| // Copyright 2023, The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //! Code for parsing software-backed keyblobs, as emitted by the C++ reference implementation of |
| //! KeyMint. |
| |
| use crate::error::Error; |
| use crate::ks_err; |
| use android_hardware_security_keymint::aidl::android::hardware::security::keymint::{ |
| Algorithm::Algorithm, BlockMode::BlockMode, Digest::Digest, EcCurve::EcCurve, |
| ErrorCode::ErrorCode, HardwareAuthenticatorType::HardwareAuthenticatorType, |
| KeyFormat::KeyFormat, KeyOrigin::KeyOrigin, KeyParameter::KeyParameter, |
| KeyParameterValue::KeyParameterValue, KeyPurpose::KeyPurpose, PaddingMode::PaddingMode, |
| Tag::Tag, TagType::TagType, |
| }; |
| use anyhow::Result; |
| use keystore2_crypto::hmac_sha256; |
| use std::mem::size_of; |
| |
| #[cfg(test)] |
| mod tests; |
| |
| /// Root of trust value. |
| const SOFTWARE_ROOT_OF_TRUST: &[u8] = b"SW"; |
| |
| /// Error macro. |
| macro_rules! bloberr { |
| { $($arg:tt)+ } => { |
| anyhow::Error::new(Error::Km(ErrorCode::INVALID_KEY_BLOB)).context(ks_err!($($arg)+)) |
| }; |
| } |
| |
| /// Get the `KeyParameterValue` associated with a tag from a collection of `KeyParameter`s. |
| fn get_tag_value(params: &[KeyParameter], tag: Tag) -> Option<&KeyParameterValue> { |
| params.iter().find_map(|kp| if kp.tag == tag { Some(&kp.value) } else { None }) |
| } |
| |
| /// Get the [`TagType`] for a [`Tag`]. |
| fn tag_type(tag: &Tag) -> TagType { |
| TagType((tag.0 as u32 & 0xf0000000) as i32) |
| } |
| |
| /// Extract key material and combined key characteristics from a legacy authenticated keyblob. |
| pub fn export_key( |
| data: &[u8], |
| params: &[KeyParameter], |
| ) -> Result<(KeyFormat, Vec<u8>, Vec<KeyParameter>)> { |
| let hidden = hidden_params(params, &[SOFTWARE_ROOT_OF_TRUST]); |
| let KeyBlob { key_material, hw_enforced, sw_enforced } = |
| KeyBlob::new_from_serialized(data, &hidden)?; |
| |
| let mut combined = hw_enforced; |
| combined.extend_from_slice(&sw_enforced); |
| |
| let algo_val = |
| get_tag_value(&combined, Tag::ALGORITHM).ok_or_else(|| bloberr!("No algorithm found!"))?; |
| |
| let format = match algo_val { |
| KeyParameterValue::Algorithm(Algorithm::AES) |
| | KeyParameterValue::Algorithm(Algorithm::TRIPLE_DES) |
| | KeyParameterValue::Algorithm(Algorithm::HMAC) => KeyFormat::RAW, |
| KeyParameterValue::Algorithm(Algorithm::RSA) |
| | KeyParameterValue::Algorithm(Algorithm::EC) => KeyFormat::PKCS8, |
| _ => return Err(bloberr!("Unexpected algorithm {:?}", algo_val)), |
| }; |
| |
| let key_material = match (format, algo_val) { |
| (KeyFormat::PKCS8, KeyParameterValue::Algorithm(Algorithm::EC)) => { |
| // Key material format depends on the curve. |
| let curve = get_tag_value(&combined, Tag::EC_CURVE) |
| .ok_or_else(|| bloberr!("Failed to determine curve for EC key!"))?; |
| match curve { |
| KeyParameterValue::EcCurve(EcCurve::CURVE_25519) => key_material, |
| KeyParameterValue::EcCurve(EcCurve::P_224) => { |
| pkcs8_wrap_nist_key(&key_material, EcCurve::P_224)? |
| } |
| KeyParameterValue::EcCurve(EcCurve::P_256) => { |
| pkcs8_wrap_nist_key(&key_material, EcCurve::P_256)? |
| } |
| KeyParameterValue::EcCurve(EcCurve::P_384) => { |
| pkcs8_wrap_nist_key(&key_material, EcCurve::P_384)? |
| } |
| KeyParameterValue::EcCurve(EcCurve::P_521) => { |
| pkcs8_wrap_nist_key(&key_material, EcCurve::P_521)? |
| } |
| _ => { |
| return Err(bloberr!("Unexpected EC curve {curve:?}")); |
| } |
| } |
| } |
| (KeyFormat::RAW, _) => key_material, |
| (format, algo) => { |
| return Err(bloberr!( |
| "Unsupported combination of {format:?} format for {algo:?} algorithm" |
| )); |
| } |
| }; |
| Ok((format, key_material, combined)) |
| } |
| |
| /// DER-encoded `AlgorithmIdentifier` for a P-224 key. |
| const DER_ALGORITHM_ID_P224: &[u8] = &[ |
| 0x30, 0x10, // SEQUENCE (AlgorithmIdentifier) { |
| 0x06, 0x07, // OBJECT IDENTIFIER (algorithm) |
| 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, // 1.2.840.10045.2.1 (ecPublicKey) |
| 0x06, 0x05, // OBJECT IDENTIFIER (param) |
| 0x2b, 0x81, 0x04, 0x00, 0x21, // 1.3.132.0.33 (secp224r1) } |
| ]; |
| |
| /// DER-encoded `AlgorithmIdentifier` for a P-256 key. |
| const DER_ALGORITHM_ID_P256: &[u8] = &[ |
| 0x30, 0x13, // SEQUENCE (AlgorithmIdentifier) { |
| 0x06, 0x07, // OBJECT IDENTIFIER (algorithm) |
| 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, // 1.2.840.10045.2.1 (ecPublicKey) |
| 0x06, 0x08, // OBJECT IDENTIFIER (param) |
| 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x03, 0x01, 0x07, // 1.2.840.10045.3.1.7 (secp256r1) } |
| ]; |
| |
| /// DER-encoded `AlgorithmIdentifier` for a P-384 key. |
| const DER_ALGORITHM_ID_P384: &[u8] = &[ |
| 0x30, 0x10, // SEQUENCE (AlgorithmIdentifier) { |
| 0x06, 0x07, // OBJECT IDENTIFIER (algorithm) |
| 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, // 1.2.840.10045.2.1 (ecPublicKey) |
| 0x06, 0x05, // OBJECT IDENTIFIER (param) |
| 0x2b, 0x81, 0x04, 0x00, 0x22, // 1.3.132.0.34 (secp384r1) } |
| ]; |
| |
| /// DER-encoded `AlgorithmIdentifier` for a P-384 key. |
| const DER_ALGORITHM_ID_P521: &[u8] = &[ |
| 0x30, 0x10, // SEQUENCE (AlgorithmIdentifier) { |
| 0x06, 0x07, // OBJECT IDENTIFIER (algorithm) |
| 0x2a, 0x86, 0x48, 0xce, 0x3d, 0x02, 0x01, // 1.2.840.10045.2.1 (ecPublicKey) |
| 0x06, 0x05, // OBJECT IDENTIFIER (param) |
| 0x2b, 0x81, 0x04, 0x00, 0x23, // 1.3.132.0.35 (secp521r1) } |
| ]; |
| |
| /// DER-encoded integer value zero. |
| const DER_VERSION_0: &[u8] = &[ |
| 0x02, // INTEGER |
| 0x01, // len |
| 0x00, // value 0 |
| ]; |
| |
| /// Given a NIST curve EC key in the form of a DER-encoded `ECPrivateKey` |
| /// (RFC 5915 s3), wrap it in a DER-encoded PKCS#8 format (RFC 5208 s5). |
| fn pkcs8_wrap_nist_key(nist_key: &[u8], curve: EcCurve) -> Result<Vec<u8>> { |
| let der_alg_id = match curve { |
| EcCurve::P_224 => DER_ALGORITHM_ID_P224, |
| EcCurve::P_256 => DER_ALGORITHM_ID_P256, |
| EcCurve::P_384 => DER_ALGORITHM_ID_P384, |
| EcCurve::P_521 => DER_ALGORITHM_ID_P521, |
| _ => return Err(bloberr!("unknown curve {curve:?}")), |
| }; |
| |
| // Output format is: |
| // |
| // PrivateKeyInfo ::= SEQUENCE { |
| // version INTEGER, |
| // privateKeyAlgorithm AlgorithmIdentifier, |
| // privateKey OCTET STRING, |
| // } |
| // |
| // Start by building the OCTET STRING so we know its length. |
| let mut nist_key_octet_string = Vec::new(); |
| nist_key_octet_string.push(0x04); // OCTET STRING |
| add_der_len(&mut nist_key_octet_string, nist_key.len())?; |
| nist_key_octet_string.extend_from_slice(nist_key); |
| |
| let mut buf = Vec::new(); |
| buf.push(0x30); // SEQUENCE |
| add_der_len(&mut buf, DER_VERSION_0.len() + der_alg_id.len() + nist_key_octet_string.len())?; |
| buf.extend_from_slice(DER_VERSION_0); |
| buf.extend_from_slice(der_alg_id); |
| buf.extend_from_slice(&nist_key_octet_string); |
| Ok(buf) |
| } |
| |
| /// Append a DER-encoded length value to the given buffer. |
| fn add_der_len(buf: &mut Vec<u8>, len: usize) -> Result<()> { |
| if len <= 0x7f { |
| buf.push(len as u8) |
| } else if len <= 0xff { |
| buf.push(0x81); // One length octet to come |
| buf.push(len as u8); |
| } else if len <= 0xffff { |
| buf.push(0x82); // Two length octets to come |
| buf.push((len >> 8) as u8); |
| buf.push((len & 0xff) as u8); |
| } else { |
| return Err(bloberr!("Unsupported DER length {len}")); |
| } |
| Ok(()) |
| } |
| |
| /// Plaintext key blob, with key characteristics. |
| #[derive(PartialEq, Eq)] |
| struct KeyBlob { |
| /// Raw key material. |
| key_material: Vec<u8>, |
| /// Hardware-enforced key characteristics. |
| hw_enforced: Vec<KeyParameter>, |
| /// Software-enforced key characteristics. |
| sw_enforced: Vec<KeyParameter>, |
| } |
| |
| impl KeyBlob { |
| /// Key blob version. |
| const KEY_BLOB_VERSION: u8 = 0; |
| |
| /// Hard-coded HMAC key used for keyblob authentication. |
| const LEGACY_HMAC_KEY: &'static [u8] = b"IntegrityAssuredBlob0\0"; |
| |
| /// Size (in bytes) of appended MAC. |
| const MAC_LEN: usize = 8; |
| |
| /// Parse a serialized [`KeyBlob`]. |
| fn new_from_serialized(mut data: &[u8], hidden: &[KeyParameter]) -> Result<Self> { |
| // Keyblob needs to be at least long enough for: |
| // - version byte, |
| // - 4-byte len for key material |
| // - 4-byte len for hw_enforced params |
| // - 4-byte len for sw_enforced params |
| // - MAC tag. |
| if data.len() < (1 + 3 * size_of::<u32>() + Self::MAC_LEN) { |
| return Err(bloberr!("blob not long enough (len = {})", data.len())); |
| } |
| |
| // Check the HMAC in the last 8 bytes before doing anything else. |
| let mac = &data[data.len() - Self::MAC_LEN..]; |
| let computed_mac = Self::compute_hmac(&data[..data.len() - Self::MAC_LEN], hidden)?; |
| if mac != computed_mac { |
| return Err(bloberr!("invalid key blob")); |
| } |
| |
| let version = consume_u8(&mut data)?; |
| if version != Self::KEY_BLOB_VERSION { |
| return Err(bloberr!("unexpected blob version {}", version)); |
| } |
| let key_material = consume_vec(&mut data)?; |
| let hw_enforced = deserialize_params(&mut data)?; |
| let sw_enforced = deserialize_params(&mut data)?; |
| |
| // Should just be the (already-checked) MAC left. |
| let rest = &data[Self::MAC_LEN..]; |
| if !rest.is_empty() { |
| return Err(bloberr!("extra data (len {})", rest.len())); |
| } |
| Ok(KeyBlob { key_material, hw_enforced, sw_enforced }) |
| } |
| |
| /// Compute the authentication HMAC for a KeyBlob. This is built as: |
| /// HMAC-SHA256(HK, data || serialize(hidden)) |
| /// with HK = b"IntegrityAssuredBlob0\0". |
| fn compute_hmac(data: &[u8], hidden: &[KeyParameter]) -> Result<Vec<u8>> { |
| let hidden_data = serialize_params(hidden)?; |
| let mut combined = data.to_vec(); |
| combined.extend_from_slice(&hidden_data); |
| let mut tag = hmac_sha256(Self::LEGACY_HMAC_KEY, &combined)?; |
| tag.truncate(Self::MAC_LEN); |
| Ok(tag) |
| } |
| } |
| |
| /// Build the parameters that are used as the hidden input to HMAC calculations: |
| /// - `ApplicationId(data)` if present |
| /// - `ApplicationData(data)` if present |
| /// - (repeated) `RootOfTrust(rot)` where `rot` is a hardcoded piece of root of trust information. |
| fn hidden_params(params: &[KeyParameter], rots: &[&[u8]]) -> Vec<KeyParameter> { |
| let mut results = Vec::new(); |
| if let Some(app_id) = get_tag_value(params, Tag::APPLICATION_ID) { |
| results.push(KeyParameter { tag: Tag::APPLICATION_ID, value: app_id.clone() }); |
| } |
| if let Some(app_data) = get_tag_value(params, Tag::APPLICATION_DATA) { |
| results.push(KeyParameter { tag: Tag::APPLICATION_DATA, value: app_data.clone() }); |
| } |
| for rot in rots { |
| results.push(KeyParameter { |
| tag: Tag::ROOT_OF_TRUST, |
| value: KeyParameterValue::Blob(rot.to_vec()), |
| }); |
| } |
| results |
| } |
| |
| /// Retrieve a `u8` from the start of the given slice, if possible. |
| fn consume_u8(data: &mut &[u8]) -> Result<u8> { |
| match data.first() { |
| Some(b) => { |
| *data = &(*data)[1..]; |
| Ok(*b) |
| } |
| None => Err(bloberr!("failed to find 1 byte")), |
| } |
| } |
| |
| /// Move past a bool value from the start of the given slice, if possible. |
| /// Bool values should only be included if `true`, so fail if the value |
| /// is anything other than 1. |
| fn consume_bool(data: &mut &[u8]) -> Result<bool> { |
| let b = consume_u8(data)?; |
| if b == 0x01 { |
| Ok(true) |
| } else { |
| Err(bloberr!("bool value other than 1 encountered")) |
| } |
| } |
| |
| /// Retrieve a (host-ordered) `u32` from the start of the given slice, if possible. |
| fn consume_u32(data: &mut &[u8]) -> Result<u32> { |
| const LEN: usize = size_of::<u32>(); |
| if data.len() < LEN { |
| return Err(bloberr!("failed to find {LEN} bytes")); |
| } |
| let chunk: [u8; LEN] = data[..LEN].try_into().unwrap(); // safe: just checked |
| *data = &(*data)[LEN..]; |
| Ok(u32::from_ne_bytes(chunk)) |
| } |
| |
| /// Retrieve a (host-ordered) `i32` from the start of the given slice, if possible. |
| fn consume_i32(data: &mut &[u8]) -> Result<i32> { |
| const LEN: usize = size_of::<i32>(); |
| if data.len() < LEN { |
| return Err(bloberr!("failed to find {LEN} bytes")); |
| } |
| let chunk: [u8; LEN] = data[..LEN].try_into().unwrap(); // safe: just checked |
| *data = &(*data)[4..]; |
| Ok(i32::from_ne_bytes(chunk)) |
| } |
| |
| /// Retrieve a (host-ordered) `i64` from the start of the given slice, if possible. |
| fn consume_i64(data: &mut &[u8]) -> Result<i64> { |
| const LEN: usize = size_of::<i64>(); |
| if data.len() < LEN { |
| return Err(bloberr!("failed to find {LEN} bytes")); |
| } |
| let chunk: [u8; LEN] = data[..LEN].try_into().unwrap(); // safe: just checked |
| *data = &(*data)[LEN..]; |
| Ok(i64::from_ne_bytes(chunk)) |
| } |
| |
| /// Retrieve a vector of bytes from the start of the given slice, if possible, |
| /// with the length of the data expected to appear as a host-ordered `u32` prefix. |
| fn consume_vec(data: &mut &[u8]) -> Result<Vec<u8>> { |
| let len = consume_u32(data)? as usize; |
| if len > data.len() { |
| return Err(bloberr!("failed to find {} bytes", len)); |
| } |
| let result = data[..len].to_vec(); |
| *data = &(*data)[len..]; |
| Ok(result) |
| } |
| |
| /// Retrieve the contents of a tag of `TagType::Bytes`. The `data` parameter holds |
| /// the as-yet unparsed data, and a length and offset are read from this (and consumed). |
| /// This length and offset refer to a location in the combined `blob_data`; however, |
| /// the offset is expected to be the next unconsumed chunk of `blob_data`, as indicated |
| /// by `next_blob_offset` (which itself is updated as a result of consuming the data). |
| fn consume_blob( |
| data: &mut &[u8], |
| next_blob_offset: &mut usize, |
| blob_data: &[u8], |
| ) -> Result<Vec<u8>> { |
| let data_len = consume_u32(data)? as usize; |
| let data_offset = consume_u32(data)? as usize; |
| // Expect the blob data to come from the next offset in the initial blob chunk. |
| if data_offset != *next_blob_offset { |
| return Err(bloberr!("got blob offset {} instead of {}", data_offset, next_blob_offset)); |
| } |
| if (data_offset + data_len) > blob_data.len() { |
| return Err(bloberr!( |
| "blob at offset [{}..{}+{}] goes beyond blob data size {}", |
| data_offset, |
| data_offset, |
| data_len, |
| blob_data.len(), |
| )); |
| } |
| |
| let slice = &blob_data[data_offset..data_offset + data_len]; |
| *next_blob_offset += data_len; |
| Ok(slice.to_vec()) |
| } |
| |
| /// Deserialize a collection of [`KeyParam`]s in legacy serialized format. The provided slice is |
| /// modified to contain the unconsumed part of the data. |
| fn deserialize_params(data: &mut &[u8]) -> Result<Vec<KeyParameter>> { |
| let blob_data_size = consume_u32(data)? as usize; |
| if blob_data_size > data.len() { |
| return Err(bloberr!( |
| "blob data size {} bigger than data (len={})", |
| blob_data_size, |
| data.len() |
| )); |
| } |
| |
| let blob_data = &data[..blob_data_size]; |
| let mut next_blob_offset = 0; |
| |
| // Move past the blob data. |
| *data = &data[blob_data_size..]; |
| |
| let param_count = consume_u32(data)? as usize; |
| let param_size = consume_u32(data)? as usize; |
| if param_size > data.len() { |
| return Err(bloberr!( |
| "size mismatch 4+{}+4+4+{} > {}", |
| blob_data_size, |
| param_size, |
| data.len() |
| )); |
| } |
| |
| let mut results = Vec::new(); |
| for _i in 0..param_count { |
| let tag_num = consume_u32(data)? as i32; |
| let tag = Tag(tag_num); |
| let value = match tag_type(&tag) { |
| TagType::INVALID => return Err(bloberr!("invalid tag {:?} encountered", tag)), |
| TagType::ENUM | TagType::ENUM_REP => { |
| let val = consume_i32(data)?; |
| match tag { |
| Tag::ALGORITHM => KeyParameterValue::Algorithm(Algorithm(val)), |
| Tag::BLOCK_MODE => KeyParameterValue::BlockMode(BlockMode(val)), |
| Tag::PADDING => KeyParameterValue::PaddingMode(PaddingMode(val)), |
| Tag::DIGEST | Tag::RSA_OAEP_MGF_DIGEST => { |
| KeyParameterValue::Digest(Digest(val)) |
| } |
| Tag::EC_CURVE => KeyParameterValue::EcCurve(EcCurve(val)), |
| Tag::ORIGIN => KeyParameterValue::Origin(KeyOrigin(val)), |
| Tag::PURPOSE => KeyParameterValue::KeyPurpose(KeyPurpose(val)), |
| Tag::USER_AUTH_TYPE => { |
| KeyParameterValue::HardwareAuthenticatorType(HardwareAuthenticatorType(val)) |
| } |
| _ => KeyParameterValue::Integer(val), |
| } |
| } |
| TagType::UINT | TagType::UINT_REP => KeyParameterValue::Integer(consume_i32(data)?), |
| TagType::ULONG | TagType::ULONG_REP => { |
| KeyParameterValue::LongInteger(consume_i64(data)?) |
| } |
| TagType::DATE => KeyParameterValue::DateTime(consume_i64(data)?), |
| TagType::BOOL => KeyParameterValue::BoolValue(consume_bool(data)?), |
| TagType::BIGNUM | TagType::BYTES => { |
| KeyParameterValue::Blob(consume_blob(data, &mut next_blob_offset, blob_data)?) |
| } |
| _ => return Err(bloberr!("unexpected tag type for {:?}", tag)), |
| }; |
| results.push(KeyParameter { tag, value }); |
| } |
| |
| Ok(results) |
| } |
| |
| /// Serialize a collection of [`KeyParameter`]s into a format that is compatible with previous |
| /// implementations: |
| /// |
| /// ```text |
| /// [0..4] Size B of `TagType::Bytes` data, in host order. |
| /// [4..4+B] (*) Concatenated contents of each `TagType::Bytes` tag. |
| /// [4+B..4+B+4] Count N of the number of parameters, in host order. |
| /// [8+B..8+B+4] Size Z of encoded parameters. |
| /// [12+B..12+B+Z] Serialized parameters one after another. |
| /// ``` |
| /// |
| /// Individual parameters are serialized in the last chunk as: |
| /// |
| /// ```text |
| /// [0..4] Tag number, in host order. |
| /// Followed by one of the following depending on the tag's `TagType`; all integers in host order: |
| /// [4..5] Bool value (`TagType::Bool`) |
| /// [4..8] i32 values (`TagType::Uint[Rep]`, `TagType::Enum[Rep]`) |
| /// [4..12] i64 values, in host order (`TagType::UlongRep`, `TagType::Date`) |
| /// [4..8] + [8..12] Size + offset of data in (*) above (`TagType::Bytes`, `TagType::Bignum`) |
| /// ``` |
| fn serialize_params(params: &[KeyParameter]) -> Result<Vec<u8>> { |
| // First 4 bytes are the length of the combined [`TagType::Bytes`] data; come back to set that |
| // in a moment. |
| let mut result = vec![0; 4]; |
| |
| // Next append the contents of all of the [`TagType::Bytes`] data. |
| let mut blob_size = 0u32; |
| for param in params { |
| let tag_type = tag_type(¶m.tag); |
| if let KeyParameterValue::Blob(v) = ¶m.value { |
| if tag_type != TagType::BIGNUM && tag_type != TagType::BYTES { |
| return Err(bloberr!("unexpected tag type for tag {:?} with blob", param.tag)); |
| } |
| result.extend_from_slice(v); |
| blob_size += v.len() as u32; |
| } |
| } |
| // Go back and fill in the combined blob length in native order at the start. |
| result[..4].clone_from_slice(&blob_size.to_ne_bytes()); |
| |
| result.extend_from_slice(&(params.len() as u32).to_ne_bytes()); |
| |
| let params_size_offset = result.len(); |
| result.extend_from_slice(&[0u8; 4]); // placeholder for size of elements |
| let first_param_offset = result.len(); |
| let mut blob_offset = 0u32; |
| for param in params { |
| result.extend_from_slice(&(param.tag.0 as u32).to_ne_bytes()); |
| match ¶m.value { |
| KeyParameterValue::Invalid(_v) => { |
| return Err(bloberr!("invalid tag found in {:?}", param)) |
| } |
| |
| // Enum-holding variants. |
| KeyParameterValue::Algorithm(v) => { |
| result.extend_from_slice(&(v.0 as u32).to_ne_bytes()) |
| } |
| KeyParameterValue::BlockMode(v) => { |
| result.extend_from_slice(&(v.0 as u32).to_ne_bytes()) |
| } |
| KeyParameterValue::PaddingMode(v) => { |
| result.extend_from_slice(&(v.0 as u32).to_ne_bytes()) |
| } |
| KeyParameterValue::Digest(v) => result.extend_from_slice(&(v.0 as u32).to_ne_bytes()), |
| KeyParameterValue::EcCurve(v) => result.extend_from_slice(&(v.0 as u32).to_ne_bytes()), |
| KeyParameterValue::Origin(v) => result.extend_from_slice(&(v.0 as u32).to_ne_bytes()), |
| KeyParameterValue::KeyPurpose(v) => { |
| result.extend_from_slice(&(v.0 as u32).to_ne_bytes()) |
| } |
| KeyParameterValue::HardwareAuthenticatorType(v) => { |
| result.extend_from_slice(&(v.0 as u32).to_ne_bytes()) |
| } |
| |
| // Value-holding variants. |
| KeyParameterValue::Integer(v) => result.extend_from_slice(&(*v as u32).to_ne_bytes()), |
| KeyParameterValue::BoolValue(_v) => result.push(0x01u8), |
| KeyParameterValue::LongInteger(v) | KeyParameterValue::DateTime(v) => { |
| result.extend_from_slice(&(*v as u64).to_ne_bytes()) |
| } |
| KeyParameterValue::Blob(v) => { |
| let blob_len = v.len() as u32; |
| result.extend_from_slice(&blob_len.to_ne_bytes()); |
| result.extend_from_slice(&blob_offset.to_ne_bytes()); |
| blob_offset += blob_len; |
| } |
| |
| _ => return Err(bloberr!("unknown value found in {:?}", param)), |
| } |
| } |
| let serialized_size = (result.len() - first_param_offset) as u32; |
| |
| // Go back and fill in the total serialized size. |
| result[params_size_offset..params_size_offset + 4] |
| .clone_from_slice(&serialized_size.to_ne_bytes()); |
| Ok(result) |
| } |