContextS;
type HpkeContextR = ContextR;
fn cipher_suite(&self) -> CipherSuite {
self.cipher_suite
}
fn random_bytes(&self, out: &mut [u8]) -> Result<(), Self::Error> {
self.random_bytes(out)
}
async fn hash(&self, data: &[u8]) -> Result<Vec<u8>, Self::Error> {
Ok(self.hash.hash(data))
}
async fn mac(&self, key: &[u8], data: &[u8]) -> Result<Vec<u8>, Self::Error> {
Ok(self.hash.mac(key, data)?)
}
async fn kem_generate(&self) -> Result<(HpkeSecretKey, HpkePublicKey), Self::Error> {
self.kem.generate().await.map_err(|e| BoringsslCryptoError::KemError(e.into_any_error()))
}
async fn kem_derive(&self, ikm: &[u8]) -> Result<(HpkeSecretKey, HpkePublicKey), Self::Error> {
self.kem.derive(ikm).await.map_err(|e| BoringsslCryptoError::KemError(e.into_any_error()))
}
fn kem_public_key_validate(&self, key: &HpkePublicKey) -> Result<(), Self::Error> {
self.kem
.public_key_validate(key)
.map_err(|e| BoringsslCryptoError::KemError(e.into_any_error()))
}
async fn kdf_extract(
&self,
salt: &[u8],
ikm: &[u8],
) -> Result<Zeroizing<Vec<u8>>, Self::Error> {
self.kdf
.extract(salt, ikm)
.await
.map_err(|e| BoringsslCryptoError::KdfError(e.into_any_error()))
.map(Zeroizing::new)
}
async fn kdf_expand(
&self,
prk: &[u8],
info: &[u8],
len: usize,
) -> Result<Zeroizing<Vec<u8>>, Self::Error> {
self.kdf
.expand(prk, info, len)
.await
.map_err(|e| BoringsslCryptoError::KdfError(e.into_any_error()))
.map(Zeroizing::new)
}
fn kdf_extract_size(&self) -> usize {
self.kdf.extract_size()
}
async fn aead_seal(
&self,
key: &[u8],
data: &[u8],
aad: Option<&[u8]>,
nonce: &[u8],
) -> Result<Vec<u8>, Self::Error> {
self.aead
.seal(key, data, aad, nonce)
.await
.map_err(|e| BoringsslCryptoError::AeadError(e.into_any_error()))
}
async fn aead_open(
&self,
key: &[u8],
cipher_text: &[u8],
aad: Option<&[u8]>,
nonce: &[u8],
) -> Result<Zeroizing<Vec<u8>>, Self::Error> {
self.aead
.open(key, cipher_text, aad, nonce)
.await
.map_err(|e| BoringsslCryptoError::AeadError(e.into_any_error()))
.map(Zeroizing::new)
}
fn aead_key_size(&self) -> usize {
self.aead.key_size()
}
fn aead_nonce_size(&self) -> usize {
self.aead.nonce_size()
}
async fn hpke_setup_s(
&self,
remote_key: &HpkePublicKey,
info: &[u8],
) -> Result<(Vec<u8>, Self::HpkeContextS), Self::Error> {
Ok(self.hpke.setup_sender(remote_key, info).await?)
}
async fn hpke_seal(
&self,
remote_key: &HpkePublicKey,
info: &[u8],
aad: Option<&[u8]>,
pt: &[u8],
) -> Result<HpkeCiphertext, Self::Error> {
Ok(self.hpke.seal(remote_key, info, aad, pt).await?)
}
async fn hpke_setup_r(
&self,
enc: &[u8],
local_secret: &HpkeSecretKey,
// Other implementations use `_local_public` to skip derivation of the public from the
// private key for the KEM decapsulation step, but BoringSSL's API does not accept a public
// key and instead derives it under the hood.
_local_public: &HpkePublicKey,
info: &[u8],
) -> Result<Self::HpkeContextR, Self::Error> {
Ok(self.hpke.setup_receiver(enc, local_secret, info).await?)
}
async fn hpke_open(
&self,
ciphertext: &HpkeCiphertext,
local_secret: &HpkeSecretKey,
// Other implementations use `_local_public` to skip derivation of the public from the
// private key for hpke_setup_r()'s KEM decapsulation step, but BoringSSL's API does not
// accept a public key and instead derives it under the hood.
_local_public: &HpkePublicKey,
info: &[u8],
aad: Option<&[u8]>,
) -> Result<Vec<u8>, Self::Error> {
Ok(self.hpke.open(ciphertext, local_secret, info, aad).await?)
}
async fn signature_key_generate(
&self,
) -> Result<(SignatureSecretKey, SignaturePublicKey), Self::Error> {
Ok(self.eddsa.signature_key_generate()?)
}
async fn signature_key_derive_public(
&self,
secret_key: &SignatureSecretKey,
) -> Result<SignaturePublicKey, Self::Error> {
Ok(self.eddsa.signature_key_derive_public(secret_key)?)
}
async fn sign(
&self,
secret_key: &SignatureSecretKey,
data: &[u8],
) -> Result<Vec<u8>, Self::Error> {
Ok(self.eddsa.sign(secret_key, data)?)
}
async fn verify(
&self,
public_key: &SignaturePublicKey,
signature: &[u8],
data: &[u8],
) -> Result<(), Self::Error> {
Ok(self.eddsa.verify(public_key, signature, data)?)
}
}
#[cfg(all(not(mls_build_async), test))]
mod test {
use super::BoringsslCryptoProvider;
use crate::test_helpers::decode_hex;
use mls_rs_core::crypto::{
CipherSuite, CipherSuiteProvider, CryptoProvider, HpkeContextR, HpkeContextS,
HpkePublicKey, HpkeSecretKey, SignaturePublicKey, SignatureSecretKey,
};
fn get_cipher_suites() -> Vec<CipherSuite> {
vec![CipherSuite::CURVE25519_AES128, CipherSuite::CURVE25519_CHACHA]
}
#[test]
fn supported_cipher_suites() {
let bssl = BoringsslCryptoProvider::new();
assert_eq!(bssl.supported_cipher_suites().len(), 2);
}
#[test]
fn unsupported_cipher_suites() {
let bssl = BoringsslCryptoProvider::new();
for suite in vec![
CipherSuite::P256_AES128,
CipherSuite::CURVE448_AES256,
CipherSuite::P521_AES256,
CipherSuite::CURVE448_CHACHA,
CipherSuite::P384_AES256,
] {
assert!(bssl.cipher_suite_provider(suite).is_none());
}
}
#[test]
fn cipher_suite() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
assert_eq!(crypto.cipher_suite(), suite);
}
}
#[test]
fn random_bytes() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
let mut buf = [0; 32];
let _ = crypto.random_bytes(&mut buf);
}
}
#[test]
fn hash() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
assert_eq!(
crypto.hash(&decode_hex::<4>("74ba2521")).unwrap(),
// bssl_crypto::hmac test vector.
decode_hex::<32>(
"b16aa56be3880d18cd41e68384cf1ec8c17680c45a02b1575dc1518923ae8b0e"
)
);
}
}
#[test]
fn mac() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// bssl_crypto::hmac test vector.
let expected = vec![
0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0xb,
0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x0, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c,
0x2e, 0x32, 0xcf, 0xf7,
];
let key: [u8; 20] = [0x0b; 20];
let data = b"Hi There";
assert_eq!(crypto.mac(&key, data).unwrap(), expected);
}
}
#[test]
fn kem_generate() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
assert!(crypto.kem_generate().is_ok());
}
}
#[test]
fn kem_derive() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// https://www.rfc-editor.org/rfc/rfc9180.html#appendix-A.1.1
let ikm: [u8; 32] =
decode_hex("7268600d403fce431561aef583ee1613527cff655c1343f29812e66706df3234");
let expected_sk = HpkeSecretKey::from(
decode_hex::<32>(
"52c4a758a802cd8b936eceea314432798d5baf2d7e9235dc084ab1b9cfa2f736",
)
.to_vec(),
);
let expected_pk = HpkePublicKey::from(
decode_hex::<32>(
"37fda3567bdbd628e88668c3c8d7e97d1d1253b6d4ea6d44c150f741f1bf4431",
)
.to_vec(),
);
let (sk, pk) = crypto.kem_derive(&ikm).unwrap();
assert_eq!(sk, expected_sk);
assert_eq!(pk, expected_pk);
}
}
#[test]
fn kem_public_key_validate() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// https://www.rfc-editor.org/rfc/rfc7748.html#section-6.1
let public_key = HpkePublicKey::from(
decode_hex::<32>(
"8520f0098930a754748b7ddcb43ef75a0dbf3a0d26381af4eba4a98eaa9b4e6a",
)
.to_vec(),
);
assert!(crypto.kem_public_key_validate(&public_key).is_ok());
}
}
#[test]
fn kdf_extract_and_expand() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// https://www.rfc-editor.org/rfc/rfc5869.html#appendix-A.1
let ikm: [u8; 22] = decode_hex("0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b0b");
let salt: [u8; 13] = decode_hex("000102030405060708090a0b0c");
let info: [u8; 10] = decode_hex("f0f1f2f3f4f5f6f7f8f9");
let expected_prk: [u8; 32] =
decode_hex("077709362c2e32df0ddc3f0dc47bba6390b6c73bb50f9c3122ec844ad7c2b3e5");
let expected_okm : [u8; 42] = decode_hex(
"3cb25f25faacd57a90434f64d0362f2a2d2d0a90cf1a5a4c5db02d56ecc4c5bf34007208d5b887185865"
);
let prk = crypto.kdf_extract(&salt, &ikm).unwrap();
assert_eq!(prk.as_ref(), expected_prk);
assert_eq!(crypto.kdf_expand(&prk.as_ref(), &info, 42).unwrap().as_ref(), expected_okm);
}
}
#[test]
fn kdf_extract_size() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
assert_eq!(crypto.kdf_extract_size(), 32);
}
}
#[test]
fn aead() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
let key = vec![42u8; crypto.aead_key_size()];
let associated_data = vec![42u8, 12];
let nonce = vec![42u8; crypto.aead_nonce_size()];
let plaintext = b"message";
let ciphertext =
crypto.aead_seal(&key, plaintext, Some(&associated_data), &nonce).unwrap();
assert_eq!(
plaintext,
crypto
.aead_open(&key, ciphertext.as_slice(), Some(&associated_data), &nonce)
.unwrap()
.as_slice()
);
}
}
#[test]
fn hpke_setup_seal_open_export() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// https://www.rfc-editor.org/rfc/rfc9180.html#appendix-A.1.1
let receiver_pub_key = HpkePublicKey::from(
decode_hex::<32>(
"3948cfe0ad1ddb695d780e59077195da6c56506b027329794ab02bca80815c4d",
)
.to_vec(),
);
let receiver_priv_key = HpkeSecretKey::from(
decode_hex::<32>(
"4612c550263fc8ad58375df3f557aac531d26850903e55a9f23f21d8534e8ac8",
)
.to_vec(),
);
let info = b"some_info";
let plaintext = b"plaintext";
let associated_data = b"some_ad";
let exporter_ctx = b"export_ctx";
let (enc, mut sender_ctx) = crypto.hpke_setup_s(&receiver_pub_key, info).unwrap();
let mut receiver_ctx =
crypto.hpke_setup_r(&enc, &receiver_priv_key, &receiver_pub_key, info).unwrap();
let ct = sender_ctx.seal(Some(associated_data), plaintext).unwrap();
assert_eq!(plaintext.as_ref(), receiver_ctx.open(Some(associated_data), &ct).unwrap(),);
assert_eq!(
sender_ctx.export(exporter_ctx, 32).unwrap(),
receiver_ctx.export(exporter_ctx, 32).unwrap(),
);
}
}
#[test]
fn hpke_seal_open() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// https://www.rfc-editor.org/rfc/rfc9180.html#appendix-A.1.1
let receiver_pub_key = HpkePublicKey::from(
decode_hex::<32>(
"3948cfe0ad1ddb695d780e59077195da6c56506b027329794ab02bca80815c4d",
)
.to_vec(),
);
let receiver_priv_key = HpkeSecretKey::from(
decode_hex::<32>(
"4612c550263fc8ad58375df3f557aac531d26850903e55a9f23f21d8534e8ac8",
)
.to_vec(),
);
let info = b"some_info";
let plaintext = b"plaintext";
let associated_data = b"some_ad";
let ct = crypto
.hpke_seal(&receiver_pub_key, info, Some(associated_data), plaintext)
.unwrap();
assert_eq!(
plaintext.as_ref(),
crypto
.hpke_open(
&ct,
&receiver_priv_key,
&receiver_pub_key,
info,
Some(associated_data)
)
.unwrap(),
);
}
}
#[test]
fn signature_key_generate() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
assert!(crypto.signature_key_generate().is_ok());
}
}
#[test]
fn signature_key_derive_public() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// Test 1 from https://www.rfc-editor.org/rfc/rfc8032#section-7.1
let private_key = SignatureSecretKey::from(
decode_hex::<32>(
"9d61b19deffd5a60ba844af492ec2cc44449c5697b326919703bac031cae7f60",
)
.to_vec(),
);
let expected_public_key = SignaturePublicKey::from(
decode_hex::<32>(
"d75a980182b10ab7d54bfed3c964073a0ee172f3daa62325af021a68f707511a",
)
.to_vec(),
);
assert_eq!(
crypto.signature_key_derive_public(&private_key).unwrap(),
expected_public_key
);
}
}
#[test]
fn sign_verify() {
let bssl = BoringsslCryptoProvider::new();
for suite in get_cipher_suites() {
let crypto = bssl.cipher_suite_provider(suite).unwrap();
// Test 3 from https://www.rfc-editor.org/rfc/rfc8032#section-7.1
let private_key = SignatureSecretKey::from(
decode_hex::<32>(
"c5aa8df43f9f837bedb7442f31dcb7b166d38535076f094b85ce3a2e0b4458f7",
)
.to_vec(),
);
let data: [u8; 2] = decode_hex("af82");
let expected_sig = decode_hex::<64>("6291d657deec24024827e69c3abe01a30ce548a284743a445e3680d7db5ac3ac18ff9b538d16f290ae67f760984dc6594a7c15e9716ed28dc027beceea1ec40a").to_vec();
let sig = crypto.sign(&private_key, &data).unwrap();
assert_eq!(sig, expected_sig);
let public_key = crypto.signature_key_derive_public(&private_key).unwrap();
assert!(crypto.verify(&public_key, &sig, &data).is_ok());
}
}
}