blob: de20d8383919fdae24ec3b650ed39163decf9166 [file] [log] [blame]
#include "ffi_test_utils.hpp"
#include <iostream>
#include <KeyMintAidlTestBase.h>
#include <aidl/android/hardware/security/keymint/ErrorCode.h>
#include <keymaster/UniquePtr.h>
#include <memory>
#include <vector>
#include <hardware/keymaster_defs.h>
#include <keymaster/android_keymaster_utils.h>
#include <keymaster/keymaster_tags.h>
#include <keymaster/km_openssl/attestation_record.h>
#include <keymaster/km_openssl/openssl_err.h>
#include <keymaster/km_openssl/openssl_utils.h>
#include <openssl/asn1t.h>
using aidl::android::hardware::security::keymint::ErrorCode;
#define TAG_SEQUENCE 0x30
#define LENGTH_MASK 0x80
#define LENGTH_VALUE_MASK 0x7F
/**
* ASN.1 structure for `KeyDescription` Schema.
* See `IKeyMintDevice.aidl` for documentation of the `KeyDescription` schema.
* KeyDescription ::= SEQUENCE(
* keyFormat INTEGER, # Values from KeyFormat enum.
* keyParams AuthorizationList,
* )
*/
typedef struct key_description {
ASN1_INTEGER* key_format;
keymaster::KM_AUTH_LIST* key_params;
} TEST_KEY_DESCRIPTION;
ASN1_SEQUENCE(TEST_KEY_DESCRIPTION) = {
ASN1_SIMPLE(TEST_KEY_DESCRIPTION, key_format, ASN1_INTEGER),
ASN1_SIMPLE(TEST_KEY_DESCRIPTION, key_params, keymaster::KM_AUTH_LIST),
} ASN1_SEQUENCE_END(TEST_KEY_DESCRIPTION);
DECLARE_ASN1_FUNCTIONS(TEST_KEY_DESCRIPTION);
/**
* ASN.1 structure for `SecureKeyWrapper` Schema.
* See `IKeyMintDevice.aidl` for documentation of the `SecureKeyWrapper` schema.
* SecureKeyWrapper ::= SEQUENCE(
* version INTEGER, # Contains value 0
* encryptedTransportKey OCTET_STRING,
* initializationVector OCTET_STRING,
* keyDescription KeyDescription,
* encryptedKey OCTET_STRING,
* tag OCTET_STRING
* )
*/
typedef struct secure_key_wrapper {
ASN1_INTEGER* version;
ASN1_OCTET_STRING* encrypted_transport_key;
ASN1_OCTET_STRING* initialization_vector;
TEST_KEY_DESCRIPTION* key_desc;
ASN1_OCTET_STRING* encrypted_key;
ASN1_OCTET_STRING* tag;
} TEST_SECURE_KEY_WRAPPER;
ASN1_SEQUENCE(TEST_SECURE_KEY_WRAPPER) = {
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, version, ASN1_INTEGER),
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, encrypted_transport_key, ASN1_OCTET_STRING),
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, initialization_vector, ASN1_OCTET_STRING),
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, key_desc, TEST_KEY_DESCRIPTION),
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, encrypted_key, ASN1_OCTET_STRING),
ASN1_SIMPLE(TEST_SECURE_KEY_WRAPPER, tag, ASN1_OCTET_STRING),
} ASN1_SEQUENCE_END(TEST_SECURE_KEY_WRAPPER);
DECLARE_ASN1_FUNCTIONS(TEST_SECURE_KEY_WRAPPER);
IMPLEMENT_ASN1_FUNCTIONS(TEST_SECURE_KEY_WRAPPER);
IMPLEMENT_ASN1_FUNCTIONS(TEST_KEY_DESCRIPTION);
struct TEST_KEY_DESCRIPTION_Delete {
void operator()(TEST_KEY_DESCRIPTION* p) { TEST_KEY_DESCRIPTION_free(p); }
};
struct TEST_SECURE_KEY_WRAPPER_Delete {
void operator()(TEST_SECURE_KEY_WRAPPER* p) { TEST_SECURE_KEY_WRAPPER_free(p); }
};
/* This function extracts a certificate from the certs_chain_buffer at the given
* offset. Each DER encoded certificate starts with TAG_SEQUENCE followed by the
* total length of the certificate. The length of the certificate is determined
* as per ASN.1 encoding rules for the length octets.
*
* @param certs_chain_buffer: buffer containing DER encoded X.509 certificates
* arranged sequentially.
* @data_size: Length of the DER encoded X.509 certificates buffer.
* @index: DER encoded X.509 certificates buffer offset.
* @cert: Encoded certificate to be extracted from buffer as outcome.
* @return: ErrorCode::OK on success, otherwise ErrorCode::UNKNOWN_ERROR.
*/
ErrorCode
extractCertFromCertChainBuffer(uint8_t* certs_chain_buffer, int certs_chain_buffer_size, int& index,
aidl::android::hardware::security::keymint::Certificate& cert) {
if (index >= certs_chain_buffer_size) {
return ErrorCode::UNKNOWN_ERROR;
}
uint32_t length = 0;
std::vector<uint8_t> cert_bytes;
if (certs_chain_buffer[index] == TAG_SEQUENCE) {
// Short form. One octet. Bit 8 has value "0" and bits 7-1 give the length.
if (0 == (certs_chain_buffer[index + 1] & LENGTH_MASK)) {
length = (uint32_t)certs_chain_buffer[index];
// Add SEQ and Length fields
length += 2;
} else {
// Long form. Two to 127 octets. Bit 8 of first octet has value "1" and
// bits 7-1 give the number of additional length octets. Second and following
// octets give the actual length.
int additionalBytes = certs_chain_buffer[index + 1] & LENGTH_VALUE_MASK;
if (additionalBytes == 0x01) {
length = certs_chain_buffer[index + 2];
// Add SEQ and Length fields
length += 3;
} else if (additionalBytes == 0x02) {
length = (certs_chain_buffer[index + 2] << 8 | certs_chain_buffer[index + 3]);
// Add SEQ and Length fields
length += 4;
} else if (additionalBytes == 0x04) {
length = certs_chain_buffer[index + 2] << 24;
length |= certs_chain_buffer[index + 3] << 16;
length |= certs_chain_buffer[index + 4] << 8;
length |= certs_chain_buffer[index + 5];
// Add SEQ and Length fields
length += 6;
} else {
// Length is larger than uint32_t max limit.
return ErrorCode::UNKNOWN_ERROR;
}
}
cert_bytes.insert(cert_bytes.end(), (certs_chain_buffer + index),
(certs_chain_buffer + index + length));
index += length;
for (int i = 0; i < cert_bytes.size(); i++) {
cert.encodedCertificate = std::move(cert_bytes);
}
} else {
// SEQUENCE TAG MISSING.
return ErrorCode::UNKNOWN_ERROR;
}
return ErrorCode::OK;
}
ErrorCode getCertificateChain(
rust::Vec<rust::u8>& chainBuffer,
std::vector<aidl::android::hardware::security::keymint::Certificate>& certChain) {
uint8_t* data = chainBuffer.data();
int index = 0;
int data_size = chainBuffer.size();
while (index < data_size) {
aidl::android::hardware::security::keymint::Certificate cert =
aidl::android::hardware::security::keymint::Certificate();
if (extractCertFromCertChainBuffer(data, data_size, index, cert) != ErrorCode::OK) {
return ErrorCode::UNKNOWN_ERROR;
}
certChain.push_back(std::move(cert));
}
return ErrorCode::OK;
}
bool validateCertChain(rust::Vec<rust::u8> cert_buf, uint32_t cert_len, bool strict_issuer_check) {
std::vector<aidl::android::hardware::security::keymint::Certificate> cert_chain =
std::vector<aidl::android::hardware::security::keymint::Certificate>();
if (cert_len <= 0) {
return false;
}
if (getCertificateChain(cert_buf, cert_chain) != ErrorCode::OK) {
return false;
}
for (int i = 0; i < cert_chain.size(); i++) {
std::cout << cert_chain[i].toString() << "\n";
}
auto result = aidl::android::hardware::security::keymint::test::ChainSignaturesAreValid(
cert_chain, strict_issuer_check);
if (result == testing::AssertionSuccess()) return true;
return false;
}
/**
* Below mentioned key parameters are used to create authorization list of
* secure key.
* Algorithm: AES-256
* Padding: PKCS7
* Blockmode: ECB
* Purpose: Encrypt, Decrypt
*/
keymaster::AuthorizationSet build_wrapped_key_auth_list() {
return keymaster::AuthorizationSet(keymaster::AuthorizationSetBuilder()
.AesEncryptionKey(256)
.Authorization(keymaster::TAG_BLOCK_MODE, KM_MODE_ECB)
.Authorization(keymaster::TAG_PADDING, KM_PAD_PKCS7)
.Authorization(keymaster::TAG_NO_AUTH_REQUIRED));
}
/**
* Creates ASN.1 DER-encoded data corresponding to `KeyDescription` schema as
* AAD. See `IKeyMintDevice.aidl` for documentation of the `KeyDescription` schema.
*/
CxxResult buildAsn1DerEncodedWrappedKeyDescription() {
CxxResult cxx_result{};
keymaster_error_t error;
cxx_result.error = KM_ERROR_OK;
keymaster::UniquePtr<TEST_KEY_DESCRIPTION, TEST_KEY_DESCRIPTION_Delete> key_description(
TEST_KEY_DESCRIPTION_new());
if (!key_description.get()) {
cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return cxx_result;
}
// Fill secure key authorizations.
keymaster::AuthorizationSet auth_list = build_wrapped_key_auth_list();
error = build_auth_list(auth_list, key_description->key_params);
if (error != KM_ERROR_OK) {
cxx_result.error = error;
return cxx_result;
}
// Fill secure key format.
if (!ASN1_INTEGER_set(key_description->key_format, KM_KEY_FORMAT_RAW)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Perform ASN.1 DER encoding of KeyDescription.
int asn1_data_len = i2d_TEST_KEY_DESCRIPTION(key_description.get(), nullptr);
if (asn1_data_len < 0) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
std::vector<uint8_t> asn1_data(asn1_data_len, 0);
if (!asn1_data.data()) {
cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return cxx_result;
}
uint8_t* p = asn1_data.data();
asn1_data_len = i2d_TEST_KEY_DESCRIPTION(key_description.get(), &p);
if (asn1_data_len < 0) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
std::move(asn1_data.begin(), asn1_data.end(), std::back_inserter(cxx_result.data));
return cxx_result;
}
/**
* Creates wrapped key material to import in ASN.1 DER-encoded data corresponding to
* `SecureKeyWrapper` schema. See `IKeyMintDevice.aidl` for documentation of the `SecureKeyWrapper`
* schema.
*/
CxxResult createWrappedKey(rust::Vec<rust::u8> encrypted_secure_key,
rust::Vec<rust::u8> encrypted_transport_key, rust::Vec<rust::u8> iv,
rust::Vec<rust::u8> tag) {
CxxResult cxx_result{};
keymaster_error_t error;
cxx_result.error = KM_ERROR_OK;
uint8_t* enc_secure_key_data = encrypted_secure_key.data();
int enc_secure_key_size = encrypted_secure_key.size();
uint8_t* iv_data = iv.data();
int iv_size = iv.size();
uint8_t* tag_data = tag.data();
int tag_size = tag.size();
uint8_t* enc_transport_key_data = encrypted_transport_key.data();
int enc_transport_key_size = encrypted_transport_key.size();
keymaster::UniquePtr<TEST_SECURE_KEY_WRAPPER, TEST_SECURE_KEY_WRAPPER_Delete> sec_key_wrapper(
TEST_SECURE_KEY_WRAPPER_new());
if (!sec_key_wrapper.get()) {
cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return cxx_result;
}
// Fill version = 0
if (!ASN1_INTEGER_set(sec_key_wrapper->version, 0)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Fill encrypted transport key.
if (enc_transport_key_size &&
!ASN1_OCTET_STRING_set(sec_key_wrapper->encrypted_transport_key, enc_transport_key_data,
enc_transport_key_size)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Fill encrypted secure key.
if (enc_secure_key_size && !ASN1_OCTET_STRING_set(sec_key_wrapper->encrypted_key,
enc_secure_key_data, enc_secure_key_size)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Fill secure key authorization list.
keymaster::AuthorizationSet auth_list = build_wrapped_key_auth_list();
error = build_auth_list(auth_list, sec_key_wrapper->key_desc->key_params);
if (error != KM_ERROR_OK) {
cxx_result.error = error;
return cxx_result;
}
// Fill secure key format.
if (!ASN1_INTEGER_set(sec_key_wrapper->key_desc->key_format, KM_KEY_FORMAT_RAW)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Fill initialization vector used for encrypting secure key.
if (iv_size &&
!ASN1_OCTET_STRING_set(sec_key_wrapper->initialization_vector, iv_data, iv_size)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// Fill GCM-tag, extracted during secure key encryption.
if (tag_size && !ASN1_OCTET_STRING_set(sec_key_wrapper->tag, tag_data, tag_size)) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
// ASN.1 DER-encoding of secure key wrapper.
int asn1_data_len = i2d_TEST_SECURE_KEY_WRAPPER(sec_key_wrapper.get(), nullptr);
if (asn1_data_len < 0) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
std::vector<uint8_t> asn1_data(asn1_data_len, 0);
if (!asn1_data.data()) {
cxx_result.error = KM_ERROR_MEMORY_ALLOCATION_FAILED;
return cxx_result;
}
uint8_t* p = asn1_data.data();
asn1_data_len = i2d_TEST_SECURE_KEY_WRAPPER(sec_key_wrapper.get(), &p);
if (asn1_data_len < 0) {
cxx_result.error = keymaster::TranslateLastOpenSslError();
return cxx_result;
}
std::move(asn1_data.begin(), asn1_data.end(), std::back_inserter(cxx_result.data));
return cxx_result;
}