| // Copyright 2020, The Android Open Source Project |
| // |
| // Licensed under the Apache License, Version 2.0 (the "License"); |
| // you may not use this file except in compliance with the License. |
| // You may obtain a copy of the License at |
| // |
| // http://www.apache.org/licenses/LICENSE-2.0 |
| // |
| // Unless required by applicable law or agreed to in writing, software |
| // distributed under the License is distributed on an "AS IS" BASIS, |
| // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
| // See the License for the specific language governing permissions and |
| // limitations under the License. |
| |
| //! Async task tests. |
| use super::{AsyncTask, Shelf}; |
| use std::sync::{ |
| mpsc::{channel, sync_channel, RecvTimeoutError}, |
| Arc, |
| }; |
| use std::time::Duration; |
| |
| #[test] |
| fn test_shelf() { |
| let mut shelf = Shelf::default(); |
| |
| let s = "A string".to_string(); |
| assert_eq!(shelf.put(s), None); |
| |
| let s2 = "Another string".to_string(); |
| assert_eq!(shelf.put(s2), Some("A string".to_string())); |
| |
| // Put something of a different type on the shelf. |
| #[derive(Debug, PartialEq, Eq)] |
| struct Elf { |
| pub name: String, |
| } |
| let e1 = Elf { name: "Glorfindel".to_string() }; |
| assert_eq!(shelf.put(e1), None); |
| |
| // The String value is still on the shelf. |
| let s3 = shelf.get_downcast_ref::<String>().unwrap(); |
| assert_eq!(s3, "Another string"); |
| |
| // As is the Elf. |
| { |
| let e2 = shelf.get_downcast_mut::<Elf>().unwrap(); |
| assert_eq!(e2.name, "Glorfindel"); |
| e2.name = "Celeborn".to_string(); |
| } |
| |
| // Take the Elf off the shelf. |
| let e3 = shelf.remove_downcast_ref::<Elf>().unwrap(); |
| assert_eq!(e3.name, "Celeborn"); |
| |
| assert_eq!(shelf.remove_downcast_ref::<Elf>(), None); |
| |
| // No u64 value has been put on the shelf, so getting one gives the default value. |
| { |
| let i = shelf.get_mut::<u64>(); |
| assert_eq!(*i, 0); |
| *i = 42; |
| } |
| let i2 = shelf.get_downcast_ref::<u64>().unwrap(); |
| assert_eq!(*i2, 42); |
| |
| // No i32 value has ever been seen near the shelf. |
| assert_eq!(shelf.get_downcast_ref::<i32>(), None); |
| assert_eq!(shelf.get_downcast_mut::<i32>(), None); |
| assert_eq!(shelf.remove_downcast_ref::<i32>(), None); |
| } |
| |
| #[test] |
| fn test_async_task() { |
| let at = AsyncTask::default(); |
| |
| // First queue up a job that blocks until we release it, to avoid |
| // unpredictable synchronization. |
| let (start_sender, start_receiver) = channel(); |
| at.queue_hi(move |shelf| { |
| start_receiver.recv().unwrap(); |
| // Put a trace vector on the shelf |
| shelf.put(Vec::<String>::new()); |
| }); |
| |
| // Queue up some high-priority and low-priority jobs. |
| for i in 0..3 { |
| let j = i; |
| at.queue_lo(move |shelf| { |
| let trace = shelf.get_mut::<Vec<String>>(); |
| trace.push(format!("L{}", j)); |
| }); |
| let j = i; |
| at.queue_hi(move |shelf| { |
| let trace = shelf.get_mut::<Vec<String>>(); |
| trace.push(format!("H{}", j)); |
| }); |
| } |
| |
| // Finally queue up a low priority job that emits the trace. |
| let (trace_sender, trace_receiver) = channel(); |
| at.queue_lo(move |shelf| { |
| let trace = shelf.get_downcast_ref::<Vec<String>>().unwrap(); |
| trace_sender.send(trace.clone()).unwrap(); |
| }); |
| |
| // Ready, set, go. |
| start_sender.send(()).unwrap(); |
| let trace = trace_receiver.recv().unwrap(); |
| |
| assert_eq!(trace, vec!["H0", "H1", "H2", "L0", "L1", "L2"]); |
| } |
| |
| #[test] |
| fn test_async_task_chain() { |
| let at = Arc::new(AsyncTask::default()); |
| let (sender, receiver) = channel(); |
| // Queue up a job that will queue up another job. This confirms |
| // that the job is not invoked with any internal AsyncTask locks held. |
| let at_clone = at.clone(); |
| at.queue_hi(move |_shelf| { |
| at_clone.queue_lo(move |_shelf| { |
| sender.send(()).unwrap(); |
| }); |
| }); |
| receiver.recv().unwrap(); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_async_task_panic() { |
| let at = AsyncTask::default(); |
| at.queue_hi(|_shelf| { |
| panic!("Panic from queued job"); |
| }); |
| // Queue another job afterwards to ensure that the async thread gets joined. |
| let (done_sender, done_receiver) = channel(); |
| at.queue_hi(move |_shelf| { |
| done_sender.send(()).unwrap(); |
| }); |
| done_receiver.recv().unwrap(); |
| } |
| |
| #[test] |
| fn test_async_task_idle() { |
| let at = AsyncTask::new(Duration::from_secs(3)); |
| // Need a SyncSender as it is Send+Sync. |
| let (idle_done_sender, idle_done_receiver) = sync_channel::<()>(3); |
| at.add_idle(move |_shelf| { |
| idle_done_sender.send(()).unwrap(); |
| }); |
| |
| // Queue up some high-priority and low-priority jobs that take time. |
| for _i in 0..3 { |
| at.queue_lo(|_shelf| { |
| std::thread::sleep(Duration::from_millis(500)); |
| }); |
| at.queue_hi(|_shelf| { |
| std::thread::sleep(Duration::from_millis(500)); |
| }); |
| } |
| // Final low-priority job. |
| let (done_sender, done_receiver) = channel(); |
| at.queue_lo(move |_shelf| { |
| done_sender.send(()).unwrap(); |
| }); |
| |
| // Nothing happens until the last job completes. |
| assert_eq!( |
| idle_done_receiver.recv_timeout(Duration::from_secs(1)), |
| Err(RecvTimeoutError::Timeout) |
| ); |
| done_receiver.recv().unwrap(); |
| // Now that the last low-priority job has completed, the idle task should |
| // fire pretty much immediately. |
| idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap(); |
| |
| // Idle callback not executed again even if we wait for a while. |
| assert_eq!( |
| idle_done_receiver.recv_timeout(Duration::from_secs(3)), |
| Err(RecvTimeoutError::Timeout) |
| ); |
| |
| // However, if more work is done then there's another chance to go idle. |
| let (done_sender, done_receiver) = channel(); |
| at.queue_hi(move |_shelf| { |
| std::thread::sleep(Duration::from_millis(500)); |
| done_sender.send(()).unwrap(); |
| }); |
| // Idle callback not immediately executed, because the high priority |
| // job is taking a while. |
| assert_eq!( |
| idle_done_receiver.recv_timeout(Duration::from_millis(1)), |
| Err(RecvTimeoutError::Timeout) |
| ); |
| done_receiver.recv().unwrap(); |
| idle_done_receiver.recv_timeout(Duration::from_millis(50)).unwrap(); |
| } |
| |
| #[test] |
| fn test_async_task_multiple_idle() { |
| let at = AsyncTask::new(Duration::from_secs(3)); |
| let (idle_sender, idle_receiver) = sync_channel::<i32>(5); |
| // Queue a high priority job to start things off |
| at.queue_hi(|_shelf| { |
| std::thread::sleep(Duration::from_millis(500)); |
| }); |
| |
| // Multiple idle callbacks. |
| for i in 0..3 { |
| let idle_sender = idle_sender.clone(); |
| at.add_idle(move |_shelf| { |
| idle_sender.send(i).unwrap(); |
| }); |
| } |
| |
| // Nothing happens immediately. |
| assert_eq!( |
| idle_receiver.recv_timeout(Duration::from_millis(1)), |
| Err(RecvTimeoutError::Timeout) |
| ); |
| // Wait for a moment and the idle jobs should have run. |
| std::thread::sleep(Duration::from_secs(1)); |
| |
| let mut results = Vec::new(); |
| while let Ok(i) = idle_receiver.recv_timeout(Duration::from_millis(1)) { |
| results.push(i); |
| } |
| assert_eq!(results, [0, 1, 2]); |
| } |
| |
| #[test] |
| fn test_async_task_idle_queues_job() { |
| let at = Arc::new(AsyncTask::new(Duration::from_secs(1))); |
| let at_clone = at.clone(); |
| let (idle_sender, idle_receiver) = sync_channel::<i32>(100); |
| // Add an idle callback that queues a low-priority job. |
| at.add_idle(move |shelf| { |
| at_clone.queue_lo(|_shelf| { |
| // Slow things down so the channel doesn't fill up. |
| std::thread::sleep(Duration::from_millis(50)); |
| }); |
| let i = shelf.get_mut::<i32>(); |
| idle_sender.send(*i).unwrap(); |
| *i += 1; |
| }); |
| |
| // Nothing happens immediately. |
| assert_eq!( |
| idle_receiver.recv_timeout(Duration::from_millis(1500)), |
| Err(RecvTimeoutError::Timeout) |
| ); |
| |
| // Once we queue a normal job, things start. |
| at.queue_hi(|_shelf| {}); |
| assert_eq!(0, idle_receiver.recv_timeout(Duration::from_millis(200)).unwrap()); |
| |
| // The idle callback queues a job, and completion of that job |
| // means the task is going idle again...so the idle callback will |
| // be called repeatedly. |
| assert_eq!(1, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| assert_eq!(2, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| assert_eq!(3, idle_receiver.recv_timeout(Duration::from_millis(100)).unwrap()); |
| } |
| |
| #[test] |
| #[should_panic] |
| fn test_async_task_idle_panic() { |
| let at = AsyncTask::new(Duration::from_secs(1)); |
| let (idle_sender, idle_receiver) = sync_channel::<()>(3); |
| // Add an idle callback that panics. |
| at.add_idle(move |_shelf| { |
| idle_sender.send(()).unwrap(); |
| panic!("Panic from idle callback"); |
| }); |
| // Queue a job to trigger idleness and ensuing panic. |
| at.queue_hi(|_shelf| {}); |
| idle_receiver.recv().unwrap(); |
| |
| // Queue another job afterwards to ensure that the async thread gets joined |
| // and the panic detected. |
| let (done_sender, done_receiver) = channel(); |
| at.queue_hi(move |_shelf| { |
| done_sender.send(()).unwrap(); |
| }); |
| done_receiver.recv().unwrap(); |
| } |